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Abstract: Time delays arise in various components of control systems, including actuators, sensors,
control algorithms, and communication links. If not properly taken into consideration, time delays
will degrade the closed-loop performance and may even result in instability. This paper studies the
stabilization problem of the second-order delay plants with two unstable real poles. Stabilization
conditions under PD and PID control are derived using the Nyquist stability criterion. Algorithms for
computing feasible PD and PID parameter regions are proposed. In some special cases, the maximal
range of delay for stabilization under PD control is also given.
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1. Introduction

Time delay is an inevitable phenomenon in industrial processes and natural systems
due to the transmission of information and energy [1]. Delays arise either in delayed
feedback control, such as in networked control systems, or naturally as a part of the dy-
namics within the physical process to be controlled, such as flow-temperature-composition
control [1]. Even though most processes are open-loop stable, there still exist many unstable
plants in chemical and biological processes, which are often more difficult to control than
stable plants [2]. Often, time delay degrades the closed-loop performance of a system and
leads to complications in the analysis and synthesis of the control system.

For linear time-invariant (LTI) systems with a single time delay, several methods to
determine the stability by substituting the Rekasius substitution, also known as bilinear
transformation, have been proposed for delay terms, by which the infinite-dimensional
characteristic equation will reduce to a polynomial equation with a pseudo delay [3]. In [4],
Walton and Marshall found that the introduction of a pseudo delay is unnecessary. In [5],
a stability criterion was obtained via the argument principle, or via the Mikhaylov stability
criterion, for retarded time delay systems. Applying the argument principle to the feedback
control system with the knowledge of open-loop frequency response results in the popular
Nyquist stability criterion. Meanwhile, for cases with two delays, the Cluster Treatment of
Characteristic Roots (CTCR) method [6] and geometry-based methods [7,8] were proposed
to obtain a complete stability map characterizing the boundary of the stable region. Note
that the CTCR method and geometry-based methods share some similarities with the
D-decomposition approach [9].

For the stabilization of time delay systems, the well-known Ziegler–Nichols step
response method provided rules for tuning controller parameters based on the features of
the step response of an open-loop stable plant. Reference [10] proposed a Ziegler–Nichols-
type controller for a first-order unstable plant with a time delay. Vanavil et al. provided a
direct synthesis method for a general unstable second-order plant by means of substituting
Padé approximation [11]. In [12], Tan et al. proposed an IMC-based method for both

Actuators 2021, 10, 227. https://doi.org/10.3390/act10090227 https://www.mdpi.com/journal/actuators

https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0002-0961-1778
https://doi.org/10.3390/act10090227
https://doi.org/10.3390/act10090227
https://doi.org/10.3390/act10090227
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/act10090227
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act10090227?type=check_update&version=2


Actuators 2021, 10, 227 2 of 17

first-order and second-order unstable plants. Furthermore, for second-order delay plants
with two unstable poles, stabilization was achieved based on approximation methods
in [12,13]. Additionally, the pole placement method is widely used to obtain the desired
closed-loop performance [14–19].

The computation for the feasible parameter region of PID control was investigated
by Silva et al. for general first-order plants based on the Hermite–Biehler theorem [20].
Inspired by [20], Yu et al. considered the consensus of the multi-agent system with a first-
order dynamic model and input delay [21]. Based on an extension of the Hermite–Biehler
theorem, a new simple algorithm for determining the feasible parameter region has been
proposed [22]. The algorithm is not only applicable to both stable and unstable systems,
but can also be utilized for systems with real or complex poles. Hwang applied the D-
decomposition approach to stabilize unstable first-order delay plants under PID control
and constructed the complete set of stabilizing PID controller parameters [23]. In [24],
Zalluhoglu et al. utilized the CTCR method and obtained the stable region in the space of
the control parameter. Based on the Nyquist stability criterion, Lee et al. investigated the
stabilization of a class of unstable all-pole delay plants of arbitrary order with a unstable
pole and provided the maximum allowable time delay [25]. In addition, the procedures to
determine the feasible PID control parameter region of a class of unstable all-pole delay
plants is also given.

Robustness issues concerning uncertain delay systems have also been heavily studied.
In these studies, the delay margin (DM) problem has attracted considerable interest. Mid-
dleton and Miller studied the delay margin of unstable plants achievable by LTI controllers
and gave several explicit upper bounds on the achievable delay margin [26]. In [27–29],
Ma et al. analyzed the delay margin achievable by PID controllers and proposed a compu-
tational approach. A graphical method to tune a PI/PID controller for time delay systems
was presented using dominant pole placement with a specified gain margin (GM) and
phase margin (PM) [30]. Extensions of problems on the robust consensus of second-order
multi-agent systems were also studied; see, e.g., [31].

