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Abstract: Low pressure fluid transport (1) applications often require low and precise volumetric
flow rates (2) including low leakage to reduce additional costly and complex sensors. A peristaltic
pump design (3) was realized, with the fluid’s flexible transport channel formed by a solid cavity
and a wobbling plate comprising a rigid and a soft layer (4). In operation, the wobbling plate is
driven externally by an electric motor, hence, the soft layer is contracted and unloaded (5) during
pump-cycles transporting fluid from low to high pressure sides. A thorough characterization of the
pump system is required to design and dimension the components of the peristaltic pump. To capture
all these parameters and their dependencies on various operation-states, often complex and long-
lasting dynamic 3D FE-simulations are required. We present, here, a holistic design methodology
(6) including analytical as well as numerical calculations, and experimental validations for a peristaltic
pump with certain specifications of flow-rate range, maximum pressures, and temperatures. An
experimental material selection process is established and material data of candidate materials
(7) (liquid silicone rubber, acrylonitrile rubber, thermoplastic-elastomer) are directly applied to
predict the required drive torque. For the prediction, a semi-physical, analytical model was derived
and validated by characterizing the pump prototype.

Keywords: hydraulic pump; micro-dosing; peristaltic; hyper-elasticity; viscoelasticity; holistic design
methodology; elastomer compound

1. Introduction

Pumps have a broad field of application and can be considered as energy transducers,
converting primary kinetic energy (e.g., linear, or rotational motion of a rigid body) to
hydrodynamic energy [1]. A simplified view on the technical side of a pump reduces it
into three main components which describe the operation principle [hydraulic pump very
abstracted]: housing with fluid in- and outlet port, moving component(s) and transmission
gear to drive the moved part via the primary energy source. Based on the operation
principle hydraulic pumps, beside some exceptions like “the hydraulic ram” [2] which
uses the water hammer effect [3] as primary energy source, can be categorized into two
main groups, namely centrifugal pumps [4] and (positive) displacement pumps. Schmitz
and Murrenhoff [5] gives a good overview of hydraulics in general. Centrifugal pumps
have an open fluid connection from in- to outlet port, the impeller accelerates the fluid
due to its rotational movement which causes centripetal forces (actio); in other words: the
fluid is moved due to its centrifugal force caused by the impeller (reactio). In contrast to
that, the in- and outlet ports of displacement pumps are disconnected by a sealing which is
considered as “leak-free” flow, so the fluid volume “the displacement” is encapsulated and
transported by the motion per turn. Some pumps of this kind have multi-sectioned and
even parallel, and phase shifted displacement to smooth the flow rate and, consequently,
reduce pulsations. The most common types of displacement pumps are gear pumps, screw
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pumps, rotary vane pumps, as well as piston pumps, which can further be divided into
axial and radial piston pumps [6,7] and, finally, peristaltic pumps [8]. Except for peristaltic
pumps, these displacement pumps have several features in common. The dynamic sealings,
which enclose the displacement, are usually not intended to be made of soft materials and,
therefore, consist of long and tight sealing gaps. Consequently, an acceptable amount of
leakage occurs. Lower leakage requires more precise manufacturing and is expensive. The
fact that such pumps mainly consist of rigid components with significantly higher strength
than soft materials, higher maximum pressures (p > 21 MPa) can be withstood compared
to peristaltic pumps.

Other research activities pursue the application of smart (soft) electroactive mate-
rials [9,10] in peristaltic pumps. Furthermore, the combination of (micro)pumps with
flow sensors is shown by Jenke et al. [11] and others to ensure closed loop controlled
micro-dosing. However, the degree of complexity is increasing by the implementation of
the additional sensors.

Our aim was to build a cost-effective and backflow-free (safety valve function) fluid
transport system which can handle pressure ranges from nearly 0 MPa to 1 MPa with
accurate but variable flow rates. Furthermore, it must withstand the dry operation mode
and also negative pressures (relative to atmospheric pressure). For these specifications, the
most appropriate system is the peristaltic pump. However, some unfavourable issues like
low durability or pulsation are well-known [8] and must be addressed in the development
of peristaltic micro-dosing pumps.

Figure 1 shows the main principle components of a peristaltic pump with three
rollers including a cross-section of it. The main problems include pulsations caused by
discontinuity of displacement per turn as well as durability limitations and dynamic ther-
momechanical behaviour of the wobbling plate’s soft material [12–14], among others. So,
the problems can be related to the pump concept itself and the undesirable behaviour [15]
(strength, aging, creep, relaxation, etc.) of the soft material. On the one hand the benefit of
the hyper-elastic behaviour is the conformity, flexibility, and the tight dynamic sealing capa-
bility [16]. On the other hand, this soft (elastomeric) material will be adiabatically heated by
the pump motion and accelerate the material’s aging. Standard tubes of common peristaltic
pumps are pushed by one or more rotating rollers to encapsulate the displacement (fluid)
into one or more segments (Figure 1). Depending on the design, such squeezing leads to
high deformations and unbalanced contact-pressures. Due to zones of high inner stresses,
especially on kinks (i.e., highly deformed contact regions), the material will embrittle over
time and, ultimately, leading to total failure of the pump. To overcome these, in this article
the main objective was to present a new mechanical design approach of a rubber-based
fluid pump including prototyping and validation.
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2. Design Concept and Challenges

Figure 2 shows the workflow of the design methodology. The methodology comprises
the mechanical design of the peristaltic micro-dosing pump, the material selection approach
of the wobbling plate’s soft layer and the optimization of the whole pump system. It
is an interwoven approach including analytical as well as numerical calculations and
experimental validations.
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With our methodology, long-lasting FE-calculations to compute a functioning pump
geometry at the maximum drive conditions (torque) are avoided to analyse leak-free fluid
transport at pressure levels from 0 MPa to 1 MPa. Furthermore, it enables operation at
variable flow rates (µL/min to mL/min) as well as service-temperatures (0–60 ◦C).

2.1. Mechanical Design

Figure 3 shows the mechanical design and a prototype of the peristaltic micro-dosing
pump system. The pump concept has a mostly constant displacement, enclosed by the
pump cavity and the moving dynamic wobbling plate, which transports the fluid through
the provided channel. The flow rate can be varied by setting the wobble turn speed
appropriately. As primary pump systems drive, we chose a slightly oversized electronic
commutated brushless direct current motor [17] due to the off-the-shelf availability and
the good controllability.

The design of the pump system was a result of an easy way to adjust the dynamic
sealing pressure by altering the distance of the two subassemblies, namely the pump and
drive part.

