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Abstract: A new method is presented to model and predict the flow fields of the hydrostatic lead-
screws with greater accuracy. It is different from those available methods, in which various bearings
are assumed to be equivalent to the screw-nut pair within a pitch by various means. In this new
method, a helical coordinate system adapting to the boundaries of the flow fields is constructed,
which makes the screw-nut meshing clearance calculated more accurate. Based on the finite difference
method (FDM), the meshing clearance is discretized into a number of flow fields, which are created
by numerous couples of parallel-plate elements moving relatively along the helicoid. The numerical
model is solved in MATLAB, and the analyses about the pressure fields demonstrate its favorable
performances in reflecting the actual flow fields. Furthermore, the simulation results are compared
with the experimental values, confirming the feasibility of the proposed method.

Keywords: hydrostatic leadscrew; helical coordinate system; finite difference method; MATLAB;
flow fields

1. Introduction

The hydrostatic leadscrews are widely used for precision machining, and increasingly
high demands are placed on them. The numerical studies of the systems can circumvent
many obstacles inherent in the experiments, and thus reduce the test costs, which is of
great significance for the developments of the prototype machines.

Conventionally, scholars have simplified the hydrostatic and aerostatic leadscrews
as a series connection of various thrust bearings using diverse approaches. Through the
axial projection of the intermeshing helicoids, the helical gap flow fields were simplified
as multiple annular flow fields by Wertwijn and Klarich [1], Matataro and Akira [2,3],
Satomi and Yamamoto [4,5], Zhao and Satomi [6], Shen [7], Luo and Zhao [8], Zhong [9],
and Xin [10]. Somewhat differently, El-Sayed and Khataan [11–13], Zhang [14,15] and
Ohishi [16] expanded the intermeshing helicoids within a pitch into a couple of annular-
sector plates according to some approximate rules, to obtain the annular-sector flow fields.
Besides, the aerostatic leadscrews were replaced by multiple taper bearings in the studies
of Lu and Yu et al. [17].

A drawback of the approximation methods of axial projection and tapered bearing
substitution is that the influences of torsion and the lead angle are ignored, thus the actual
conditions of flow fields are poorly reflected.

With the lead angle and thread angle both covered, the sector approximation method
is superior to the others. In the method, there is a one-to-one mapping from the finite-
difference elements of the helicoid to the those of the annular sector. Furthermore, there are
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some approximate rules to be followed between the sums of the elements of the helicoid
and those of the sector.

Theoretically, the areas of two bounded surfaces with different shapes may be different
even if the sides of them are of equal length, respectively, such as a bounded plane and a
bounded curved surface, with the same length on each boundary. In [11], the restrictions
were placed only on the lengths of the flow-field boundaries, not the areas, which may
make such parameters as the lead angle, thread angle, arc length, torsion, and curvature
of each grid element approximated to varying degrees. If such variations occur, then the
calculated flow-field pressures would deviate from the actual values. The reason for this is
that the pressure values are strongly related to the areas and shapes of the loading surfaces,
although the directions of the speed and the pressure at each node remain consistent
before and after approximation. As is well known, the denser the meshes, the smaller the
deviations caused by the aforesaid approximations, but the according computing costs will
increase significantly. Furthermore, there may be a divergence problem of solutions with
the increase of the number of grid elements. Lastly, the grid elements may change to adapt
to the different discretization methods of the fluid equations and geometric parameters of
the system.

Available studies on the flow-field modeling of the hydrostatic and aerostatic lead-
screws are quite few. Although the sector approximation method would be superior to the
others theoretically, the solutions based on the method were not strictly verified, and the
flow fields were not reflected well. In view of the shortcomings of the current methods, a
new modeling method, in which a follow-up coordinate system adapting to the boundaries
of the flow fields is constructed along the pitch diameter helix of the nut, is proposed in
this research, to provide a more convincing prediction of the flow fields.

In this research, the method is implemented and discussed by MATLAB. Compared
with the common flow-field simulations in the CFD professional software, the simulations
in MATLAB are realized by converting all the information into MATLAB codes, without
three-dimensional geometric models of the flow fields.
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2. Materials and Methods
2.1. Construction of Helical Coordinate System Adapting to the Boundaries of the Flow Fields

A screw-driven hydrostatic leadscrew with a six-turn-thread nut was chosen as the
research object to describe the new modeling method, and four oil chambers were assumed
to be evenly spaced on each of the four turns of threads in the middle of the nut.

The leadscrew was assumed to be oriented vertically for the convenience of description.
The flow fields on the upper side of the nut were named the upper flow fields, and those
on the other side were named the lower flow fields. Besides, the research was carried
out under the following assumptions: (1) the pressure gradient along the film thickness
direction is 0; (2) the outer boundary pressure is 0; (3) the velocity gradient in the helical
direction can be ignored, compared with the thickness direction; (4) the volume force and
inertia force can be neglected, compared with the viscous force; (5) the research involves
only laminar motion of an incompressible Newtonian fluid; (6) the boundary velocities
satisfy the no-slip condition; and (7) the normal section of fit clearance is assumed as
rectangular, with a trapezoidal thread discussed in this research.