Due to the approximate substitution for the delay term, the method proposed in [11–13]
is inadequately accurate. In contrast, the accurate approaches proposed in [20–24] are math-
ematically involved and do not provide an explicit characterization of the boundary of the
feasible PID parameter region. Different from the previous works, we adopt the Nyquist
curve analysis approach to achieve the feasible PID control parameter region, which pro-
vides an exact and explicit region and needs no complicated derivation. We focus on the
stabilization of second-order delay plants with two unstable real poles under PD and PID
control. A necessary and sufficient condition on the stabilization of the system under PD
control is proposed. Furthermore, the corresponding algorithm to achieve the feasible PD
control parameter region for the fixed delay is given. The Nyquist curve analysis approach
can be also extended to the PID control scenario. Finally, two simulation results show the
effectiveness of our theoretical results. Additionally, the simulation result also indicates
that the role of integral control is negative to improve the feasible PID control parameter
region for time delay systems.

The rest of this paper is organized as follows. In Section 2, preliminaries on stability
analysis are presented and the problem formulation is given. In Section 3, the stabiliz-
ability of a second-order delay plant with two unstable real poles under PD control is
investigated. A necessary and sufficient condition on the stabilization is given based on
the Nyquist stability criterion. In Section 4, the stabilizability of second-order delay plants
with two unstable real poles under PID control is also studied. Furthermore, algorithms
for computing the feasible PD/PID control parameter region are presented. Examples
are provided to illustrate the validity of the proposed algorithms in Section 5. Section 6
concludes this paper.
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2. Preliminaries and Problem Formulation

Consider a single-loop feedback control system shown in Figure 1, whose closed-loop
transfer function is given by

Y(s)
R(s)

=
C(s)P(s)

1 + C(s)P(s)
, (1)

where C(s) is the LTI controller, P(s) is the controlled plant, R(s) is the reference signal
and Y(s) is the output signal.

Figure 1. Unity feedback system.

Denote the characteristic equation of the system (Equation (1)) by

F(s) = 1 + C(s)P(s) = 0 , (2)

and the open-loop transfer function by

Q(s) = C(s)P(s) . (3)

It is well-known that the closed-loop system (Equation (1)) is stable if and only if
all roots of the characteristic equation F(s) = 0 lie in the open left-half s-plane. It is also
well-known that the closed-loop stability can be ascertained by analyzing the open-loop
transfer function Q(s) using the graphical Nyquist stability criterion. A simplified Nyquist
stability criterion is given below.

Lemma 1 ([32]). For the system shown in Figure 1, if the open-loop transfer function Q(s) = C(s)P(s)
has N poles in the closed right-half s-plane and then for stability, the Q(jω) locus, as ω varies from
−∞ to +∞ and encircles the origin clockwise, must encircle the critical point, −1 + j0, N times in the
counterclockwise direction.

Lemma 2 ([33]). Given the open-loop transfer function Q(s) = C(s)P(s),

lim
ω→∞

|Q(jω)| < 1 (4)

is a necessary condition for the closed-loop stability of the system shown in Figure 1.

The Nyquist stability criterion can be extended to study LTI delay systems satisfying
Equation (4). Consider a second-order plant with time delay, whose transfer function is
given by

P(s) =
1

s2 + as + b
e−τs, (5)

where τ is a constant time delay and a, b are constant coefficients. The plant (Equation (5))
has two unstable poles if a ≤ 0 and b ≥ 0. Specially, for the plant (Equation (5)) with two
unstable real poles, there exist the following three cases:

• For a = 0 and b = 0, the plant (Equation (5)) is unstable with two poles at the origin;
• For a < 0 and b = 0, the plant (Equation (5)) is unstable with one pole at the origin

and another on the positive real axis;
• For a < 0 and 0 < b ≤ a2

4 , the plant (Equation (5)) is unstable with two poles on the
positive real axis.
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Under these circumstances, the plant (Equation (5)) becomes

P(s) =
1

(s− p1)(s− p2)
e−τs , p1, p2 ≥ 0 (6)

where p1, p2 are the two real poles. Furthermore, the constant coefficients a , b of
Equation (5) can be rewritten as a = −p1 − p2 and b = p1 p2.