For the mechanical design of the peristaltic pumps’ primary drive, the estimation
of the drive’s torque in relation to the established sealing pressure within the cavity is of
particular importance. Here, the wobbling plate is made of a rigid and a soft layer (rubber)
and, hence, the sealing pressure is mainly determined by the material behaviour of the
soft layer.
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2.1.1. FE-Calculations and Design Hypothesis

For the geometric design, Abaqus [18] was used to calculate material stresses and
deformations. The main observed operating points are those in extreme conditions, which
must be tolerated by the materials. The general pump design was simulated as a 2D
axis-symmetric model. The steps were primarily set as dynamic-implicit (quasi-static)
without fluid dynamics but with pressures on the sealing boundary zones. In the first step,
the mounting process was simulated. Therefore, the basic pump housing was fixed, and
the other parts (y-axisymmetric) were moveable in y-direction and fixed in x-direction.
The prestress-rings were now brought into its final positions. In the further Steps the
boundary conditions were applied (rising with step time) from zero to its nominal values.
On each step, one of the boundary conditions was changed. Its limits were maximum
and minimum pressures (minimum 0 MPa, nominal 1 MPa in operating condition, and
maximum pressure of 3 MPa in none-operating pump state for safety reasons) and wobble
angles (which results in a maximum of 0.5 mm and minimum of 0 mm in y-deformation of
the rubber)

The soft material was modelled with isotropic and hyper-elastic via Mooney–Rivlin
constitutive behaviour at certain temperatures and frequencies. For faster and more stable
simulation results the step-types were set as dynamic, implicit with adiabatic heating
effects. Due to large deformation of the rubber, the nonlinear geometric function is en-
abled. Several mesh sizes and elements were tested in order to find a stable model. In
particular, the rubber element is the crucial component and therefore needs a more specific
consideration. The seeds very applied evenly spaced around the circumference of the 2D
axisymmetric rubber element. Whereas the minimum occurring cross-section of the rubber
has a size of 5 × 2 mm2 the approximate global size was set to 0.12 mm and curvature
control was used for applying the global seeds. The maximum deviation factor was set
to 0.1 as set by default in ABAQUS CAE. In mesh controls the element shape was set to be
“Quad” only. Also “Free” technique with “Advanced front” algorithm included “mapped
meshing where appropriate” was chosen. Furthermore, the mesh element type was set as
“CAX8RH” (An 8-node biquadratic axisymmetric quadrilateral, hybrid, linear pressure,
reduced integration). Now the rubber part can be meshed automatically, and as seen in
Figure 4b the mesh size and structure are evenly distributed, and the shape of the rubber
element is sufficiently accurate.

There contact formulations between the parts was separated into three segments. All
part interactions were set to “all with itself” with cohesive contact (“Hard” contact for
normal behaviour and default cohesive behaviour) excluding those surfaces which are
not permanently attached to each other. The surface contacts between the rubber and
the pump head, and between pump head and prestress ring (in Figure 4 Position 2 and 1,
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Position 1 and 3) were chosen to be of type surface-to-surface interaction. The rubber
surface and the prestress ring surface were set to be the slave-surfaces and the pump
head was set as master surface. The contact behaviour was formulated as slip-friction.
Therefore, the tangential behaviour was set es penalty friction formulation with a coefficient
of 0.15 and isotropic directionality. Additionally, the normal contact behaviour was set
as “Hard” contact for pressure-overclosure with default constraint enforcement method.
Separation after contact was allowed to simulate other situations in further “Steps”. After
the first “Step” was created, the initial boundary conditions were applied. Further “Steps”
were implemented with the appropriate change of boundary conditions and loads.
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The basic design parameters of the cavity geometry were chosen due to desired flow
rate (50 mL/min), which is the product of displacement (33 µL + 20% over-dimensioned
for geometry tolerances) and motor speed (1500 rpm). From this point on, the 2D-FE-
calculation procedure was iterated to find a basic pump design concept working for the
given boundary conditions to fulfil all desired conditions like displacement and maximum
pressures without violating the maximum allowable stresses. The maximum contact
pressures for “Step 1” on the sealing lips (see Figure 4) are above the desired maximum
static pressure. It can be concluded that there will be no external leakage on the sealing
lips, also the maximum allowed stresses were not exceeded. All steps results fulfilled
the desired conditions without violating the maximum allowed material conditions like
maximum deformation and maximum tensile and compressive stresses.

The 2D calculation led to the final design parameters like rubber thickness, maximum
deformation for prestressing the sealing lips and maximum compression at maximum
wobble angle which separates high-pressure and low-pressure area. After the basic design
was finalized, a 3D-FE-analysis was conducted for one single pump revolution at one
specific operating point specified as room temperature and quasi-static movement. This
special situation represented very slow pump motions and, therefore, low flow rates. Of
course, such a simulation is very time-consuming (several weeks of run-time). As a result,
we received the verification of the functionality of the basic concept (closed displacement
in every rotary angle) and a first scale of the necessary torque to move the wobble plate
properly. The necessary drive torque is mainly influenced by the rubber conditions like
deformation frequency and temperature, but also by the required hydraulic power which
can later be superimposed easily. To have a whole dynamic Abaqus 3D-design calculation,
it would be necessary to simulate several operating points like maximum frequency at
minimum temperature with the same pre-set assembling conditions, which has been
omitted due to long simulation times.
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2.1.2. Analytical Model for the Estimation for the Drive Torque

An analytical model estimating the necessary drive torque for several operating points
(different speeds and temperatures) is derived to avoid expensive dynamic 3D-FE-analyses
by using the results of the viscoelastic characterization of the wobble plate’s soft layer by
dynamic thermal mechanical analyses (DMTA). For the model, some level of abstraction is
needed to describe the function as realistic as possible without too many deviations. So,
the first step is finding a simplified scheme of the pump system including the primary
drive and power transmission which represents the rubber (soft layer) dominated required
torque (idle mode) in a sufficiently accurate manner as seen in Figure 5a,b.
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Figure 5. Simplified abstracted model of the pump system: (a) wobble plate on top connected with
the rubber ring in zero and maximum deflection; (b) illustration of the transmission from rotary
drive to wobbling plate (the roller bearing allows a rotation between wobble plate and drive shaft,
the wobble plate itself is blocked due to the attached and fixed rubber).