The Lagrange method was adopted to describe the flow fields in this research [18].
The upper flow fields were taken for example. As shown in Figure 1a,b, “Oξ1ξ2ξ3” is a
global coordinate system (“Orθξ3” is the corresponding cylindrical coordinate system),
and “O1XYZ” is a local inertial frame fixed on the nut. The O1Z-axis coincided with the
Oξ3-axis, and the O1X-axis intersected the upper helicoid of the nut at point e on the pitch
diameter helix. With counterclockwise rotations defined as positive, the screw rotation
angle θ was calculated, starting from the position of the O1X-axis at the initial time. For a
right-hand-thread leadscrew, the nut moves downwards along the axial direction when the
screw is turned counterclockwise. Point e in Figure 1a,b,d is the starting point of the helical
coordinate system, point E in Figure 1b is any point on the s-axis, point F in Figure 1b, e is
a point whose distance from point E in the y′ direction is h, and h is the clearance thickness
of the gap flow fields. The normal section “n-n” of the screw is shown in Figure 1c, the
section of the gap fields at the initial time is shown in Figure 1d, and the relations among
velocity components of point F are shown in Figure 1e.

As shown in Figure 1b,d, a helical coordinate system “sy”, composed of the s-axis
and a follow-up coordinate system “oxy”, was constructed on the upper helicoid of the
nut [19,20]. The s-axis gone from point e along the pitch diameter helix of the helicoid,
and “oxy” changed along the s-axis (tangent vector t) to adapt to the normal and binormal
vectors (n and b) of the Frenet frame of pitch diameter helix.

The origin o of the follow-up coordinate system could be any point on the pitch
diameter helix. Rf was employed to locate point o in “O1XYZ”, and the position of the
point in “Oξ1ξ2ξ3” could be expressed as Equation (1):

Ro = RO1 + Rf (1)

The position of point O1 in “Oξ1ξ2ξ3” was described by RO1 , whose relationship with
the axial displacement of the nut Znut was:

RO1 = −Znutk (2)

i, j and k are the unit vectors in the ξ1, ξ2 and ξ3 direction, respectively.
An arbitrary point in the fields could be located in “Oξ1ξ2ξ3” through Equation (3):

RA=RO1+Rf+xn+yb
=RO1+RhA

(3)

RhA is the position of the arbitrary point in “sxy” or “O1XYZ”. “Oξ1ξ2ξ3” and
“O1XYZ” were coincident at the coordinate origin at the initial moment, that was to say,
RO1 = 0 at the moment.
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The Frenet frame of the s-axis in “O1XZ” could be solved based on Equations (4)–(6),
to evaluate the orthogonality of the helical coordinate system.

t =
∂RhA

∂s
= (− rm√

rm2 + ( P
2π )

2
sin θ,

rm√
rm2 + ( P

2π )
2

cos θ,
P

2π√
rm2 + ( P

2π )
2
) (4)

n =
1
κ

dt
ds

= (− cos θ,−sinθ, 0) (5)

b = t× n = (
P

2π√
rm2 + ( P

2π )
2

sin θ,−
P

2π√
rm2 + ( P

2π )
2

cos θ,
rm√

rm2 + ( P
2π )

2
) (6)

The arc length was calculated:

dRhAdRhA =
(
(1− κx)2 + (τy)2 + (τx)2

)
(ds)2 + (dx)2 + (dy)2 + 2τxdsdy− 2τydxds (7)

Here, P, κ, τ, and rm are the pitch, curvature, torsion, and pitch radius of the helix
along the s-axis, respectively. rm was supposed to be equal to the pitch radius of the
gap fields.

The helical coordinate system “sxy” was considered to be non-orthogonal, according
to the judgment rule [21].

Shown in Figure 1b,d, according to the methods for rotating the Frenet frame in [21,22],
each follow-up coordinate system “oxy” was rotated by ϕ (ϕ is half of the thread angle of
the normal section at the position with a radius of rm in Figure 1. Modeling diagram based
on the helical coordinate system. (a) Schematic diagram; (b) modeling of fluid domain; (c)
“-” of the screw; (d) initial section; (e) velocity relations.c) around the s-axis to obtain a new
follow-up coordinate system “ox′y′”. In the corresponding new helical coordinate system
“sx′y′”, the normal and binormal vectors (n′ and b′) of the new Frenet frame were aligned
with the corresponding flow field boundaries, respectively.

The normal and binormal vectors before and after rotation satisfied the relationships:

n′ = n cos ϕ− b sin ϕ (8)

b′ = n sin ϕ + b cos ϕ (9)

The position of any selected point in “sx′y′” after rotation could be described as:

RhA = Rf + x′n′ + y′b′ (10)

Similar to Equation (7), the arc length was calculated:

dRhAdRhA = ((1− κx′ cos ϕ− κy′ sin ϕ)2 + (x′(d(cos ϕ)
ds + τ sin ϕ) + y′(d(sin ϕ)

ds − τ cos ϕ))
2

+(x′(τ cos ϕ− d(sin ϕ)
ds ) + y′(τ sin ϕ + d(cos ϕ)

ds )))(ds)2 + (cos2 ϕ + sin2 ϕ)(dx′)2 + (cos2 ϕ + sin2 ϕ)(dy′)2

+2y′( ∂ϕ
∂s − τ)dsdx′ + 2x′(τ − ∂ϕ

∂s )dsdy′
(11)

It could be deduced from Equation (11) that the new helical coordinate system was
not orthogonal until τ = ∂ϕ

∂s , and then there was such a relation as follows:

∂RhA
∂s

=
(
1− κx′ cos ϕ− κy′ sin ϕ

)
t (12)

In light of the above analyses, the helical coordinate system was deduced to be non-
orthogonal with a constant ϕ.