In this paper, the low-order LTI controller considered is the PID controller

Cpid(s) = kp +
ki
s
+ kds , (7)

where kp, ki, kd represent proportional, integral and differential gains, respectively. The
special cases of Equation (7), P, PI and PD controllers are given by

Cp(s) = kp , (8)

Cpi(s) = kp +
ki
s

, (9)

Cpd(s) = kp + kds . (10)

Combining Equations (5) and (7), we have the open-loop frequency response

Qpid(jω) =
kp +

ki
jω + jkdω

b−ω2 + jaω
e−jτω . (11)

It is clear that
lim

ω→∞
|Qpid(jω)| < 1 .

The magnitude and phase of Qpid(jω) are denoted by

Lpid(ω) = kp

√√√√√ 1 +
(

kd
kp

ω− ki
kpω

)2

(b−ω2)
2 + (a2ω2)

, (12)

and

Φpid(ω) = −τω + arctan
(

kd
kp

ω− ki
kpω

)
+ φ1(ω) , (13)

where

φ1(ω) =


arctan −aω

b−ω2 , ω <
√

b ,
π
2 , ω =

√
b ,

arctan −aω
b−ω2 + π , ω >

√
b .

(14)

Remark 1. The phase φ1(ω) is continuous at ω =
√

b. As stated above, a = −p1 − p2 ≤ 0,
b = p1 p2 ≥ 0. For φ1(ω) at ω =

√
b− 0+, it follows that b−ω2 > 0 and then φ1(ω) = π

2 − 0+.
For ω =

√
b + 0+, it follows that b− ω2 < 0 and then φ1(ω) = π

2 + 0+. As such, the phase
φ1(ω) is continuous for any ω ∈ (0 ,+∞). As ω varies from 0 to +∞, φ1(ω) varies from 0 to π
monotonically. The conclusion can be also drawn since φ1(ω) is rewritten as

φ1(ω) = arctan
ω

p1
+ arctan

ω

p2
.

We assume that the PID gains kp , ki , kd are positive throughout this paper. As such, the
open-loop Nyquist curve must encircle the critical point −1 + j0 two times anticlockwise.
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In the syntheses of time delay systems, the general Nyquist stability criterion can only
be used to test the stability of systems with fixed parameters. To obtain the feasible control
parameter region for plants with fixed model parameters, some more specific conditions
may be useful.

3. Stabilization of Delay Plants with Two Real Poles under PD Control

In this section, we focus on the stabilization of second-order delay plants with two real
unstable poles under PD control. First, we discuss the stabilization problem by analyzing
the open-loop frequency response of Equation (6) under PD control and propose a necessary
and sufficient condition on stabilization for fixed PD control parameters. Next, the maximal
delay values of two special cases are obtained by applying the necessary and sufficient
condition. Finally, for given parameters p1 , p2 and τ, an algorithm for the computation of
the stabilizing PD control parameter region is proposed.

The plant (Equation (5)) with a < 0 and 0 < b ≤ a2

4 is equivalent to the plant
(Equation (6)) with p1 > 0 and p2 > 0.

It is obvious that the plant (Equation (6)) with two unstable real poles cannot be
stabilized by P and PI control in light of the Nyquist stability criterion. Hence, let us
consider PD control. Under the PD controller (Equation (10)), the magnitude and phase of
the open-loop frequency response can be rewritten as

Lpd(ω) =

√√√√ k2
p + k2

dω2(
p2

1 + ω2
)(

p2
2 + ω2

) , (15)

and
Φpd(ω) = −τω + arctan

kd
kp

ω + arctan
ω

p1
+ arctan

ω

p2
. (16)

3.1. A Necessary and Sufficient Condition for Stabilization by Fixed PD Parameters

The following theorem provides a necessary and sufficient condition for the stabiliza-
tion of the plant (Equation (6)) with p1 > 0, p2 > 0 by PD control.

Theorem 1. Let the plant be given by Equation (6). Then, the PD controller (Equation (10)) can
stabilize the plant if and only if

max{Φpd(ω)} > π, (17)

ωs < ωc2, (18)

and
Lpd(ωc1) > 1 > Lpd(ωc2) (19)

hold, where ωc1, ωc2 are the frequencies satisfying Φpd(ω) = π, ωs is the extreme point of Lpd(ω)
over ω ∈ [0,+∞) denoted by

ω2
s =


0 , for k2

p
(

p2
1 + p2

2
)
− k2

d p2
1 p2

2 ≥ 0,
−k2

p+
√

k4
p−k2

d[k
2
p(p2

1+p2
2)−k2

d p2
1 p2

2]
k2

d
, for k2

p
(

p2
1 + p2

2
)
− k2

d p2
1 p2

2 < 0.
(20)

Proof. Necessity. It is clear that
d2Φpd(ω)

dω2 < 0. By taking the derivative of Equation (16)
with respect to ω, we have

dΦpd

dω

∣∣∣∣
ω=0

= −τ +
kd
kp

+
1
p2

+
1
p2

. (21)
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If −τ + 1
p1

+ 1
p2
≤ 0, then Φpd(ω) decreases monotonically as ω varies from 0 to

+∞. It follows that the corresponding Nyquist curve encircles the origin clockwise, which
violates the stabilization.

