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Abstract: In this study, we investigate the H∞ fault-tolerant control problem for a discrete-time
singular system which is subject to external disturbances, actuator faults, and sensor saturation.
By assuming that the state variable of the system is unavailable for measurement, and the actuator
fault can be described by a Markovian jump process, attention is mainly focused on designing a
reliable dynamic output-feedback (DOF) controller able to compensate for the effects of the afore-
mentioned factors on the system stability and performance. Based on the sector non-linear approach
to handle the sensor saturation, a new criterion is established to ensure that the closed-loop system
is stochastically admissible with a γ level of the H∞ disturbance rejection performance. The main
aim of this work is to develop a procedure for synthesizing the controller gains without any model
transformation or decomposition of the output matrix. Therefore, by introducing a slack variable,
the H∞ admissibility criterion is successfully transformed in terms of strict linear matrix inequal-
ities (LMIs). Three practical examples are exploited to test the feasibility and effectiveness of the
proposed approach.

Keywords: discrete singular system; actuator failure; sensor saturation; reliable dynamic output
feedback; H∞ control

1. Introduction

It is well known that when dealing with control design problems, many fundamental
issues arising from engineering systems should be considered in the analysis step. The first
major issue consists of the synthesis of a feedback control scheme to deal with the practical
limitations in the structure of the feedback loops. The sensor saturation introduces a non-
linear behavior in the control loop which may disastrously affect the system performances.
This explains why the problems of control and filtering with actuator/sensor saturation
have been the object of many research studies and significant results have been recently
appearing in the literature. To mention a few, the H∞ output feedback control problem
for linear discrete-time systems with sensor nonlinearities was studied in [1–6]. In [7],
the networked fuzzy static output feedback control law was designed for discrete-time
Takagi–Sugeno fuzzy systems subject to sensor saturation and measurement noise. Based
on the non-PDC approach, finite-time H∞ filtering for a Takagi–Sugeno fuzzy system with
uncertain probability sensor saturation was proposed in [8].

The second issue regards the reliability requirement when the system suffers from
component failures. This problem introduces the concept of reliable control. The idea con-
sists of producing an adequate controller to sustain the critical functionality of the system
despite the occurrence of failures [9,10]. Due to its theoretical and practical significance, the
reliable control problem has been extensively studied. In [11], the problem of robust and
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reliable H∞ static output feedback control was investigated for discrete-time piecewise-
affine systems with delay. The reliable control problem for electronic circuits subject to
random actuator faults was studied in [12]. In [13], a reliable fuzzy tracking controller was
developed for a near-space hypersonic vehicle using aperiodic measurement information.

The third issue concerns the robustness in the H∞ sense, i.e., design of a robust
controller guaranteeing, in the worst case of external disturbances, the asymptotic stability
of the controlled system with an L2 gain smaller than a prescribed attenuation level
γ > 0 [14–16].

On the other hand, from the viewpoint of developing analytical models, many physical
plants exhibit static constraints in their mathematical description. The class of interest in
this paper, which can describe this kind of mathematical model, is called singular systems
or descriptor systems. Singular systems cover many engineering fields and the control
problems regarding this class of systems have attracted a great deal of research attention
in the last few decades and many achievements have been made [17–22]. Particularly,
discrete-time singular systems have recently received more research value in asymptotic
stability, regularity and causality, reliability, and nonfragility [23–29]. Note that, if the
state variables are not available for measurement, the static/dynamic output feedback
(SOF/DOF) controllers are often investigated as an alternative to control engineering
processes. Therefore, DOF is extended for singular systems and has been considered by
researchers. For continuous-time singular Markovian jump systems, a dynamic output-
feedback controller was synthesized in [30]. In [31], a H∞ (DOF) controller was designed for
a class of discrete-time singular systems and the results were presented in terms of LMI for a
particular case of measured states C2 = I . We can emphasize that due to the singular matrix
E, the synthesis of the controller parameters becomes difficult. Even though there have been
some attempts to consider this problem for continuous singular systems by transforming
dynamic output feedback into static output feedback, in [32], or by introducing a particular
structure of the LMI variables, in [33], unfortunately, this problem has not been considered
yet for discrete singular systems, which motivates this study. Furthermore, it is assumed
that the system suffers from sensor saturations and actuator failures with a stochastic
behavior described by a Markov process, which is considered as a typical stochastic system
to model physical systems with random abrupt variations [9,34,35]. Though the Markov
process provides a better description to cope with stochastic actuator failure, the design
analysis becomes complex, leading to many computation difficulties. How to reduce the
complexity and make the analysis and synthesis easy is the supplementary motivation of
this study.