As mentioned above, the Lagrangian description was employed during the process.
The relative motion of the fluid particle in “O1XYZ” was analyzed firstly for convenience,
and then the absolute motion in “Oξ1ξ2ξ3” was solved based on the theory of relative
motion (refer to the relations shown in Figure 1e).
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A mapping between “sx′y′” and “Oξ1ξ2ξ3”was obtained through Equation (13):

RA = RO1 + Rf + x′n′ + y′b′

= (rm cos θ − (x′ cos ϕ + y′ sin ϕ) cos θ + (y′ cos ϕ− x′ sin ϕ)
P

2π√
rm2+( P

2π )
2

sin θ)i

+(rm sin θ − (x′ cos ϕ + y′ sin ϕ) sin θ − (y′ cos ϕ− x′ sin ϕ)
P

2π√
rm2+( P

2π )
2

cos θ)j

+( P
2π θ − Znut + (y′ cos ϕ− x′ sin ϕ) rm√

rm2+( P
2π )

2
)k

= ξ1i + ξ2j + ξ3k

(13)

2.2. Derivation of Reynolds Equation in Helical Coordinate System

In the following analyses, the group of symbols “s, x, y” was utilized to replace
“s, x′, y′” after rotation, and to locate the flow-field particles in the new helical coordi-
nate system, for ease of description. As mentioned in Section 2.1, the motions of fluid
particles relative to the nut are analyzed in this section.

According to the assumptions in (1)–(7) in Section 2.1, the Navier–Stokes equation
could be simplified as follows [21–23]:

1
M

∂p
∂s = η ∂2ω

∂y2

∂p
∂x = η ∂2u

∂y2

(14)

The continuity equation could be reduced as follows:

∂(Mu)
∂x

+
∂(Mv)

∂y
+ (y

∂ω

∂x
− x

∂ω

∂y
)τ +

∂ω

∂s
= 0 (15)

where M = 1− κx cos ϕ− κy sin ϕ, and the velocities of any fluid particle in the x, y, and s
direction were indicated by such vectors as “u, v, w”, respectively.

M = 1− κx cos ϕ was assumed, as the order of magnitude in the y direction was
much smaller than that in other directions. Then, the first formula in Equation (14) was
developed into:

1
1− κx cos ϕ

∂p
∂s

= η
∂2ω

∂y2 (16)

It could be deduced that ∂p
∂y = 0 from the assumption in (1) in Section 2.1.

The upper flow fields were taken for example. The fluid particle, which was stationary
relative to the nut, was assumed to have a y-coordinate of 0 (“u1, v1, w1”). There was no
slip motion between the screw and the particle whose y-coordinate was h (“u2, v2, w2”).

When Equation (16) was integrated twice with respect to y, ω was obtained:

ω =
1

2η(1− κx cos ϕ)

∂p
∂s

(
y2 − hy

)
+

1
h
(ω2 −ω1)y + ω1 (17)

where, for x ∈ ∀, w(x) is true as long as y = 0.
When the second formula in Equation (14) was integrated twice with respect to x, u

was given by:

u =
1

2η

∂p
∂x

(
y2 − yh

)
(18)

The unit discharges in the s and x direction could be solved by:

qs =
∫ h

0
ωdy = − 1

12
h3

(1− κx cos ϕ)η

∂p
∂s

+
1
2
(ω1 + ω2)h (19)
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qx =
∫ h

0
udy = − 1

12η

∂p
∂x

h3 (20)

Equation (15) was developed into:

(−κ cos ϕ)u + (1− κx cos ϕ)
∂u
∂x

+ (1− κx cos ϕ)
∂v
∂y

+ (y
∂ω

∂x
− x

∂ω

∂y
)τ +

∂ω

∂s
= 0 (21)

Here, the term y ∂ω
∂x could be ignored, because ∂ω

∂x << ∂ω
∂y . When Equation (21) was

integrated with respect to y, the simplified Reynolds equation [24,25] was obtained:

∂
∂x ((1− κx cos ϕ)(− 1

12η h3) ∂p
∂x ) +

∂
∂s (−

h3

12(1−κx cos ϕ)η
∂p
∂s )

= −(1− κx cos ϕ)(ν2 − ν1) + τx(ω2 −ω1) +
1
2

∂h
∂s (ω1 + ω2)− 1

2 h ∂(ω1+ω2)
∂s

(22)

2.3. Boundary Conditions of the Helical Flow Fields

In the light of the kinematics principle of particle and the theory of moving coordinate
system [26,27], the relations among the velocity components of the fluid particle, which
makes no slip motion relative to the screw, are shown in Figure 1e. Then, a set of relations
could be deduced from vx + vy + vs = vr:{

vs = vr cos δ√(
vy
)2

+ (vx)
2 = vr sin δ

(23)

vr =

√
•
Znut2 + vscrew2 =

√
•
Znut2 + (rΩ)2 (24)

Here, vr
→
v r is the relative velocity of a fluid particle, vx, vy, and vs are the velocities of the

particle in the x, y, and s direction, respectively, δ is the angle between vr and vs, and
•
Znut

is the axial velocity of the nut. And then,

δ ≈ |λr − λrm | (25)

λr = arctan(
P

2πr
) (26)

•
Znut =

P
2π

Ω + ∆
•
Z (27)

∆Z = ∆h cos λrm cos ϕ (28)

h = hn0 + ∆h (29)

where λr is the lead angle of the helix at the position with a radius of r, ∆h is the transient
variation of clearance thickness, ∆Z is the transient displacement from the equilibrium

position of the nut caused by ∆h, and ∆
•
Z is the change rate of ∆Z. Thus, vs could be

defined by:

vs =

√
(

PΩ
2π

+ ∆
•
Z)

2
+ (Ωr)2 cos(λr − λrm) (30)

When vx was ignored, vy ≈ vr sin δ.
Then, the boundary conditions of the flow fields are presented in Table 1
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Table 1. Boundary conditions of the fields.