The mechanics of the wobbling plate according to Figure 6 can be formulated with the
equation of motion for angular problems with 2 degrees of freedom

⇀
q =

(
α β

)T and
looks like:

J·
⇀..
q + D·

⇀.
q + C·⇀q =

⇀
T , (1)
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Considering a harmonic movement of the plate, where θ changes with ϕ = ωt which
leads to a harmonic wobbling, the state vector can be written as follows:

⇀
q =

(
α
β

)
=

(
θ· sin(ωt)
θ·cos(ωt)

)
, (2)
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The first and second derivations lead to:

⇀.
q =

( .
α
.
β

)
=

(
θ·ω·cos(ωt)
−θ·ω·sin(ωt)

)
, (3)

and
⇀..
q =

( ..
α
..
β

)
=

(
−θ·ω2· sin(ωt)
−θ·ω2·cos(ωt)

)
, (4)

Furthermore, the needed power for each rotation is constant, therefore, it is possible to
observe the resulting values at a certain quasi-static position (e.g., ϕ = ωt = 2πk ∀k ∈ N),
so the state vector and its first and second derivations simplify to:

⇀
q =

(
0
θ

)
, (5)

⇀.
q =

( .
α
.
β

)
=

(
θ·ω

0

)
, (6)

⇀..
q =

( ..
α
..
β

)
=

(
0

−θ·ω2

)
, (7)

The ideal power transmission from the rotary drive to the wobbling as illustrated in
Figure 5b results in following formulation:

Tmotor·ω = Tα·
.
α + Tβ·

.
β (8)

Considering the simplifications of the states in Equations (5)–(7) due to quasi-static
and position-based observation, Equation (8) further simplifies to:

Tmotor = Tα·θ (9)

These results substituted by the original terms of equation of motion (1) lead to the
following time invariant algebraic equation:

Tmotor = dθ ·θ2·ω (10)

The damping and stiffness coefficients for this problem “rubber ring with tilting load”
according to Figure 5a can be written as followed [19]:

cθ(T,ω) =
E′(T, ω)·πd2

m· bh
8

1 +
(

b
dm

)2

1− ν2 +
b2

3h2

, (11)

and

dθ(T,ω) = cθ(T,ω)
tan(δ)

ω
, (12)

Merging Equations (10)–(12) the required torque for idle mode can be estimated by
the following equation:

Tmotor =
E′(T, ω)·πd2

m· bh
8

1 +
(

b
dm

)2

1− ν2 +
b2

3h2

·θ2· tan(δ), (13)

With these considerations, an algebraic equation of the very abstracted model of the
pump system was found to estimate the required torque which is influenced by temperature
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and frequency-depending material behaviour (modulus E′ and loss factor tan (δ)) and the
geometry parameters. The experimental set up for the validation can be seen in a following
sub-chapter called evaluation process. If these torque values are also useable for scalable
designs without the need of further investigations will be proven in the results.

2.1.3. Dynamic Fluid Gap

Due to the nonlinear dynamic rubber behaviour, the displacement of the maximum
pump pressure will be temperature and frequency dependent. Once the rubber’s dynamic
thermomechanical behaviour is characterized, only operation temperature and pump
speed are necessary to estimate the actual flow rate. The requirement for the pump system
was a constant displacement independent of speed, temperature and pressure. However,
the dynamic fluid gap, which is formed between the squeezed rubber and the rigid pump
cavity, has a huge impact on the pump’s displacement. For further investigations, the
wobble plate is considered as a cubic piece of rubber with a rigid top which is frequently
excited and pressed against the pump cavity. The level of abstraction is shown in Figure 7.
The distance varies from maximum lift (hmax) to the nominal compression to reach the
target contact pressure at minimum lift (hmin).

Actuators 2021, 10, x FOR PEER REVIEW 8 of 29 
 

 

 
Figure 6. Wobbling plate with labelled kinematic parameters and torques. 

2.1.3. Dynamic Fluid Gap 
Due to the nonlinear dynamic rubber behaviour, the displacement of the maximum 

pump pressure will be temperature and frequency dependent. Once the rubber’s dynamic 
thermomechanical behaviour is characterized, only operation temperature and pump 
speed are necessary to estimate the actual flow rate. The requirement for the pump system 
was a constant displacement independent of speed, temperature and pressure. However, 
the dynamic fluid gap, which is formed between the squeezed rubber and the rigid pump 
cavity, has a huge impact on the pump’s displacement. For further investigations, the 
wobble plate is considered as a cubic piece of rubber with a rigid top which is frequently 
excited and pressed against the pump cavity. The level of abstraction is shown in Figure 
7. The distance varies from maximum lift (hmax) to the nominal compression to reach the 
target contact pressure at minimum lift (hmin).  

  
(a) (b) 

Figure 7. Analogous model of the complex pump system regarding the dynamic film on the contact area: (a) illustration 
of the simplified wobble situation; (b) principal abstracted scheme. 

This dynamic fluid gap is influenced by the stiffness of the rubber, the occurring fluid 
pressure and the wobbling speed of the pump itself. A phenomenological mechanical 
model based on this system is illustrated in Figure 8. The rubber was described by the 
well-known Kelvin–Voigt model [20] (parallel connection of elastic spring and viscous 
damper). 

  

Figure 7. Analogous model of the complex pump system regarding the dynamic film on the contact
area: (a) illustration of the simplified wobble situation; (b) principal abstracted scheme.

This dynamic fluid gap is influenced by the stiffness of the rubber, the occurring fluid
pressure and the wobbling speed of the pump itself. A phenomenological mechanical
model based on this system is illustrated in Figure 8. The rubber was described by the well-
known Kelvin–Voigt model [20] (parallel connection of elastic spring and viscous damper).
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wobble plate.
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The Reynolds equation [21,22], which is a certain form of the Navier–Stokes equa-
tions [23] (no density or viscosity changes) for a fluid gap with such a short distance leading
to dominating viscosity effects, can be written as below:

∂

∂x

(
h3

η

∂p
∂x

)
+

∂

∂y

(
h3

η

∂p
∂y

)
= 6

∂h
∂x

(U12 + U21) + 6
∂h
∂y

(U12 + U21) + 12
.
h, (14)

Furthermore, y-axis-depending terms and horizontal velocity-based terms (wob-
bling plate does not have a relative movement to the cavity in horizontal direction) can
be eliminated:

∂

∂x

(
h3

η

∂p
∂x

)
= 12

.
h, (15)

By integrating this differential equation 2 times, and setting the boundary conditions
to p(0) = p0 and p(L) = p1 the damping pressure below the rubber can be calculated:

p(x) = −6η

.
h2(t)·x2

h2(t)3 + p0 + x·
(

6ηL

.
h2(t)
h2(t)3 +

p0
L

+
p1
L

)
, (16)

The resulting force of the fluid cushion which hinders the rubber to get into contact
with the cavity can be evaluated by integration over dx from 0 to the length L and dy from
0 to the width b of the strip.

Ff luid =
∫ b

0

∫ L

0
p(x)dydx → f

(
h2(t),

.
h2(t), p1, p2

)
(17)

At an operation point the rubber can be simplified to a frequency and temperature
dependent spring and damper system with very low mass. With ∆h(t) = h1(t)− hrub −
h2(t)− h0 the equation of motion can be written as follows

m
..
·h(t) + d(T, ω)∆

.
·h(t) + c(T, ω)·∆h(t) = Ff luid

(
h2(t),

.
h2(t), p1, p2

)
, (18)

Damping effects of the rubber cause an internal heating and a lag of deformation,
which in this case means, that zero damping would lead to a worst-case scenario for the
developing fluid gap.