The main objective of this paper is to synthesize a new reliable H∞ DOF controller
for discrete-time singular systems subject to exogenous disturbances, Markovian jump
actuator failures, and sensor saturations. The salient features of this work are:

1. it is attractive because the analysis of the controller is conducted for systems operating
in real circumstances with exogenous disturbances, stochastic actuator failures, and
sensor saturations,

2. the proposed control scheme should be reliable and can accommodate the actuator
failures and the sensor nonlinearities,

3. without any model transformation or matrix decomposition, the controller design is
carried out by introducing a slack variable to obtain a strict LMI condition,

4. the resulting closed-loop system is able to attenuate the perturbations effects in the
H∞ sense.

The remainder of this paper is organized as follows: Section 2 introduces the problem
formulation and some essential preliminaries. The H∞ stochastic admissibility criterion is
developed in Section 3. Section 4 is dedicated to the design of the reliable output-feedback
controller for the system under study. To illustrate the effectiveness of the theoretical results,
three examples are provided in Section 5. Section 6 concludes the paper and provides the
future research direction.
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Notation 1. Throughout this paper, Rn denotes the n-dimensional Euclidean space, while Rn×m

refers to the set of all n×m real matrices; matrix X > 0 (respectively, X ≥ 0) is a real symmetric
positive definite (respectively, positive semi-definite); l2[0, ∞) denotes the space of square-summable
vectors; ‖.‖ stands for the Euclidean norm of a vector and its induced norm of a matrix; E[.]
represents the mathematical expectation; sym(X) stands for X + XT ; λ() denotes the eigenvalue
of a matrix; symbol ′∗′ indicates symmetric terms in a symmetric matrix.

2. Problem Formulation and Preliminaries

Consider a compact discrete-time singular system
Ex(k + 1) = (A + ∆A)x(k) + B2uF(k) + B1w(k)

z(k) = C1x(k) + D1w(k)

y(k) = C2x(k) + D2ν(k)

ys(k) = σ(y(k))

(1)

where x(k) ∈ Rn is the state vector, uF(k) ∈ Rm is the fault control input, w(k) ∈ Rw and
ν(k) ∈ Rν are the disturbance inputs belonging to L2[0, ∞), z(k) ∈ Rp is the controlled
output vector, ys(k) ∈ Rq is the saturated signal of the output y(k). Matrices E, A, B2, B1,
C1, C2, D1, and D2 are known real constant matrices with suitable dimensions. ∆A is an
unknown matrix representing the parametric uncertainties and satisfying ∆A = MF(k)N,
where M and N are known real constant matrices of appropriate dimensions, and F(k) is
an unknown matrix that satisfies FT(k)F(k) ≤ I.

Throughout this paper, it is assumed that:

• matrix E ∈ Rn×n may be singular, with rank(E) = r < n;
• system state x(k) is not available for measurement, (A, B) is stabilizable, and (A, C)

is detectable;
• saturation function σ(v) is defined as

σ(v) =
[
σ1(v1) σ2(v2) · · · σq(vq)

]T (2)

with σi(vi) = sign(vi)min{vi,max, |vi|}, where vi,max is the i-th element of the satura-
tion level vector vmax.

As in [36,37], saturation function (2) can be described by

σ(v) = H1v + φ(v) (3)

where φ(v) ∈ [H1, H2] is a nonlinear vector-valued function satisfying the subsequent
sector condition [38]

φ(y(k))(φ(v)− Hv) ≤ 0, ∀v ∈ Rq (4)

H1 and H2 are known diagonal matrices verifying 0 ≤ H1 < I ≤ H2 and H = H2 − H1.
When system (1) operates under actuator failures, the Markov chain is adopted here

to model the control signal sent from actuators as:

uF(k) = Rr(k)u(k) (5)

where Rr(k) = diag
(

R1r(k), R2r(k), · · · , Rmr(k)
)

is the actuator fault matrix and Rsr(k), s =
1, 2, . . . m is the degradation level of the ’s’th actuator. r(k) defines a discrete-time Markov

process which takes values in a finite set N =
{

1, 2, . . . , N
}

with a probability matrix

Π =
[
πij

]
N×N

, (i, j ∈ N). The transition probability πij is defined as πij = Pr(r(k + 1) =

j|r(k) = i) and satisfies πij ≥ 0 and ∑N
j=1 πij = 1 for each i.
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For simplicity of notation, for each r(k) = i ∈ N, corresponding matrices or vec-
tors relating to r(k) are denoted with the index i. It should be emphasized that this
class of systems can describe many physical plants, as is considered in the numerical
examples section.

Remark 1. It should be underscored that the discrete-time homogeneous Markov chain is accepted
to cover the cases where the actuator failures have a stochastic feature which can affect many
engineering fields, including robotics, aerospace, and missiles [39]. Moreover, the aforementioned
failure model provides different cases for particular values of Rsi, s = 1, 2, · · · , m. The fully
operating case occurs for Rsi = 1. The case Rsi = 0 corresponds to the outage case. The actuator
faults case corresponds to the case by taking 0 < Rsi ≤ 1 .