Upper Fields

Parameter Value Parameter Value

y1 0 y2 h
u1 0 u2 0
v1 0 v2 vr sin δ
ω1 0 ω2 vr cos δ

Lower Fields

Parameter Value Parameter Value

y1 −h y2 0
u1 0 u2 0
v1 vr sin δ v2 0
ω1 vr cos δ ω2 0

2.4. Solution of Reynolds Equation Applicable to a Screw-Nut Pair
2.4.1. Discretization of Reynolds Equation

The following relations were supposed:

∆h = ∆hs + ∆hd (31)

p = ps + pZd ∆Zd + p •
Zd

∆
•
Zd (32)

Here, ∆hs is the steady component of ∆h, ∆hd is the disturbed component, ∆Zd is the axial

displacement perturbation caused by ∆hd, ∆
•
Zd is the change rate of ∆Zd, pZd is the first-

order pressure disturbance caused by ∆Zd, p •
Zd

is the second-order pressure disturbance

caused by ∆
•
Zd [28].

Through the definitions:
x = hn0x, y = hn0y, s = hn0s, κ = hn0ε, g = hn0τ, p = Ps p, h = hn0h, ∆Z =

hn0∆Z, Ω = Pshn0
2

ηrm2 Ω, A = 1 − εx cos ϕ, As1 =

√
( PΩ

2πhn0
)

2
+ (rΩ)

2, As2 =
√

PΩ
πhn0

, the

dimensionless transient Reynolds equation of the upper flow fields was given by:

1
12 ε cos ϕhs

3 ∂ps
∂x −

1
4 Ahs

2 ∂hs
∂x

∂ps
∂x −

1
12 Ahs

3 ∂2 ps
∂x2 − 1

4
1
A

hs
2 ∂hs

∂s
∂ps
∂s −

1
12

1
A

hs
3 ∂2 ps

∂s2

+( 1
12 ε cos ϕ(3hs

2 ∂ps
∂x

1
cos λrm cos ϕ + hs

3 ∂pZd
∂x )− 1

12 A(6hs
∂hs
∂x

∂ps
∂x

1
cos λrm cos ϕ + 3hs

2 ∂2 ps
∂x2

1
cos λrm cos ϕ

+3hs
2 ∂hs

∂x
∂pZd

∂x + hs
3 ∂2 pZd

∂x2 )− 1
12

1
A
(6hs

∂hs
∂s

∂ps
∂s

1
cos λrm cos ϕ + 3hs

2 ∂2 ps
∂x2

1
cos λrm cos ϕ + 3hs

2 ∂hs
∂s

∂pZd
∂s

+hs
3 ∂2 pZd

∂s2 ))∆Zd + ( 1
12 ε cos ϕhs

3
∂p•

Zd
∂x −

1
12 A(3hs

2 ∂hs
∂x

∂p•
Zd

∂x + hs
3

∂2 p•
Zd

∂x2 )− 1
12

1
A
(3hs

2 ∂hs
∂s

∂p•
Zd

∂s +

hs
3

∂2 p•
Zd

∂s2 ))∆
•
Zd

= −A sin δAs1 + (gx + 1
2

∂hs
∂s ) cos δAs1 + (−A sin δAs2 + (gx + 1

2
∂hs
∂s ) cos δAs2)∆

•
Zd

(33)

The five-point finite difference method (FDM) was employed to discretize the Reynolds
equation in Equation (33), and the kth iterative pressure was given by:

p(k)(i, j) = ω( 1
En(i,j) (An(i, j)p(k−1)(i + 1, j) + Bn(i, j)p(k)(i− 1, j) + Cn(i, j)p(k)(i, j + 1) + Dn(i, j)p(k)(i, j− 1))

−Fn(i, j)) + p(k−1)(i, j)
(34)

The steady state were taken as an example. The coefficients are given by:

An(i, j) = −A(i, j)
16

hs
2(i, j)

1

(∆x)2 (hs(i + 1, j)− hs(i− 1, j))− A(i, j)
12

hs
3(i, j)

1

(∆x)2 +
1

24
ε cos ϕ

1
∆x

hs
3(i, j) (35)
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Bn(i, j) =
A(i, j)

16
hs

2(i, j)
1

(∆x)2

(
hs(i + 1, j)− hs(i− 1, j)

)
− A(i, j)

12
hs

3(i, j)
1

(∆x)2 −
1

24
ε cos ϕ

1
∆x

hs
3(i, j) (36)

Cn(i, j) = − 1
16A(i, j)

hs
2(i, j)

1

(∆s)2

(
hs(i, j + 1)− hs(i, j− 1)

)
− 1

12A(i, j)
hs

3(i, j)
1

(∆s)2 (37)

Dn(i, j) =
1

16A(i, j)
hs

2(i, j)
1

(∆s)2

(
hs(i, j + 1)− hs(i, j− 1)

)
− 1

12A(i, j)
hs

3(i, j)
1

(∆s)2 (38)

En(i, j) = −A(i, j)
6

hs
3(i, j)

1

(∆x)2 −
1

6A(i, j)
hs

3(i, j)
1

(∆s)2 (39)

Fn(i, j) = −A(i, j)As1(i, j) sin(δ(i, j)) +

(
gx(i, j) +

1
2

∂hs(i, j)
∂s

)
As1(i, j) cos(δ(i, j)) (40)

where “i” and “j” are applicable to all internal nodes.