The mass of the elastomer also has low influence on the results, with m = d = 0. The
Equation (18) can be reduced as follows:

c(T, ω)·(h1(t)− hrub − h2(t)− h0) = Ff luid

(
h2(t),

.
h2(t), p1, p2

)
, (19)

By setting the boundary conditions p1 and p2 to zero to represent the idle mode the
fluid the equation further simplifies to:

c(T, ω)·(h1(t)− hrub − h2(t)− h0) =
L3bη

(h2(t) + h0)3 ·
d
dt

h2(t), (20)

To obtain the desired result h2(t), this nonlinear differential equation needs to be
solved numerically.

In Figure 9a,b the emerging fluid gap due to different excitation frequencies is shown.
The typical rubber behaviour leads to a higher stiffness with rising frequency and falling
temperature. Presuming the stiffness rises to infinite values, the fluid gap would only be
defined by two rigid plates which lead to zero contact, but infinite high contact forces. On
the other side, if the rubber stiffness is very low, the fluid gap will be dominated by the
velocity term namely the motor speed respective frequency. In conclusion, depending on
the chosen rubber material rising frequency will lead to higher gaps, due to higher fluid
forces, but also to an increasing stiffness of the rubber which will partly compensate the
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emerging gap. The graphs in Figure 10 give an idea of how the displacement changes
due to frequency effects. The nominal flow rate Q is dependent on motor speed n and
displacement V which is further a function of n.

Q = V(n)·n, (21)
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The nominal displacement (quasis-static→ f = 0 Hz) is calculated to:

V0 = rm

∮ 2π

0
A(ϕ)dϕ ≈ dm·π·

2
3
·b·h2max

2
, (22)
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where dm is the cavity’s mean diameter, A(ϕ) the ϕ-depending (radial) cross-section which
is a about the product of the ϕ-depending height h2(ϕ) multiplied by two thirds of the
cavity width b (area of circle segment). The integral of the cross-section A(ϕ) results in the
mean of maximum and minimum cross-section. The frequency dependent term reduces
the nominal displacement to:

V( f ) ≈ V0 − dm·π·
2
3
·b·h2min( f )

2
, (23)

The actual system is much more complex, due to the hyper-elastic as well as viscoelas-
tic material behaviour and the interaction of the more complex pump geometry. Most likely
it is not possible to find an analytical model to describe the thermal, dynamic rubber fluid
interaction of the 3D design.

Figure 11 shows the pressure distribution from the left to the right boundary in the
dynamic fluid gap. The pressure inflation in the dynamic gap at the exact time when the
gap has its minimum (sealing point) must be higher than the boundary pressures in order
to prevent backflow, since the flow rate follows the negative pressure gradient. Therefore,
Figure 11a,b shows that internal leakage is prevented if the boundary pressure is below the
maximum pressure at low frequencies. This is valid, if the rubber prestress is high enough,
which is guaranteed by the required static sealing contact pressure. From Figure 11c it
is obvious that the boundary pressure of 1.5 MPa exceeds its target sealing limit causing
internal leakage.
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2.1.4. Wobble Plate Design

The design of the rubber-based wobble plate has surrounding static sealing lips in
a kidney shaped arrangement, which are tight at maximum pressure. Depending on the
pivot angle of the wobble plate, the rubber is pressed at the inner side against the pump’s
housing cavity. The geometry must be designed in order to maintain the contact pressure
line just above the desired feed pressure. Otherwise, leak tightness is not preserved. Since
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the pump-element also undergoes tensile stresses, the connection between the rigid and
the soft layer is crucial and must resist these severe loadings. However, soft materials,
like rubbers, exhibit inherent viscoelastic behaviour leading to stress/strain relieving
(relaxation/retardation) mechanisms due to the molecular motion under external loading.
This effect must be considered in the mechanical design with the aim to reduce it; if not,
the displacement of the peristaltic pump will drop and reduce the flow rate permanently.

To overcome the drop in displacement, the boundaries of the rubber must be confined
in a way that over time evolving creep along the maximum stress path is inhibited [24].
Therefore, three joining concepts for the soft and the rigid layers were considered in
this study and included Figure 12a adhesive bonding with cyanoacrylate Figure 12b
vulcanization (cross-linking) of the rubber on the metallic surface by applying a primer
for enhanced adhesion between the dissimilar materials, and Figure 12c form fit and
vulcanization for superior interface properties.
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special surface treatments).

There is a specific dynamic behaviour of the pump due to the nonlinearity of the
rubber. Besides the desired pressure, the minimal required torque is mainly influenced by
this certain elastomeric behaviour. Therefore, at low frequencies and high temperatures,
the torque is mainly given by the hydraulic power (output power of the pump) and the
main prestress. Very low temperatures and high frequencies lead to a stiffening effect of the
rubber. These operating conditions influence the maximum pressure and the consistency
of the flow rate.

2.2. Material Selection for the Soft Layer of the Wobbling Plate

In the peristaltic pump design, the wobbling plate squeezes the fluid through the
cavity to the outlet port. The soft layer enables the squeezing (i.e., the contraction of the
soft layer leading to a pressure in flow direction) and must be flexible, resilient and exhibit
low hysteresis under dynamic loading. These design requirements are crucial for a reliable
operation of the pump and have to be translated to material properties. The state-of-the-art
candidate materials for peristaltic pumps are elastomeric materials (rubbers), crosslinked
incompressible polymers, for the general purpose of the functionality to enable squeezing
of the fluid. However, this class of materials exhibits non-linear (hyperelastic) material
behaviour and has an inherent viscoelasticity (loading rate and temperature dependency).
Above the glass-transition temperature, the predominant deformation mechanism of rub-
bers is governed by changes of entropy. Under deformation the macromolecules are
oriented, decreasing the entropy and, thus, leading to adiabatic heating. This mechanism is
directly linked to the efficiency of the pump, as the external electrical drive of the pump
has to supply higher torques to maintain constant flow rate and pressure. To provide the
functionality of the wobbling plate within the above-mentioned constraints and require-
ments, the objective is to select a material with following properties within the loading
frequency and temperature ranges:
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• constant storage modulus E′ for low and balanced sealing pressures,
• low loss modulus E” for low drive torques,
• low Poisson’s ratio ν (rubber is incompressible, hence, ν = 0.5),
• low viscoelasticity and elastic deformability up to 25% strain

Figure 13 illustrates the application-relevant frequency and temperature ranges for
the storage and the loss moduli. Including the reversible deformability of up to 25%, these
are the most important selection criteria for the material. Focusing on these requirements,
the goal is to select (tailor) a material which is sufficiently within the ideal behaviour range
of Figure 13.
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soft layer of the wobbling plate.