For reliable control purposes, we suggest for system (1) the following full-order
dynamic output-feedback controller:{

Ex̂(k + 1) = Âi x̂(k) + B̂iys(k)

u(k) = Ĉi x̂(k) + D̂iys(k)
(6)

where x̂(k) ∈ Rn is the controller state, Âi, B̂i, Ĉi, and D̂i are the controller gains with
appropriate dimensions to be determined later.

Combining (1) and (6), the augmented closed-loop system under failure is represented
by the following dynamic model:{

Ēx̄(k + 1) = (Āi + ∆Ā)x̄(k) + B̄1iw̄(k) + B̄φiφ(y(k))

z(k) = C̄1 x̄(k) + D̄1w̄(k)
(7)

where x̄T(k) =
[
x̂T(k) xT(k)

]T , w̄T(k) =
[
wT(k) νT(k)

]T , ∆Ā = M̄∆N̄ and

Āi =

[
Âi B̂i H1C2

B2RiĈi A + B2RiD̂i H1C2

]
, B̄1i =

[
0 B̂i H1D2
B1 B2RiD̂i H1D2

]
,

B̄φi =

[
B̂i

B2RiD̂i

]
, C̄1 =

[
0 C1

]
, D̄1 =

[
D1 0

]
, C̄2 =

[
0 C2

]
,

M̄ =

[
0
M

]
, N̄ =

[
0 N

]
(8)

Remark 2. The DOF control design problem for discrete-time singular systems has been investi-
gated in [31] using the following controller:{

Ex̂(k + 1) = Âx̂(k) + B̂x(k)

u(k) = Ĉx̂(k)
(9)

It consists of a particular controller model applied to a system with measured states C2 = I.
In addition, compared to the proposed controller, the matrix D̂ is null.

Problem 1. For a given singular system (1), the main problem addressed in this paper is to design
a DOF controller (6) such that the closed-loop system defined in (7) is stochastically admissible with
H∞ performance, i.e., under a zero initial condition, E

{
∑∞

k=0 zT(k)z(k)
}
< γ2 ∑∞

k=0 w̄T(k)w̄(k),
for all 0 6= w̄(k) ∈ L2[0, ∞).

Before proceeding, we recall the concept of stochastic admissibility for a nominal
singular Markovian jump system, defined as

Ex(k + 1) = Aix(k) (10)
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Definition 1 ([40,41]).

1. Pair (E, Ai) is said to be regular, if det(zE− Ai) is not identically zero for each i ∈ N;

2. Pair (E, Ai) is said to be causal if deg
(

det(zE− Ai)
)
= rank(E) for each i ∈ N;

3. System (1) is said to be stochastically stable, if for any initial state (r0, x0), the condition

E
{

∑∞
k=0 ‖x(k))‖2|r0, x0

}
< ∞ is satisfied;

4. System (1) is said to be stochastically admissible, if it is regular, causal, and stochastically stable.

The following Lemmas are introduced to be used in the controller design procedure.

Lemma 1 ([42]). Let Q = QT , M and N be real matrices of appropriate dimensions. The condition
Q + MF(k)N + NT FT(k)MT < 0 holds, for any F(k) satisfying FT(k)F(k) ≤ I, if and only if,
for any scalar, ε > 0, Q + εMMT + ε−1NT N < 0.

Lemma 2 ([43]). For given real matrices Q, N, and M with appropriate dimensions, the follow-
ing inequality

Q + sym(NMT) < 0 (11)

is fulfilled if the following condition holds:[
Q N

NT 0

]
+ sym

{[H
F

][
MT −I

]}
< 0 (12)

3. H∞ Performance and Admissibility Analysis

In this section, the focus is on to the admissibility and H∞ performance analysis of a
closed-loop system (7).

Theorem 1. For a given scalar γ > 0 , the closed-loop system (7) is stochastically admissible with
an H∞ performance γ, if inequality (13) is satisfied for some positive scalars ε1i, ε2i, and matrices
Pi > 0, Si, G1, and G2.

Φi =



Φ11i Φ12i G1B̄φi + ε1i HC̄2 G1B̄1i C̄T
1 G1M̄

∗ Φ22i G2B̄φ G2B̄1i 0 G2M̄
∗ ∗ −2ε1i I 0 0 0
∗ ∗ ∗ −γ2 I D̄T

1 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −ε2i I

 < 0 (13)

where

Φ11i = −ĒT Pi Ē + sym(G1 Āi) + ε2i N̄T N̄,

Φ12i = −G1 + ĀT
i GT

2

Φ22i = −R̄TSiR̄− sym(G2) + Xi

Xi =
N

∑
j=1

πijPj

(14)

R̄ is any matrix satisfying R̄Ē = 0 and rank(R̄) = 2n− 2r.