2.4.2. Solutions of Pressure and Flow

As shown in Figure 2, fluids were assumed to flow out of an oil chamber in four
directions, and the distribution of oil chambers in one of the four turns of helical fields was
obtained by means of an axial projection [29]. The chambers were counterclockwise named
as “Chamber 1”, “Chamber 2”, “Chamber 3”, and “Chamber 4”.

Qout = Q1 + Q2 + Q3 + Q4 (41)

Here, Qout is the total flow of an oil chamber for a certain time.
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Continuing from Section 2.4.1, the upper flow fields in the steady state were still taken
for example. On the basis of Equations (19) and (20), the dimensionless discharges in each
direction could be given as follows:

Q1 =
∫

(
1

12
(

1
A

hs
3 ∂ps

∂s
)− 1

2
(hs As1 cos δ))dx (42)

Q2 = −
∫

(
1
12

(
1
A

hs
3 ∂ps

∂s
)− 1

2
(hs As1 cos δ))dx (43)
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Q3 =
1

12

∫
(hs

3 ∂ps
∂x

)ds (44)

Q4 = − 1
12

∫
(hs

3 ∂ps
∂x

)ds (45)

Qout could be solved by summing over Equations (42)–(45).
The capillary restrictor was taken as an example. The relationship between the

chamber pressure and flow could be obtained according to the flow continuity through an
oil chamber:

PrCsc = Csc−Qout (46)

here, Csc is the throttle coefficient. And the node pressures in the same oil chamber were
considered to be equal.

Based on Equations (34)–(46), the node pressures of the upper fields in the steady state
could be solved through the method of successive over-relaxation (SOR) [28,30–32].

2.5. Solution of Static and Dynamic Characteristic Parameters

Only the axial static and dynamic characteristics were studied in this research.

W =
∫ ∫ (

(pBs − pTs) cos λrm cos ϕ + η sin λrm

(
ωT2 −ωT1

hTs
+

ωB1 −ωB2

hBs

))
dxds (47)

S =
∫ ∫ ((

pBZd − pTZd

)
cos λrm cos ϕ + ηvr sin λrm

1
cos λrm cos ϕ

(
1

hBd
2 −

1
hTd

2

))
dxds (48)

C =
∫ ∫ ((

p
B
•
Zd
− p

T
•
Zd

)
cos λrm cosϕ+ ηvr sin λrm

2

(cos λrm cos ϕ)2

(
1

hTd
+

1
hBd

))
dxds (49)

where W is the axial bearing capacity, S is the axial stiffness coefficient, and C is the axial
damping coefficient. While W > 0, the resultant force applied on the nut was upward,
otherwise, it was downward. Additionally, hTd and hBd are the film thicknesses of the
upper and lower flow fields in the disturbed state, respectively.

As shown in Equations (47)–(49), the effects of viscous force were considered in
this research.

3. Results and Discussion
3.1. Flow-Field Pressure Analysis

The main geometric parameters of the system are listed in Table 2, and the numerical
model of the flow fields is solved by MATLAB software.

Table 2. Main geometric parameters of the system.

Parameter Value

P 25 mm
α 10◦

hn0 0.03 mm
rm 27.5 mm
ri 22.5 mm
rci 26.5 mm
rco 29.5 mm
ro 32.5 mm

The negative pressure values outside film-rupture boundary which is taken as
0 MPa [33], are set to zero, when the steady pressures are solved with MATLAB, but
it is not necessary for those under the disturbed state to be processed in that way. It can be
found in the calculation that the first-order pressure disturbances are solved based on the
steady pressures, and the total pressures are less influenced by the second-order pressure
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disturbances than the others. Thus, the steady pressures can be taken as the main targets,
when the pressure fields are analyzed.

Dimensionless pressure distributions of the flow fields based on the new method, are
shown in Figure 3. The number of grid points in the x direction is 100, and that in the s
direction is 360. Ω is 500 rm, is 0.4, “X, Y, Z” is used to orientate the fluid particle, “T”
represents the upper fields of the nut, and “B” represents the lower fields, with “Zd” and

“
•
Zd” indicating the first-order and second-order pressure disturbance, respectively, for

example, “PTs” denotes the dimensionless pressure of the upper flow fields of the nut in
the steady state.

As mentioned in Section 2.1, the system is assumed to be oriented vertically, and the
sealing surfaces of the upper and lower fields are named the upper sealing surfaces and
the lower sealing surface, respectively. Besides, for the flow fields on either side of the nut,
the sealing surfaces at the both ends of the four turns of helical fields with oil chambers are
called the front sealing surface and the rear sealing surface, respectively, according to their
locations relative to the coordinate origin O1.
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It can be concluded from Figure 3a,d that the nut is subjected to a downward driving
force from the fluids, which is consistent with the actual condition mentioned in Section 2.1.
Such a result is related to the regulating functions of the restrictors.