Based on these considerations, an experimental testing procedure for the material
selection is described in the following. As the candidate materials are limited to elastomers
(rubber-like materials) along with thermoplastic elastomers, the shear modulus is described
by the kinetic theory of rubber elasticity and gives a proportionality of the macroscopic
modulus to the molecular mass as well as temperature. The foundation for the material
selection procedure is the characterization of the hyper- and viscoelasticity including
material parameter determination for numerical simulations to calculate the stress-strain
state under application relevant loadings.

A number of hyper-elastic material models are established with their specific lim-
itations of deformation, accuracy and applicability to some reinforced elastomers. The
well-known Mooney–Rivlin model is a hyper-elastic model with two material parameters
(C01 and C10). This constitutive model is implemented in most commercially available
finite element (FE) solvers and describes the material behaviour up to moderate deforma-
tions (<30%) and, hence, is applied in our study.

Additionally, the material aging is of particular importance and its effects on the
dynamic thermomechanical behaviour of the elastomers have to be examined. For the
assessment of the long-term stability of the wobbling plate, the environmental (temperature
and humidity) impact on the bonding of the soft layer to the rigid body (cf. Figure 12)
as well as the temperature induced aging conditions are crucial. These conditions are
addressed experimentally by the cataplasm aging test of the bonding and by thermal aging
of the rubbers.
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2.2.1. Candidate Materials (Rubbers)

From Figure 13 and from previously performed and published works (e.g., [25]), the
candidate materials can be narrowed down to rubbers with Shore A hardness of 60 to 80.
Specifically, formulations of rubber families of acrylonitrile (NBR, HNBR), fluoro-rubber
(FKM), ethylene-propylene-diene (EPDM), thermoplastic polyurethane and silicone rub-
bers are perfectly suitable as soft layer for wobbling plates in peristaltic pumps. They can
accommodate strains of several 100% with low resilience under dynamic loading. The
dynamic (thermo-) mechanical properties E′ and E” are adjustable and the viscoelasticity
(frequency and temperature dependency) can be tailored for the application.

In the subsequent chapters we present the experimental data of a liquid silicon rubber
(LSR, R401/70), a NBR formulation (Shore A 70) and a TPU formulation (Shore A 90). The
LSR and NBR materials were formulated and processed by Erwin Mach Gummitechnik
(Hirm, Austria). All three materials can be injection moulded in arbitrary geometries and,
therefore, have an economical advantage when high volume mass-production is required.

2.2.2. Experimental

The three candidate materials (TPU, LSR and NBR) were moulded to 300 mm× 200 mm
sheets with 2 mm thickness. From these sheets the specimens for the hyper- and viscoelastic
characterizations were stamped. Figure 14 shows the specimen geometries including the
dimensions. On the surface, speckle patterns were coated and during the experiments
pictures of the specimens were recorded to derive strain optically by 2D-digital image
correlation (2D-DIC; Aramis 4M).

The uni- and biaxial tension tests (see Figure 15) were performed with an electrome-
chanical testing system (TA Instruments, ElectoForce Systems Group) under isothermal
conditions at room temperature and at three loading rates (uniaxial: 0.1 mm/s, 1 mm/s,
and 10 mm/s; biaxial: 0.1 mm/s, 0.5 mm/s, and 1 mm/s). Strains were derived by 2D-DIC,
and forces were measured with a 440 N load cell (WMC-100lbf; Interface Inc., Atlanta, GA,
USA). Prior to testing, the specimens were fixed and a dwell time of 5 min was given to
reach the thermal equilibrium force (relaxed state of the material).

The material parameter determination was performed by assuming incompressibility
and measuring the uni- and biaxial characteristics (compare in Figure 16a range of mea-
sured versus application-relevant loading in terms of first and second strain invariant). All
experimental data were fitted iteratively to identify the parameters C01 and C10 for the
Mooney–Rivlin model (see Figure 16b). The temperature dependency is not captured by
this model explicitly. Therefore, dynamic (thermo-) mechanical analyses (DTMA) were
performed to gain insights of the temperature and frequency dependencies, on the one
hand, and, on the other hand, the storage and loss moduli (loss factor tanδ).
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the Mooney–Rivlin constitutive model.

The dynamic thermomechanical behaviour of the candidate elastomers was analyzed
under uniaxial loading at temperature from −50 ◦C to +80 ◦C and loading frequencies
from 0.5 Hz to 50 Hz. A sine wave excitation was applied with a mean strain level of
20% and a dynamic (p-p) amplitude of 2%. DTMA was performed with an Eplexor 500 N
(NETZSCH-Gerätebau GmbH, Graz, Austria) and started at the lowest temperatures with
an incremental increase of 5 K. The frequency sweep was performed in a logarithmic scale
with five frequencies per decade. The obtained material data (E′ and E”) were further
analyzed regarding the thermorheological behaviour and, finally, the master-curves were
constructed by shifting and applying time-temperature superposition principle. Figure 17a
shows the temperature dependent experimental data of E′ and E” at three excitation fre-
quencies (0.5 Hz, 5 Hz, and 50 Hz). The frequency dependent E′ master-curve constructed
for the reference temperature Tref of 25 ◦C is illustrated in Figure 17b. For the construc-
tion of the master-curve only a horizontal shift was applied. It is important to select an
appropriate temperature increment in order to assure an overlap between the isothermal E′

curves. Figure 17b shows also the experimental window with the isothermal curves (low
to high temperature data are illustrated from top to bottom). Low temperature data are



Actuators 2021, 10, 198 16 of 28

equivalent to high frequency data (shift to right) and vice versa. As the thermorheological
material behaviour was simple, the shift-factors were modelled by the well-known and
established Williams–Landel–Ferry equation (WLF).
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dependent storage and loss modulus (E′ and E”); (b) calculated master curve for a certain nom. temperature.

Material aging alters the properties of the rubbers and, thus, the evolution of the
dynamic thermomechanical properties (E′ and E”) must be characterized. With these
insights, the long-term behaviour of the peristaltic pump can be assessed, and maintenance
intervals defined. To achieve this, the specimens were exposed to 120 ◦C for seven days
and DTMAs were performed. A precondition was that no surface failures, such as cracks,
colour alterations and tackiness [14,26] (sticky touch due to migration of oligomers from
the bulk to the surface), were observable.