Proof. Under the condition of Theorem 1, we shall prove that system (7) with ∆Ā = 0 is
stochastically admissible with H∞ performance. From (13), it can be easily verified that

Ψi =

[
−ĒT Pi Ē + sym(G1 Āi) −G1 + ĀT

i GT
2

∗ −R̄TSiR̄− sym(G2)

]
< 0 (15)
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Performing the congruence transformation to (15) by
[

I, ĀT
i

]T
yields

−ĒT Pi Ē− sym ĀT
i (R̄TSiR̄)Āi < 0 (16)

In addition, because rank(Ē) = 2r < 2n, there always exist two nonsingular matrices

M̂ and N̂ so that Ê = M̂ĒN̂ =

[
I2r 0
0 0

]
.

Define

Âi = M̂Āi N̂ =

[
Â11i Â12i
Â21i Â22i

]
, R̂ = R̄M̂−1 =

[
R̂1 R̂2

]
P̂i = M̂−T Pi M̂−1 =

[
P̂11i P̂12i
∗ P̂22i

]
.

(17)

From R̄Ē = 0, it can be verified that R̂Ê = 0 and R̂1 = 0 .
Pre- and post-multiplying (16) by N̂T and N̂, respectively, in light of (17) results in[

? ?
? ÂT

22iR̂
T
2 SiR̂2 Â22i

]
< 0 (18)

where ? will not be used in the following development. It is readily concluded that Â22i is
nonsingular and pair (Ē, Āi) is regular and casual, according to Definition 1.

To prove the stochastic stability of system (7), the following Lyapunov function is selected:

V(k) = x̄T(k)ĒT Prk Ēx̄(k) (19)

letting ∆V(k) be the forward difference of V(k). Then, along the trajectories of the
system (7), we have

E{∆V(k)} = E
{

V(k + 1)−V(k)|x(k), rk = i
}

= E
{

x̄T(k + 1)ĒTXi Ēx̄(k + 1)
}

− x̄T(k)ĒT Pi Ēx̄(k)

(20)

Furthermore, given the constraint R̄Ē = 0, the following null equations are true for
appropriate matrices G1, G1, and Si:

2ξT(k)
[
GT

1 GT
2 0

]T[Āi −I B̄φi
]
ξ(k) = 0 (21)

−x̄T(k + 1)ĒTST
i R̄Ēx̄(k + 1) = 0 (22)

where ξ(k) = col
{

x̄(k), Ēx̄(k + 1), φ(y(k))
}

.
Moreover, in view of (4), it can be established that

−2ε1iE
{

φT(y(k))(φ(y(k))− HC̄2 x̄(k))
}
≥ 0 (23)

where ε1i is a positive scalar.
Substituting (21)–(23) into (20), one can obtain

E{∆V(k)} ≤ E
{

ξT(k)Ψ̄iξ(k)
}

(24)

where
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Ψ̄i =

−ĒT Pi Ē + sym(G1 Āi) Φ12i G1B̄φi + ε1i HC̄2
∗ Φ22i G2B̄φ

∗ ∗ −2ε1i I

 (25)

By virtue of inequality (13), it can be deduced that Ψ̄i < 0.
From (24), one can obtain

E{∆V(k)} ≤ ϕE
{
‖ξ(k)‖2

}
(26)

where ϕ < 0 denotes the largest eigenvalue of Ψ̄i , for all i ∈ N. Then, from (26) results

E
{ ∞

∑
0

ξ(k)‖2
}
≤ 1

ϕ
E
{ ∞

∑
0

∆V(k)
}
≤ − 1

ϕ
V(0) < ∞ (27)

So, according to Definition 1, system (7) is stochastically admissible.
To investigate the H∞ performance for system (7), the following index is introduced:

J = E
{ ∞

∑
k=0

(
zT(k)z(k)− γ2w̄T(k)w̄(k)

)}
(28)

Define ζ(k) = col
{

ξ(k), w̄(k)
}

and Jzw(k) = zT(k)z(k)− γ2w̄T(k)w̄(k).
Following the same reasoning as developed previously, and using the following

null equation:

2ζT(k)
[
GT

1 GT
2 0 0

]T[Āi −I B̄φi B̄1i
]
ζ(k) = 0 (29)

it can be established from (13) that
∆V(k) + Jzw(k) = ζT(k)Φ̄iζ(k) < 0 (30)

where

Φ̄i =


Φ11i Φ12i G1B̄φi + ε1i HC̄2 G1B̄1i C̄T

1
∗ Φ22i G2B̄φ G2B̄1i 0
∗ ∗ −2ε1i I 0 0
∗ ∗ ∗ −γ2 I D̄T

1
∗ ∗ ∗ ∗ −I

 (31)