If−τ + 1
p1
+ 1

p2
> 0, then Φpd(ω) increases monotonically as ω varies from 0 to ω1 and

decreases monotonically as ω varies from ω1 to +∞. To ensure the two-times anticlockwise
encirclements, it is necessary that max{Φpd(ω)} > π or equivalently Φpd(ω1) > π. ω1 is
the extreme point of Φpd(ω).

As for the magnitude Lpd(ω), there exist infinite intersections between the Nyquist
curve and the negative real axis, whose frequencies satisfy

0 < ωc1 < ωc2 < · · · < ωcq < · · · , (22)

with

Φpd(ωci)

{
= π , for i = 1, 2,
< 0 , for i ≥ 3.

(23)

To ensure the stability, it is necessary that the magnitude Lpd(ω) satisfies

Lpd(ωci)

{
> 1 , for i = 1,
< 1 , for i ≥ 2.

(24)

Figure 2 shows the tendency of the frequency response explicitly.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5

2

=0
c1

c2

Figure 2. Nyquist curve with ω > 0 for stabilization of the plant (Equation (6)).

Next, by taking the derivative of L2
pd(ω) along ω, it is easy to obtain

dL2
pd(ω)

dω
=
−2ω

∆2

[
k2

dω4 + 2k2
pω2 + k2

p

(
p2

1 + p2
2

)
− k2

d p2
1 p2

2

]
, (25)

where ∆ =
(

p2
1 + ω2)(p2

2 + ω2). It is easy to find that if k2
p
(

p2
1 + p2

2
)
− k2

d p2
1 p2

2 > 0, then the
magnitude Lpd(ω) decreases monotonically as ω varies from 0 to +∞; otherwise, Lpd(ω)
increases monotonically as ω varies from 0 to ωs and then decreases as ω varies from ωs
to +∞. Note that ωs is the extreme point of Lpd(ω) over ω ∈ [0,+∞), and its explicit
expression is given by Equation (20).

If ωs ≥ ωc2, then Lpd(ωc1) < Lpd(ωc2), which never generates two-times anticlockwise

encirclements. If both ωs < ωc2 and
Lpd(ωc1)

kp
>

Lpd(ωc2)

kp
hold, we only need to choose kp

appropriately to satisfy Equation (19). In addition,
Lpd(ωc1)

kp
>

Lpd(ωc2)

kp
implies that ωs < ωc2.

Sufficiency. According to the above analysis on the monotonicity of magnitude and
phase, if Equations (17)–(19) hold, then the corresponding Nyquist curve is shown in
Figure 2. This ensures the stabilization of the plant (Equation (6)) with p1 > 0, p2 > 0
under PD control, which completes the proof.
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In the above analysis, only the case that plant (Equation (6)) with p1 > 0 and p2 > 0
is taken into consideration. In what follows, the plant (Equation (6)) with p1 = 0 or/and
p2 = 0 will be analyzed for the completeness of the proof.

Specifically, if a < 0 and b = 0, i.e., when one pole approaches the origin, we have

P(s) =
1

s(s− p1)
e−τs , p1 > 0 . (26)

In this case, the magnitude and phase of the open-loop frequency response become

Lpd(ω) =

√√√√ k2
d +

k2
p

ω2

ω2 + p2
1

, (27)

and
Φpd(ω) = −τω + arctan

kdω

kp
+ arctan

ω

p1
+

π

2
. (28)

It is clear that Lpd(ω) decreases monotonically as ω varies from 0+ to +∞. When it

comes to the phase, if −τ + kd
kp

+ 1
p1
≤ 0, then Φpd(ω) decreases monotonically over ω > 0,

which violates the stability condition. To ensure the stability of the closed-loop system
(Equation (1)), the ideal Nyquist curve is given by Figure 3, where ωc1 and ωc2 are the two
frequencies satisfying Φpd(ω) = π. In other words, Theorem 1 can be applied to the plant
(Equation (26)).

Figure 3. Nyquist curve with ω > 0 for stabilization of the plant (Equation (26)).

Furthermore, the upper bound of time delay τ for the stabilization of the plant
(Equation (26)) under PD control is given by the corollary below.