Another critical aspect to ensure the long-term stability of the pump is the bonding of
the wobbling plate’s two layers. It is reported [13] that cyanoacrylate is suitable for bonding
rubber to other (dissimilar) materials. The chosen super adhesive (Zwaluw Sekundenkleber
universal) is a liquid cyanoacrylate-based glue which cures through moisture respective
humidity within seconds. The processing temperature should be between 15 ◦C and
40 ◦C to reach its final adhesion after half a minute. According to the datasheet, the
cured bond withstands a temperature range of −60 ◦C to 80 ◦C and maximum mechanical
stresses up to 10 MPa (rubber to rubber). Preliminary experiments at room temperature
confirmed this, however, the realistic loading conditions of the soft layer are multiaxial at
high temperatures and humidity. So, the cataplasm-test [27] was conducted to simulate
these severe environmental conditions. Specimens were prepared by cleaning, roughening,
and bonding of two rectangular sheets (see Figure 18a) of metal and the candidate materials.
After 24 h curing, the specimens were wrapped with water-soaked cotton wool as shown
in Figure 18b. In addition, this package was wrapped with aluminium foil, then packed
airtight and vacuumed in a PE-bag (hermetic sealed). After 14 days thermal exposure at
70 ◦C (see Figure 18a), the bonding quality was examined. Bondings passing the cataplasm
test without delamination are eligible for the application.

2.3. Evaluation Procedure of the Pump Prototype

In the following sections, the procedures for displacement determination, design of
the test rig including the control parameters for the performance tests and the evaluation
procedure are outlined.



Actuators 2021, 10, 198 17 of 28

Actuators 2021, 10, x FOR PEER REVIEW 17 of 29 
 

 

and the candidate materials. After 24 h curing, the specimens were wrapped with water-
soaked cotton wool as shown in Figure 18b. In addition, this package was wrapped with 
aluminium foil, then packed airtight and vacuumed in a PE-bag (hermetic sealed). After 
14 days thermal exposure at 70 °C (see Figure 18a), the bonding quality was examined. 
Bondings passing the cataplasm test without delamination are eligible for the application. 

   
(a) (b) (c) 

Figure 18. Preparation of specimen: (a) specimen bond of cyanoacrylate between rubber and sheet metal; (b) specimen in 
wet cotton and aluminium foil; (c) vacuum packed specimen in climatic chamber). 

2.3. Evaluation Procedure of the Pump Prototype 
In the following sections, the procedures for displacement determination, design of 

the test rig including the control parameters for the performance tests and the evaluation 
procedure are outlined. 

The main emphasis is to validate the derived algebraic model of the torque estima-
tion (design hypothesis) stated a the previous sub-chapter. With rising frequencies and 
lower temperatures, the affordable drive torque is higher than at slow speeds and warmer 
conditions. The relation between necessary torque and stiffness (storage modulus), re-
spectively losses (loss modulus), is depending on the selected rubber and should be re-
producible for reliable operation of the pump. When the model is sufficient, new genera-
tions of such pumps can be designed in one step (simultaneous procedures like material 
choice, geometry calculations, motor design) without building further prototypes which 
saves time and money. Additionally, the hydrodynamic fluid gap model (Section 2.1.3) 
allows to estimate the displacement and flow rate which can also be validated. 

The experimental set-up comprised a hydraulic circle with the pump as the main 
component and included high-, low-pressure lines, a pressure relief valve, a flow meter, 
pressure as well as temperature sensors, and an on/off valve in the high-pressure line to 
control the pressure difference. The test rig fits perfectly into a common climatic chamber 
(450 mm × 450 mm × 450 mm), while the measurement system and the electrical control 
unit (ECU) controlling the motor were kept outside. 

2.3.1. Electrical Drive and Performance Determination 
The electric commutated brushless direct current motor (EC-BLDC-motor) is con-

trolled by LCMs semi open-source software X2C [28] and powered by the microcontroller 
unit LCM-ECU-10HB-10A [29] including ten half bridges and some IOs (i.e., analog and 
digital in- and outputs). The Hall-sensor signals allow a determination of the rotor posi-
tion, so a state-of-the-art speed controlled, field-oriented control [17] of the BLDC is im-
plemented (see Figure 19). The q-vector-current iq is proportional to the torque. The motor 
was embedded into an existing test bench with load and torque measurement. 

Starting from zero, the operating points were measured and continuously increased 
up to 2000 rpm and 35 Watt and the value iq was evaluated in the motor control unit. The 
top graph of Figure 20Error! Reference source not found.a shows the linear proportion-
ality between torque and iq. The middle graph Figure 20Error! Reference source not 
found.b shows the relation between power, iq and measured speed, while the efficiency 
over speed and iq is illustrated in the bottom diagram Figure 20Error! Reference source 

Figure 18. Preparation of specimen: (a) specimen bond of cyanoacrylate between rubber and sheet metal; (b) specimen in
wet cotton and aluminium foil; (c) vacuum packed specimen in climatic chamber).

The main emphasis is to validate the derived algebraic model of the torque estimation
(design hypothesis) stated a the previous sub-chapter. With rising frequencies and lower
temperatures, the affordable drive torque is higher than at slow speeds and warmer condi-
tions. The relation between necessary torque and stiffness (storage modulus), respectively
losses (loss modulus), is depending on the selected rubber and should be reproducible
for reliable operation of the pump. When the model is sufficient, new generations of
such pumps can be designed in one step (simultaneous procedures like material choice,
geometry calculations, motor design) without building further prototypes which saves
time and money. Additionally, the hydrodynamic fluid gap model (Section 2.1.3) allows to
estimate the displacement and flow rate which can also be validated.

The experimental set-up comprised a hydraulic circle with the pump as the main
component and included high-, low-pressure lines, a pressure relief valve, a flow meter,
pressure as well as temperature sensors, and an on/off valve in the high-pressure line to
control the pressure difference. The test rig fits perfectly into a common climatic chamber
(450 mm × 450 mm × 450 mm), while the measurement system and the electrical control
unit (ECU) controlling the motor were kept outside.

2.3.1. Electrical Drive and Performance Determination

The electric commutated brushless direct current motor (EC-BLDC-motor) is con-
trolled by LCMs semi open-source software X2C [28] and powered by the microcontroller
unit LCM-ECU-10HB-10A [29] including ten half bridges and some IOs (i.e., analog and
digital in- and outputs). The Hall-sensor signals allow a determination of the rotor po-
sition, so a state-of-the-art speed controlled, field-oriented control [17] of the BLDC is
implemented (see Figure 19). The q-vector-current iq is proportional to the torque. The
motor was embedded into an existing test bench with load and torque measurement.