Under the zero initial condition, it is uncomplicated to see that

J ≤E
∞

∑
k=0

{
∆V(k) + Jzw

}
< 0 (32)

Hence, system (7) is stochastically admissible with H∞ performance γ.
Now, suppose that ∆Ā 6= 0. In the same way, we have

Φ̄i + sym
(

ΓT
1 F(k)Γ2

)
< 0 (33)

where
Γ1 =

[
(G1M̄)T (G2M̄)T 0 0 0

]
, Γ2 =

[
N̄ 0 0 0 0

]
Then, in agreement with Lemma 1, inequality (13) holds. This concludes the proof.

Remark 3. The sufficient criterion derived in Theorem 1 shows the existence of a dynamic output-
feedback controller such that the closed-loop system is stochastically admissible with H∞ perfor-
mance. Nevertheless, condition (13) shows bilinear matrix inequality (BMI) terms with respect to
the matrices Âi, B̂i, Ĉi, and D̂i. Unlike the method proposed in [44,45] where the model transfor-
mation is used to linearize the BMI conditions, our design approach is based on the introduction
of an auxiliary variable Ui to separate the LMI variables by setting Ki = U−1

i Fi, where Ki is
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the augmented form of the controller matrices. The next section shows in detail the controller
design procedure, where Lemma 2 plays an important role to linearize condition (13) and overcome
nonlinear terms.

4. H∞ Controller Design

In the sequel, we focus on developing a method to synthesize controller gains Âi, B̂i,
Ĉi, and D̂i so that the closed-loop system (7) is robustly admissible with H∞ disturbance
attenuation γ.

Theorem 2. Given prescribed scalars γ > 0 and β, if there exist matrices Pi > 0, J > 0, G1, G2,
Ui, Fi and scalars ε1i > 0 and ε2i > 0 such that the following LMI holds

Φ̄i =

Φ̂i + IT
1 JI1 Γ12i 0
∗ −β sym(Γ22i) βΓ23i
∗ ∗ −J

 < 0 (34)

where

Φ̂i =



Φ̂11i Φ̂12i Φ̂13i Φ̂14i C̄T
1 G1M̄ N̄

∗ Φ̂22i Φ̂23i Φ̂24i 0 G2M̄ 0
∗ ∗ −2ε1i I 0 0 0 0
∗ ∗ ∗ −γ2 I D̄T

1 0 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −ε2i I 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2i I


Φ̂11i = −ĒT Pi Ē + sym(G1A + BRiFiC),

Φ̂12i = −G1 + (G2A + BRiFiC)T

Φ̂22i = −R̄TSiR̄− sym(G2) + Xi

Φ̂13i = BRiFiI+ ε1i HC̄2 Φ̂23i = BRiFiI
Φ̂14i = G1B1 + BRiFiD Φ̂24i = G2B1 + BRiFiD

Γ21i =
[
BTBFiC 0 BTBFiI BTBFiD 0 0 0

]
Γ22i = BTBUi

Γ23i =
[
(G1BRi − BRiUi)

T (G2BRi − BRiUi)
T]

J =
[

J11 J12
∗ J22

]
I1 =

[
1 0 0 0 0 0 0
0 1 0 0 0 0 0

]
I =

[
0 I

]T

(35)

A =

[
0 0
0 A

]
, B =

[
I 0
0 B2

]
, C =

[
I 0
0 H1C2

]
, Ki =

[
Âi B̂i
Ĉi D̂i

]
,

Ri =

[
I 0
0 Ri

]
B1 =

[
0 0
B1 0

]
, D =

[
0 0
0 H1D2

]
,

(36)

then, the closed-loop system (7) is stochastically admissible with H∞ norm bounded γ. Furthermore,
the controller gain is computed as Ki = U−1

i Fi.

Proof. Using the matrices in (36), the closed-loop matrices can be written as

Āi = A + BRiKiC, B̄1i = B1 + BRiKiD, B̄φi = BRiKiI, (37)
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Moreover, using the fact Ki = U−1
i Fi, we can easily verify for any Gl , l = 1, 2 that

GlBRiKiC = GlBRiKiC + BRiFiC− BRiFiC

= BRiFiC + (G1BRi − BRiUi)U−1
i FiC

GlBRiKiD = BRiFiD + (G1BRi − BRiUi)U−1
i FiD

GlBRiKiI = BRiFiI+ (G1BRi − BRiUi)U−1
i FiI

(38)

Assume that inequality (34) holds. Thus, a feasible solution verifies that G1, G2, and
Ui are nonsingular.