As shown in Figure 3a, a symmetrical drop around rci ≤ r ≤ rco occurs in the four
turns of helical fields with oil chambers, and the pressure values in the front and rear sealing
surfaces are close to zero. The flow-field pressures in Figure 3d show irregular change
trends with variable gradients in the whole fields, especially in the front and rear sealing
surfaces. Such irregular changes also obviously occur in the front and rear sealing surfaces
in Figure 3c,e,f. The seemingly irregular changes mainly serve as a result of a combined
effect of the torsion, lead angle, thread angle of the helix, and the centrifugal forces, and
the effect is larger than that of the restrictors, especially when the fluids are squeezed
(∆Z = 0.4). As far as the upper flow fields are concerned, the enlarged clearance results
in weaker diffusions to the sealing surfaces, hence the pressures in the sealing surfaces in
Figure 3a are too small to show the pressure gradients caused by the above factors.

It is found that the illustrations in Figures 4 and 5 are not intuitive enough, and some
less obvious changes are not easy to catch. Thus, as shown in, the variations of the steady
pressures with ∆Z in the x(r) and θ(s) direction are solved to observe and analyze the
pressure fields more intuitively.

Actuators 2021, 10, x FOR PEER REVIEW 14 of 20 
 

 

As shown in Error! Reference source not found.a, a symmetrical drop around 
≤ ≤ci cor r r  occurs in the four turns of helical fields with oil chambers, and the pressure 

values in the front and rear sealing surfaces are close to zero. The flow-field pressures in 
Error! Reference source not found.d show irregular change trends with variable gradi-
ents in the whole fields, especially in the front and rear sealing surfaces. Such irregular 
changes also obviously occur in the front and rear sealing surfaces in Error! Reference 
source not found.c,e,f. The seemingly irregular changes mainly serve as a result of a com-
bined effect of the torsion, lead angle, thread angle of the helix, and the centrifugal forces, 
and the effect is larger than that of the restrictors, especially when the fluids are squeezed 
( Δ = 0.4Z ). As far as the upper flow fields are concerned, the enlarged clearance results in 
weaker diffusions to the sealing surfaces, hence the pressures in the sealing surfaces in 
Error! Reference source not found.a are too small to show the pressure gradients caused 
by the above factors. 

It is found that the illustrations in Error! Reference source not found. are not intuitive 
enough, and some less obvious changes are not easy to catch. Thus, as shown in Error! 
Reference source not found. and Error! Reference source not found., the variations of 
the steady pressures with ΔZ  in the x ( r ) and θ ( s ) direction are solved to observe and 
analyze the pressure fields more intuitively. 

 

  
(a) (b) 

Figure 4. The variations of the steady pressures in the θ  direction. (a) T sP ; (b) B sP . 

There is a mixture of Couette flow and Poiseuille flow in this research [34]. The mo-
tion of the screw relative to the nut brings the Couette flow. Poiseuille flow exists not only 
between a chamber and the adjacent sealing surface, but also between adjacent oil cham-
bers. When the clearance thickness is small, the Couette flow is dominant to maintain the 
pressures constant among different oil chambers, such as when =Δ 0.1,0.3Z  in Error! Ref-
erence source not found.a and =Δ 0.1,0.3,0.5Z  in Error! Reference source not found.b. 
Then, these chamber pressures do not vary in the helical direction until the clearance 
thickness increases to large enough. As is shown in Error! Reference source not found.a, 
when =Δ 0.5Z , not only are pressure differences between the oil chambers and the seal-
ing surfaces shown, but also the pressure differences caused by such factors as torsion and 
the lead angle are reflected among different oil chambers, which demonstrates the effect 
of Poiseuille flow on the chamber pressures. 

When ≠Δ 0Z , i.e., ≠Δ 0h , the reason why the pressures in the sealing surfaces in 
Error! Reference source not found.a are so small has been explained in Error! Reference 
source not found.. The fluids on the lower side of the nut are squeezed and then diffuse 
to the sealing surfaces, which is intensified with the increase of ΔZ . As shown in the seal-
ing surfaces in Error! Reference source not found.b, a few sharp increases in the yellow 
curve occur when ΔZ  is large enough. 

Figure 4. The variations of the steady pressures in the θ direction. (a) PTs; (b) PBs.

There is a mixture of Couette flow and Poiseuille flow in this research [34]. The
motion of the screw relative to the nut brings the Couette flow. Poiseuille flow exists
not only between a chamber and the adjacent sealing surface, but also between adjacent
oil chambers. When the clearance thickness is small, the Couette flow is dominant to
maintain the pressures constant among different oil chambers, such as when ∆Z = 0.1, 0.3
in Figure 4a and ∆Z = 0.1, 0.3, 0.5 in Figure 4b. Then, these chamber pressures do not vary
in the helical direction until the clearance thickness increases to large enough. As is shown
in Figure 4a, when ∆Z = 0.5, not only are pressure differences between the oil chambers
and the sealing surfaces shown, but also the pressure differences caused by such factors as
torsion and the lead angle are reflected among different oil chambers, which demonstrates
the effect of Poiseuille flow on the chamber pressures.