Starting from zero, the operating points were measured and continuously increased
up to 2000 rpm and 35 Watt and the value iq was evaluated in the motor control unit. The
top graph of Figure 20a shows the linear proportionality between torque and iq. The middle
graph Figure 20b shows the relation between power, iq and measured speed, while the
efficiency over speed and iq is illustrated in the bottom diagram Figure 20c. Those values
were implemented as look-up tables into the automatic post-processed evaluation script
and allow a power and torque determination by measuring iq and the motor speed. So, for
further motor measurements to test the functionality of the pump, neither the applied test
bench nor other additional sensors to estimate operation points of electric power, speed
and torque is required.

2.3.2. Test Rig

The electro-hydraulic scheme is illustrated in Figure 21. The ECU controls the pump
speed, and the 2-2-way seat type valve allows digital pressure control (DPC will be ex-
plained in the following lines). The climatic chamber heats or cools the test rig to gain
insights of required torques for certain speeds, temperatures and loading pressures.



Actuators 2021, 10, 198 18 of 28

Actuators 2021, 10, x FOR PEER REVIEW 18 of 29 
 

 

not found.c. Those values were implemented as look-up tables into the automatic post-
processed evaluation script and allow a power and torque determination by measuring iq 
and the motor speed. So, for further motor measurements to test the functionality of the 
pump, neither the applied test bench nor other additional sensors to estimate operation 
points of electric power, speed and torque is required.  

 
Figure 19. Scheme of the speed and field-oriented BLDC motor control. 

 

(a) 

 

(b) 

(c) 

Figure 20. BLDC motor performance determination: (a) effects of motor speed and q-current variation on motor torque; (b) 
power consumption of the BLDC-motor at certain speeds and loads; (c) calculated efficiency graph of the BLDC-motor. 

  

Figure 19. Scheme of the speed and field-oriented BLDC motor control.

Actuators 2021, 10, x FOR PEER REVIEW 18 of 29 
 

 

not found.c. Those values were implemented as look-up tables into the automatic post-
processed evaluation script and allow a power and torque determination by measuring iq 
and the motor speed. So, for further motor measurements to test the functionality of the 
pump, neither the applied test bench nor other additional sensors to estimate operation 
points of electric power, speed and torque is required.  

 
Figure 19. Scheme of the speed and field-oriented BLDC motor control. 

 

(a) 

 

(b) 

(c) 

Figure 20. BLDC motor performance determination: (a) effects of motor speed and q-current variation on motor torque; (b) 
power consumption of the BLDC-motor at certain speeds and loads; (c) calculated efficiency graph of the BLDC-motor. 
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variation on motor torque; (b) power consumption of the BLDC-motor at certain speeds and loads;
(c) calculated efficiency graph of the BLDC-motor.

To control a loading pressure on the high-pressure line of the pump, the digital
pressure control [30–32] has some benefits in comparison to an ordinary control with a
proportional valve. The applied normally closed 2-2-way seat type valve can close the
pump outlet without fluid flow (leakage) in order to test the pump in the worst-case
operation situation. To keep the pressure at a certain value, the valve will be excited with
a duty cycle signal according to pulse width modulation (see Figure 22). A higher duty
cycle reduces the mean resistance of the orifice at a certain flow rate; hence, the loading
pressure sinks, and vice versa. In combination with an ordinary PI-controller with flow
rate depending feed forward, this leads to a smooth pressure loading setting [33].
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2.3.3. Definition of the Test Cycle

For the performance tests, an automation script [34] was written to carry out the
measuring procedure [35]. The objective was to estimate the pump behaviour within
ambient test conditions. The climate chamber temperature range was chosen between
0 ◦C and up to 40 ◦C. The loading pressure was set between 0 MPa and 0.5 MPa, and the
motor speed ramped up to 1500 rpm. Figure 23 shows a test cycle at 20 ◦C. The results are
post-processed to estimate the displacement and its long-term behaviour as well as the
required torque to maintain the pump’s displacement at various conditions.
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3. Results and Discussion
3.1. Material Selection of Wobble Plate’s Soft Layer

The first criterial to be characterized was the loss modulus E” and its temperature as
well as frequency dependencies. In Figure 24 the E” (T, f) characteristics of the three candi-
date materials (TPU, NBR and LSR) are presented. LSR fits the best to the requirements of
low E” within the temperature range of 0 ◦C and 60 ◦C. Also the sensitivity to temperature
and loading frequency changes is lower compared to the other materials. Another material
property requirement for the soft layer of the wobble plate is to be flexible and reveal low,
resilient modulus. Figure 25a shows the Mooney-Plot of the candidate materials. The
lowest values are measured for LSR and NBR. Taking into account the E” (T, f) character-
istics, the material of choice is LSR with Shore A hardness of 70. Furthermore, the rate
dependency of the LSR’s hyperelastic material behavior is low confirming the DMA data
of Figure 24. The loading rate dependent equi-biaxial characteristics of LSR are analyzed in
the Mooney-Plot of Figure 25b. Only a small parallel shifting is observable and, therefore,
this formulation is perfectly suitable for the designated application. From these Mooney-
Plots the hyperelastic material parameter for the well-known Mooney–Rivlin constitutive
model can be easily derived by linear fitting of the reduced stresses and inverted stretches
(of higher order for equi-biaxial data). These material parameters are needed for the FE
analyses of the soft layer by calculating the contact pressure as well as the resulting stresses
(strains) under loading. With these results the design of the soft layer’s geometry can be
optimized iteratively.

3.2. Bonding between the Wobble Plate’s Soft and Rigid Layers

As Figure 26a,b reveal, the cataplasm test has shown that the bonding with cyanoacry-
late could not resist those extreme conditions. All 3 specimens fall apart during unpacking
even without additional mechanical forces. It can be said that cyanoacrylate respective
adhesive bonding is no opportunity for this application. Therefore, an injection moulded
and vulcanized connection between soft layer with the wobble plate (even with form
closure) as mentioned in Section 2.1.4 and shown in Figure 17 should be considered for
the prototype.
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(TPU, NBR and LSR); (b) equi-biaxial loading of the selected material liquid silicone rubber (LSR) with a hardness of
Shore A 70.

3.3. Determination of the Static Displacement

After assembling the first measurement was the displacement of the pump at room
temperature and atmospheric conditions. Tubes (inner diameter ‘d’ = 4 mm) were con-
nected to the in- and outlet ports of the pump. The system was filled with distilled water
and the pump was slowly turned manually n times, which is easily performed since the
primary BLDC-drive consists of an external rotor. To produce an accurately measurable
amount of pumped water, the pump was turned n times, cumulating n times the pump
displacement of several µL.
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son of the 3 specimens.