Define W =

I 0 IT
1

0
1
β

I 0

T. By performing the congruence transformation to (34) by

W, we obtain
Φ̂i (Γ23iI1)

T + (
1
β

BTBΥ21i)
T

∗ − 1
β

sym(BTBUi) = Φ̂i (Γ23iI1)
T

∗ 0

+ sym


 0

1
β

BTBUi

U−1
i

[
Υ21i −I

] < 0 (39)

where
Υ21i =

[
FiC 0 FiI FiD 0 0 0

]
(40)

According to Lemma 2, inequality (39) is equivalent to

Φi = Φ̂i + sym
(
(Γ23iI1)

TU−1
i Υ21i

)
< 0 (41)

Considering (38), it can be concluded from Theorem 1 that the designed controller
makes the closed-loop system in (7) stochastically admissible with H∞ disturbance attenua-
tion level γ.

Remark 4. Compared with existing results in [31,45,46], the key merit of the proposed control
design scheme lies in its simplicity and lower conservativeness. In fact, contrary to our method,
the suggested one in [45] needs a particular structure of matrices Gi to synthesize the controller
gains. In [46], the SVD decomposition technique with a particular structure of Gi is also adopted.
Additionally, the strategy used in [31] requires many scalars to tune. However, the LMI in (34)
can be solved easily by selecting only one parameter and using any LMI software.

Remark 5. Note that condition (34) is a strict LMI if the tuning parameter β is well chosen.

Remark 6. Since the LMI in Theorem 2 is linear in the scalar γ2, it can be considered as an
optimization variable for the following convex optimization problem to reduce the attenuation
level bound:

minimiseν = γ2, subject to LMI (34) (42)

The solution of this problem determines the optimal H∞ performance as γ∗ =
√

ν.

Remark 7. In order to design the reliable controller, it is assumed that the transition matrix of
the Markov process, that characterizes the actuator faults, is completely known. Nevertheless, this
assumption is very restrictive and a Markov chain with partly unknown transition probabilities
should considered as future work [21,35].

5. Numerical Examples

In this section, three simulation examples are provided to test the effectiveness of the
developed control scheme.
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Example 1. Referring to [31], consider a singular system (1) with the following parameters:

E =

1 1 0
0 0 0
0 0 1

, A =

2.5 1.0 0.3
2.6 1.2 0.65
1.7 −0.2 0.7

, B2 =

1
1
0

, B1 =

1
1
1

,

C2 =

1 0 0
0 1 0
0 0 1

, D2 =

0.1
0.1
0.1

, C1 =
[
0.1 0.1 0.1

]
, D1 = 0.1

In this example, let Vyj,max = 0.5, j = 1, 2, 3, H1 = diag(0.25, 0.25, 0.25), and H2 = I.
To study the effect of actuator failures, we inspect the scenario where the failure may

occur with a 40% reduction in signal amplitude with the transition probability matrix
chosen as

Π =

[
0.8 0.2
0.3 0.7

]
(43)

Applying Theorem 2 with β = 0.3 and R = diag(R0, R0), R0 =

0 0.1 0
0 0.1 0
0 0.1 0

, the

corresponding controller can be designed with the following calculated parameters:

Ac1 =

−0.15341 −0.21305 −0.37074
−0.14988 −0.20081 −0.21483
−0.16871 −0.09083 0.11124


Bc1 =

−0.17902 −0.18786 −0.32215
−0.89931 −0.84344 −0.90925
0.052493 0.021098 −0.053026


Cc1 =

[
−0.37758 −0.33222 −0.42294

]
Dc1 =

[
−0.13684 −0.16389 0.27953

]
Ac2 =

 −0.0854 −0.15738 −0.31616
−0.13127 −0.17726 −0.17805
−0.17357 −0.091193 0.11952


Bc2 =

−0.16169 −0.1628 −0.32657
−0.86849 −0.83448 −0.95778
0.037549 0.021162 −0.087656


Cc2 =

[
−0.41221 −0.38024 −0.48807

]
Dc2 =

[
−0.17282 −0.19162 0.38845

]

(44)

The minimum H∞ level γ is obtained as 0.1.
Herein, a further comparison of feasibility results is performed between the works

of [31,44,47] and the present study for γ = 0.1 (see Table 1).

Table 1. Comparison of the feasibility results by different methods for γ = 0.1.