When ∆Z 6= 0, i.e., ∆h 6= 0, the reason why the pressures in the sealing surfaces in
Figure 4a are so small has been explained in Figure 3. The fluids on the lower side of the
nut are squeezed and then diffuse to the sealing surfaces, which is intensified with the
increase of ∆Z. As shown in the sealing surfaces in Figure 4b, a few sharp increases in the
yellow curve occur when ∆Z is large enough.

The chambers contribute to the bearing capacity much greater than the sealing surfaces,
which is achieved with the help of the restrictors. As is shown in Figure 4a,b, with the
increase of ∆Z, the chamber pressures of the upper flow fields gradually increase, yet the
lower ones decrease, which brings about a larger bearing capacity.
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Figure 5. The variations of the steady pressures in the x (or r ) direction. (a) PTs, x, chambers; (b) PTs, r, chambers; (c) PBs, x,
chambers; (d) PBs, r, chambers; (e) PBs, x, sealing surfaces; (f) PBs, r, sealing surfaces.
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The pressures vary with x (or r) in the steady state. The variations in the oil chambers
are displayed Figure 5a–d, and those in the sealing surfaces are displayed in Figure 5e,f.
As shown in Figure 5b,d,f, the positions of fluid particles are transformed from “sxy” to
“Orθξ3” for more intuitive analyses.

According to Figure 2, “j” denotes a set of nodes in the s direction. “hssB” is the
midpoint of pitch diameter helix of the front sealing surface, “ q1a” is the intersection a
of pitch diameter helix of the front sealing surface and the adjacent “Chamber 1”, “q1b”
is the node b of “Chamber 1” in Figure 2 “q1a− b” is the node a− b of “Chamber 1” in
Figure 2, “q4b” is the intersection b of pitch diameter helix of the rear sealing surface and
the adjacent “Chamber 4”, and “hssT”is the midpoint of pitch diameter helix of the rear
sealing surface. The nodes at “j” denote all the particles which have a s-coordinate of “j”
in the following article.

Compared to the others, the pressure values at “q1a” are close to those at “q4b”.
For example, when ∆Z = 0.1, the order of magnitude of the upper pressure differences
between “q1a” and “q4b” reaches 10−7, leaving only a curve visualized in Figure 5a,b.
Furthermore, the lower pressure values at “q1a”, “q4b”, “hssB”, and “hssT” are close to
each other. For the same ∆Z, only one of the curves at “hssB”and “hssT” is visible in
Figure 5e,f. Consequently, when the lower chamber pressures are analyzed, the pressures
at “q1a− b” and “q1b” can be selected as the main research objects.

As shown in Figure 5b, the pressures remain relatively stable in the chambers, but
descend to the sealing surfaces in the ranges of ri ≤ r ≤ rci and rco ≤ r ≤ ro. When
∆Z = 0.1, 0.3, there are similar situations at “q1a− b” and “q1b” in Figure 5d. With the
growing of ∆Z, the descending slope of the pressures in the range of rco ≤ r ≤ ro in
Figure 5d becomes smaller. And when ∆Z is large enough, a pressure jump occurs. For
example, there is an obvious jump in the range of rco ≤ r ≤ ro at “q1b” in Figure 5d, when
∆Z = 0.5.

As mentioned in Figures 3 and 4, the bearing capacity of the system mainly benefits
from the regulations of the restrictors on the upper and lower chamber pressures. Fur-
thermore, the pressures are also influenced by the torsion, lead angle and thread angle
of the helix, and the centrifugal forces. Under the effect of these factors, the diffusions to
the sealing surfaces are enhanced when the fluids in the gap are squeezed. As shown in
Figure 5c,d, the regulation effects of the restrictors on the lower pressures are weakened by
the diffusions. Meanwhile, with the enlarged clearance and the diffusions to the sealing
surfaces, larger upper pressures are caused by the restrictors in Figure 5a,b. With the
increase of ∆Z, the regulation effects of the restrictors are enhanced, then smaller decline
ranges of the lower pressures in Figure 5c,d serve as a result of the combined effect of
the restrictors, the torsion, lead angle and thread angle of the helix, and the centrifugal
forces. In this situation, the increasing amplitudes of the upper pressures become larger in
Figure 5a,b, which reflects the sensitivity of bearing capacity to ∆h. Such a phenomenon is
consistent with that mentioned inFigure 4.

The pressure values in the upper sealing surfaces are near zero according to Figure 3,
thus they are not discussed in this part. As mentioned above, the pressures in the lower seal-
ing surfaces increase when the fluids are squeezed; such changes are shown in Figure 3d–f,
Figure 5e,f, under the combined influence of the torsion, lead angle and thread angle of the
helix, and the centrifugal forces. The increasing amplitudes of the pressures become larger
with the growing of ∆Z, as shown in Figure 5e,f. The reason why the pressures decrease
to zero in the ranges of ri ≤ r ≤ rci and rco ≤ r ≤ ro is that the fluids diffuse to the root
and crest, and the tops of the hills in Figure 5f are found to be closer to the position with a
radius of rco, largely due to the centrifugal forces. Such explanations can also be applicable
to the conditions at “q1a” and “q4b” in Figure 5d.
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3.2. Feasibility Evaluation Based on the Bearing Capacity

The aerostatic leadscrew system in [6] is solved numerically based on the method
proposed in this research, and the simulation results are compared with the experimental
data [6] to evaluate the feasibility of the new method.