The position difference ∆l between start and end of motion was measured to calculate
quasi-static displacement as followed:

V0 =
∆l·d2·π

4·n , (24)

For better correlation of the calculated and the measured fluid displacement, the
geometric deviation from the ideal CAD shape is crucial. Figure 27 shows the sealing lip
deviation of the CAD contour in comparison to the manufactured component measured
with a 3D surface scanner (Keyence 3D Profilometer VR-5000). A deviation in displacement
within ±25% is predictable and acceptable. The designed volume was calculated to be
about 40 µL. The actual displacement for a quasistatic turn of the pump was measured to
34 µL. In this case, the actual maximum deviation is about 20%. In order to reach the same
flow rate as desired, the motor speed must be increased properly.
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Figure 27. Investigation of the manufactured sealing lip; contour comparison of CAD (edge of the
pink area) and manufactured rubber (bold black line) measured via white light scanning.

3.4. Pump Testing

Besides the controlled parameters and filtered measured values (motor speed, feed
pressure and flow rate), the results consist of the post-processed, calculated values, such
as drive torque and power generated from the filtered measurements. Figure 28 shows
the whole test cycle results for a certain climatic chamber temperature (20 ◦C). Figure 28a
contains the target as well as measured speed and load pressures. In Figure 28b the most im-
portant results were illustrated, namely torque and flow rate. The third graph (Figure 28c)
shows the evaluated powers. As expected, higher pressures lead to higher necessary drive
torques and the flow rate is nearly proportional to the motor speed Figure 29 shows the
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same procedure as Figure 28 but for two different climatic chamber conditions 0 ◦C (a–c)
and 40 ◦C (d–f).
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Figure 30a shows the measured drive torque characteristic and its temperature as well
as motor speed dependency. Here, we can observe that the highest torque is necessary
at the coldest temperature, the highest pressure, and the highest motor speed. Losses
due to the rubber’s entropy elasticity lead to an inner (adiabatic) heating reducing the
storage modulus and, thus, the overall loss factor. These losses are not implemented in
the theoretical consideration. At elevated temperatures, in this case 40 ◦C, the required
torques reveal low frequency, respectively motor speed, dependency. Figure 30b illustrates
the theoretically estimated drive torques for the pump, which can be directly compared
to the measured results in Figure 30a. At low motor speeds, the torque estimation is
sufficiently accurate, however the absolute value of the torque at low temperatures and
high frequencies is rising but significantly lower as estimated. The maximum measured
torque of 50 mNm in Figure 29b (at 0 ◦C and 1500 rpm) exceeds the calculated result
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of approximately 40 mNm by 25%. The post-processed results exhibit the maximum
at 45 mNm, which were evaluated by averaging the results for both speed ramps (up
and down) at same conditions, hence, the inner (adiabatic) heating reduces the mean
torque. The edge operation point (maximum motor speed and lowest temperature) is the
critical state to dimension for the primary drive. So, the predicted (calculated) values at
elevated temperatures are not crucial for the operation in terms of torque requirement. The
observed difference of 25% between the prediction and the measurement is within the
deviations of the experimental determination of the material data (storage as well as loss
moduli). Deviations in the pump’s testing and evaluations are superimposed to those of
the material characterizations.
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The pump testing and evaluation procedure revealed that the algebraic equations
based on empirical material data and geometric parameters are sufficiently reliable to
predict the drive torque in the crucial operation points of the pump. The standard deviation
of 25% of the pump’s displacement is observed in the worst-case operation point and is
within the scatter of the conducted experiments and includes the error propagation (noise,
environmental as well as signal fluctuations, among others). Therefore, a conservative
safety factor of 50% is suggested for the prediction of the target torque and, hence, the
selection of the peristaltic pump’s primary drive.

The displacement evaluations depending on operation temperature, motor speed
(frequency), and loading pressure was calculated as:

V( f , T, p) =
Qmeasure

n_measure
, (25)

The comparison of the model-based prediction of the pump’s displacement to the
measured displacement shows (see Figure 31) that a similar decline of the displacement
with increasing motor speed is observed at both loading pressures (0 MPa and 0.5 MPa).
However, the measured displacement characteristics have a steeper decline. At 1500 rpm
the pump’s displacement decreases about 10%; the calculated drop by the proposed
model is only 2%. The reason for such a deviation in displacement from estimation to
measurement is due to the insufficiency of the abstracted model. A parallel plate movement
was considered in the model as a simplification, however the (wobbling) plate is rather
tilted than parallel. Further dynamic effects such as damping of the rubber, inertia of the
wobble plate and inflation of the enclosed fluid volume were not considered and may
have more influence on the pump’s displacement than assumed. Furthermore, the stiffness
of the wobbling plate was set to be linear in contrast to the more complex hyper-elastic
rubber behaviour, which was used for the 2D-axissymmetric FE-simulation. Finding the
exact displacement was not the aim of this investigation, rather it was to gain insights into
its characteristics and, more importantly, ensure steady-state displacement at a specific
operation point. So, leakage is prevented meaning that there is no backflow from the high
to low pressure side.
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4. Conclusions and Outlook

The peristaltic pump’s primary drive torque has a functional relation to boundary
conditions, geometry as well as material parameters. This simple model can sufficiently
predict the needed torque for new proportional scaled designs by using geometry param-
eters, safety factor and rubber material data. Therefore, the whole pump including the
drive can be designed, manufactured, and verified at once. Our proposed model and
design methodology are an alternative to complex and long-lasting costly dynamic 3D
FE-simulations. Figure 32 shows a graph to illustrate the designing process.
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Figure 32. V-model of the evaluated design methodology.

With the determined specific values of temperature, frequency and loading depen-
dent drive torque, the applicability of the proposed methodology to design a sufficiently
algebraic (quasistatic) physical model for the torque which depends on the rubber ma-
terial’s behaviour (empirical data) as well as boundary and operating conditions can be
verified. Determination of the empirical data must be performed with precaution as the
rubber behaviour is inherently hyper- and viscoelastic. A high sensitivity to environmental
(temperature and humidity) changes can lead to significant alterations of the dynamic
thermomechanical properties. Additionally, stress/strain softening effects and hysteretic
(adiabatic) heating must be characterized for reliable operation of the peristaltic micro-
dosing pump. Therefore, it is of particular importance to formulate (tailor) the rubber’s
material behaviour to exhibit low loss properties (E” and tan(δ)) along with high durability
(mechanical as well as thermal induced aging).

The peristaltic pump’s displacement has pronounced nonlinear motor speed (fre-
quency) and temperature dependencies mainly caused the interaction of the well-known
rubber and the dynamic fluid gap (respective fluid cushioning). To get valuable predicted
flow rate results, further investigations of the fluid gap model and the interaction with
the rubber are necessary. Also, slight changes in the concept design can reduce those
deviations. Scheidl et al. [36] addressed this cushioning groove problem and presents a
solution by reducing the section of contact to a minimum.

After finding an appropriate pump design and estimating the required torque, the
primary drive can be optimized.
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