Methods

Theorem 2 (44)
Theorem 2 in [31] Infeasible
Theorem 3 in [47] Infeasible
Theorem 7 in [44] Infeasible
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To test the effectiveness of the proposed control scheme, simulation studies are per-
formed with initial condition x(0) =

[
0.1745 0.3491 3

]
. Figures 1–3 show the con-

vergence behaviors of actual and ideal measurements of the system, while Figures 4–6
demonstrate, respectively, the failure mode signal, the control input u(k) response, and the

curve of the ratio γ(k) =
√

∑∞
0 zT(k)z(k)√

∑∞
0 wT(k)w(k)

under a zero initial condition. From this figure,

it can be easily verified that the ratio is less than the prescribed disturbance attenuation
level of 0.1.

To further demonstrate the merit of the proposed control scheme, a comparison is
performed with the method proposed in [31]. Figure 7 displays the output response.
From this figure, it is clear that, under the saturation and failure constraints, the controller
suggested in [31] is not able to stabilize the system. However, the synthesized control law
is effective in stabilizing the discrete-time singular system with satisfactory performances
in spite of the external disturbances, sensor saturation, and stochastic actuator failure.

0 5 10 15 20 25 30 35 40 45 50

k

-1

-0.8

-0.6
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-0.2

0

0.2

0.4

0.6

0.8
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Figure 1. Actual and ideal measurements of y1.
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Figure 2. Actual and ideal measurements of y2.
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Figure 3. Actual and ideal measurements of y3.
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Figure 4. Control response u(k).
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Figure 5. Failure modes.
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Figure 6. Response of the ratio γ(k).
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Figure 7. Output response with controller in [31].

Example 2. Figure 8 shows a hydraulic system with three tanks. The linearized discrete-time
singular model of this system is borrowed from [48] and given as:

1 0 0
0 1 0
0 0 0

q1(k + 1)
q2(k + 1)
q3(k + 1)

 =

0.9692 0 0
0.0095 0.9867 0

1 2.3328 1

q1(k)
q2(k)
q3(k)


+

0.056
0.003

0

u(k) +

0.02
0.01

0

w(k)

y(k) = q2(k) + 0.3ν(k)

(45)

where vector q(k) represents volumes in the tanks, u(k) is pump flow, w(k) is plant noise, and ν(k)
is measurement noise.
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u(k)

q1(k)q2(k)

q3(k)

Figure 8. Hydraulic system.

Assume that the sensor is subject to saturation with the following parameters

Vy,max = 2.5 H1 = 0.3 and H2 = 1. (46)

and suppose that actuator failure may occur with a 70% reduction in signal amplitude.
The external disturbance w(k) is assumed to be

w(k) =


1 360 ≤ k ≤ 375
−1 450 ≤ k ≤ 475
0 otherwise

(47)

while the measurement noise is selected as ν(k) = 0.1sin(k + 2)(0.5− uni f rnd(0, 1, 1, 1))
In addition, we choose

Π =

[
0.9 0.1
0.4 0.6

]
(48)

Then, the essential objective to be achieved is to design a reliable DOF controller (6)
such that, under given sensor saturation and actuator failure parameters, the admissibility
of the closed-loop system as well as the H∞ performance are satisfied. To this end, setting
β = 0.2, R = diag(R0, R0), R0 = diag(0, 0, 1), LMIs in Theorem 2 can be solved with the
following controller gains:

Ac1 =

 0.059347 −0.10817 −0.17411
−0.10817 0.059347 −0.17411

2.1971 2.1971 2.6273

 Bc1 =

−0.50677
−0.50676

6.7524


Cc1 =

[
−2.5088 −2.5088 −2.6299

]
Dc1 = −6.6406

Ac2 =

 0.049448 −0.16593 −0.16196
−0.16593 0.049448 −0.16196
0.97856 0.97856 1.0638

 Bc2 =

−0.57122
−0.57122

3.1622


Cc2 =

[
−1.4123 −1.4123 −1.2975

]
Dc2 = −3.4328

(49)

It is also worth pointing out that the associated minimum H∞ performance index is
computed as γmin = 0.1.

At this point, simulation studies are implemented with the initial condition x(0) =
[3 3 − 10] to test the effectiveness of the design procedure and the results are shown in
Figures 9–11. Among them, Figure 9 depicts the responses of the system outputs (ideal
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and saturated). The evolution of control input is displayed in Figure 10. The outputs
(ideal and saturated) and control responses are plotted in Figures 9 and 10, respectively. As
expected, y(k) converges to the origin even the saturation affects the sensors. Evidently, the
simulation result shows that, under the measurement noise, sensor saturation, and actuator
failure shown in Figure 11, the closed-loop system is stable with a satisfactory performance
and provides potent verification of the effectiveness of the proposed control scheme.
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Figure 9. Actual and ideal measurements of y.
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Figure 10. Control response u(k).
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Figure 11. Failure modes.
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Example 3. In this example, a mechanical system that consists of a disc rolling on a surface without
slipping, is shown in Figure 12. The disc associated with a spring and a damper are fixed to a
wall. The spring has the coefficient K, and the damper has a damping coefficient b. This system is
described by the following discrete-time singular model with Ts = 0.05 s:


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

x(k + 1) =


1 Ts 0 0

−Ts
K
m

1− Ts
b
m

0
Ts

m
0 1 −r 0
K
m

b
m

0 −( r2

J
+

1
m
)

x(k)

+


0
0
0
r
J

(u(k) + f (x(k))
)
+


0
0
0
1

w(k)

y(k) =
[

1 0 0 0
0 1 0 1

]
x(k)

(50)

where m is the mass, r is the radius, and J is the inertia of the disc. For the state variables, x1 is the
position, x2 is the translational velocity of the center of the disc along the surface, x3 is the angular
velocity of the disc, and x4 is the contact force between the disc and the surface. The control input u
is the torque applied to the disc. The parameters of the system are given in Table 2.

Figure 12. Rolling disc.

Table 2. Parameters of the system.

Parameter Value Unit

K 100 [Nm−1]
b 30 [Ns/m]
m 40 [kg]
J 3.2 [kgm−2]
r 10 [cm]

The parametric uncertainties are F(k) = 0.8sin(5k) and

M =
[
0 0 0 0.01

]T , N =
[
0.1 0 0 0

]
The sensors are subject to saturation with the corresponding parameters H1 =

diag(0.5, 0.5) and H2 = I2.
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To study the effect of actuator failures, we inspect the scenario where the failure may
occur with 30% and 80% reductions in signal amplitude with the transition probability
matrix chosen as

Π =

0.73 0.17 0.1
0.35 0.5 0.15
0.15 0.2 0.65

 (51)

Let β = 0.8, R = diag(R0, R0), R0 = diag(0, 0, 1, 1). By resorting to the Yalmip toolbox
with Sdpt3 solver, Theorem (2) provides a feasible solution with the following parameters:

Ac1 =


1.0735 0.71228 0.63569 0.63569

0.71228 1.0735 0.63569 0.63569
−2.4279 −2.4279 −0.96954 −2.9125
−2.4279 −2.4279 −2.9125 −0.96954



Bc1 =


0.16737 0.25935
0.16737 0.25935
−0.41404 −1.6679
−0.41404 −1.6679


Cc1 =

[
2.2119 2.2119 1.586 1.586

]
Dc1 =

[
−1.0595 1.526

]
Ac2 =


2.5788 2.164 2.0741 2.0741
2.164 2.5788 2.0741 2.0741
−5.6261 −5.6261 −4.0998 −6.0428
−5.6261 −5.6261 −6.0428 −4.0998



Bc2 =


0.32796 1.4251
0.32796 1.4251
−0.80981 −4.1123
−0.80981 −4.1123


Cc2 =

[
5.5029 5.5029 4.8801 4.8801

]
Dc2 =

[
−0.5025 3.9468

]
Ac3 =


38.655 38.276 34.306 34.306
38.276 38.655 34.306 34.306
−96.682 −96.682 −85.499 −87.442
−96.682 −96.682 −87.442 −85.499



Bc3 =


1.6005 26.897
1.6005 26.897
−4.1152 −68.421
−4.1152 −68.421


Cc3 =

[
118.65 118.65 106.13 106.13

]
Dc3 =

[
3.7245 83.774

]

(52)

It is also worth pointing out that the associated minimum H∞ performance index is
computed as γmin = 0.1.

Under the previous failure scenario, the proposed control law is implemented and the

numerical simulations are plotted in Figures 13–16 in the context of w(k) =
0.8sin(5k)

k + 1
and

initial condition x(0) =
[
−1 0.1 0 0

]T .
From this simulation, it is evident that the system is stabilized using the proposed

controller. Moreover, the closed-loop system continues to have acceptable performances
regardless of uncertainties, actuator faults, and sensor saturations.
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Figure 13. Actual and ideal measurements of y1.
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Figure 14. Actual and ideal measurements of y2.
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Figure 15. Control response u(k).
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Figure 16. Failure modes.

6. Conclusions

In this study, we have investigated the output-feedback control problem for a class of
linear discrete-time singular plants with unmeasured states and in the presence of actuator
faults and sensor saturations. A reliable (DOF) controller has been designed to guarantee
the stability of the closed-loop system and eliminate the negative effect caused by actuator
faults and sensor saturations. The key point of the designed control scheme lies in the
establishment of a set of feasible LMI-based constraints so that the closed-loop system
is stochastically admissible with H∞ performance. Three practical examples have been
provided to validate the theoretical approach.

There are many interesting studies that should be carried out for Markovian jump sin-
gular systems, taking into account the phenomena that can be faced in real systems, such as
sensor and actuator saturations, time-varying delay, and unknown transition probabilities.
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