The comparisons between the simulation results and experimental data are shown
in Figure 6, in which the experimental data for a two-pitch travel are represented by the
yellowF, and the simulation results at Ω = 120 rpm, Ω = 100 rpm, and Ω = 60 rpm are
represented by the red N, blue •, and green �, respectively.
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It is found that the numerical predictions agree well with the experimental data
qualitatively. However, from a quantitative point of view, there are still some deviations
between them. It is inevitable that the data points in the two cases would not coincide.
Because the information about the speeds were not provided, the experimental results
were not collected until the system stopped running and kept steady, rather than real-time
like the simulation results. Besides, it is also necessary to consider the divergences caused
by the experimental environments, operating methods, geometric errors, etc.

As shown in Figure 6, when 1.4 µm ≤ ∆Z ≤ 4.8 µm, the larger the value of Ω, the
closer the simulation results are to the experimental ones, however, the situation is the
opposite in the range of ∆Z < 1.4 µm, which is closely associated with the collection
method of the experimental data. Among the simulation data, the red N data are closer to
the yellowF ones with a maximum difference of about 1.8N, which is approximately 14%
of the corresponding experimental value.

Therefore, the new method can be considered to be feasible, and the results can
provide references for predicting the actual characteristics of the system.

4. Conclusions

In this research, a new method is attempted to overcome the shortcomings of the exist-
ing modeling methods of the hydrostatic and aerostatic leadscrews, and a screw-driven hy-
drostatic leadscrew is selected as the main research object to describe the proposed method.

In the new method, the follow-up coordinate system is adjusted to adapt to the
boundaries of the flow fields, which makes the calculations of h and ∆Z more accurate.
Furthermore, compared with those approximations in the cylindrical coordinate system,
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the description in the helical coordinate system can provide a better reappearance of the
actual shape of the flow fields.

Through the analyses about the pressure fields in Section 3.1, it can be found that
the influences of the torsion, lead angle, and thread angle of the helix are taken into
consideration in this research, and the actual flow fields are reflected well by the simulation
results based on the new method.

The experiments on an aerostatic leadscrew in [6] are employed to discuss the feasi-
bility of the new method in Section 3.2. In the numerical calculations, known parameters
in [6] are set to keep the consistency between the conditions of the experiment and the
simulations, and Ω is set in different ranges to reduce the interferences caused by the
data collection method. In Figure 6, the red curve shows a better consistency with the
yellow target curve than the others, and the relative errors between them are mostly within
10%, demonstrating that the new modeling method is possessed of good practicability
and generality.

The method in this research is suitable for all helical gap flow fields created by a screw-
driven screw-nut pair, and some adjustments may occasionally be made on the assumptions
in (1)–(7) or the fluid governing equations in Section 2.1 to satisfy different lubrication
media or applications. Although the assumptions are made for the sake of simplicity in
this research, the proposed method provides a new way of thinking for the flow-field
modeling of various leadscrews with fluids as lubrication media. With the adjustments
of the flow-field models, not only various types of fluid-lubricated leadscrews, but also
more complicated flow-field properties and phenomena can be solved and analyzed in
future researches.
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Nomenclature

Oξ1ξ2ξ3 global coordinate system
Orθξ3 cylindrical coordinate system corresponding to Oξ1ξ2ξ3
O1XYZ local coordinate system on the nut
oxy/ox′y′ follow-up coordinate system
sxy/sx′y′ helical coordinate system
i, j, k unit vectors in the ξ1, ξ2 and ξ3 direction
r r-coordinate in Orθξ3
ri inner radius of the nut
ro outer radius of the screw
rm pitch radius of the gap fields
rci inner radius of the chamber
rco outer radius of the chamber
κ curvature
τ torsion
ε dimensionless curvature
g dimensionless torsion
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P pitch
α half of thread angle
αr half of thread angle at r
λo lead angle at
λr leadr angle at
λrm lead angle at rm
ϕ half of thread angle of the normal section at rm
h clearance thickness in the y direction
hn0 initial clearance thickness in the y direction
hs steady clearance thickness in the y direction
Znut axial displacement of nut
∆h variation of h
∆hs steady component of ∆h
∆hd disturbance component of ∆h
∆Z axial displacement from the equilibrium position of the nut
•
Znut axial velocity of nut

∆
•
Z the change rate of ∆Z

Ω angular speed of screw
vscrew circular velocity of the screw at r
θ rotation angle of screw
Ps supply pressure
qs(qx) unit discharge in the s (x) direction
u, v, ω velocities of a fluid particle in the x, y and s direction
ωT(ωB) of the upper (lower) fields
Vx, Vy, Vs velocities of a fluid particle in the x, y and s direction
vr relative velocity of a fluid particle
ve following velocity of a fluid particle
va absolute velocity of a fluid particle
δ the angle between vr and vs
hTs(hBs) steady-state clearance thickness of the upper (lower) fields of the nut
hTd(hBd) transient clearance thickness of the upper (lower) fields of the nut
ps steady pressure
pZd first-order pressure disturbance
p •

Zd
second-order pressure disturbance

pTs(pBs) steady pressure of the upper (lower) fields of the nut
pTZd (pBZd ) first-order pressure disturbance of the upper (lower) fields of the nut
p

T
•
Zd

(p
B
•
Zd

) second-order pressure disturbance of the upper (lower) fields of the nut

W bearing capacity
S axial stiffness coefficient
C axial damping coefficient
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