Corollary 1. Let the plant be given by Equation (26). There exists a PD controller (Equation (10))
to stabilize the plant if and only if

τ <
1
p1

. (29)

Proof. It is clear that Lpd(ω) decreases monotonically as ω varies from 0+ to +∞. It follows
that ωs = 0. If max{Φpd(ω)} > π, there must exist some kp such that Lpd(ωc1) > 1 >
Lpd(ωc2). There exists a PD controller (Equation (10)) to stabilize the plant (Equation (26))
if and only if max{Φpd(ω)} > π. Suppose that the extreme point of Φpd(ω) is ω1. For
Equation (28), max{Φpd(ω)} > π can be transformed into

− τω1 + arctan
kdω1

kp
+ arctan

ω1

p1
>

π

2
. (30)
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In Equation (30), arctan kdω1
kp

< π
2 , it follows that −τω1 + arctan ω1

p1
> 0. Furthermore,

−τω1 +
ω1
p1

> −τω1 + arctan ω1
p1

> 0. It is clear that if max{Φpd(ω)} > π holds, τ should

be less than 1
p1

. In Equation (28), if τ < 1
p1

, there must exist a sufficiently large kd
kp

such that

max{Φpd(ω)} > π. It follows that max{Φpd(ω)} > π holds if and only if τ < 1
p1

.
In other words, there exists a PD controller (Equation (10)) to stabilize the plant

(Equation (26)) if and only if τ < 1
p1

.

More specifically, if a = 0 and b = 0, which corresponds to the plant with two poles
located at the origin, i.e.,

P(s) =
1
s2 e−τs . (31)

Then, under the PD controller (Equation (10)), the magnitude and phase of the open-
loop frequency response become

Lpd(ω) =

√√√√ k2
d +

k2
p

ω2

ω2 (32)

and
Φpd(ω) = −τω + arctan

kdω

kp
+ π . (33)

It is clear that Lpd(ω) decreases monotonically as ω varies from 0+ to +∞. When

it comes to the phase, if −τ + kd
kp
≤ 0, then Φpd(ω) decreases monotonically without

anticlockwise intersection of the Nyquist curve and negative real axis, which violates the
stability. To ensure the stability of the closed-loop system (Equation (1)), the Nyquist curve
is shown in Figure 4.

Figure 4. Nyquist curve with ω > 0 for stabilization of the plant (Equation (31)).

Corollary 2. Let P(s) be given by Equation (31). There exists a PD controller (Equation (10)) to
stabilize the plant (Equation (31)) for an infinite time delay τ .

Proof. It is clear that Lpd(ω) decreases monotonically as ω varies from 0+ to +∞. It follows
that ωs = 0. If max{Φpd(ω)} > π, there must exist some kp such that Lpd(ωc1) > 1 >
Lpd(ωc2). There exists a PD controller (Equation (10)) to stabilize the plant (Equation (31))
if and only if max{Φpd(ω)} > π. Suppose that the extreme point of Φpd(ω) is ω1. For
Equation (33), max{Φpd(ω)} > π can be transformed into

− τω1 + arctan
kdω1

kp
> 0 . (34)
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In Equation (34), there must exist a sufficiently large kd
kp

> τ such that max{Φpd(ω)} > π.
In other words, there exists a PD controller (Equation (10)) to stabilize the plant (Equation (31))
with an infinite time delay τ .

It is worth noting that, inspired by [27], for fixed τ, p1 and p2, we can also obtain the
feasible PD control parameter region in view of the following inequality:

− τωc + arctan
kdωc

kp
+ arctan

ωc

p1
+ arctan

ωc

p2
> π , (35)

where ωc is the ultimate frequency. The following section will describe how to achieve the
region through an algorithm.

3.2. An Algorithm for Feasible Parameter Region of PD Control

Based on the Nyquist stability criterion, Theorem 1 gives the stabilization condition
for fixed kp and kd. Furthermore, we have some observations: (i) if we increase kd

kp
to

keep the necessary condition (Equation (17)), the extreme point ωs of Lpd(ω) may increase,
then Lpd(ωc1) < Lpd(ωc1). This will never stabilize the system. (ii) The proportional
gain kp only affects the magnitude Lpd(ω). Therefore, to stabilize the plant (Equation (6))

by PD control, we only need to choose kd
kp

appropriately to satisfy the phase condition
(Equation (17)) and the magnitude condition

Lpd(ωc1)

kp
>

Lpd(ωci)

kp
, i ≥ 2. (36)

If such kd
kp

does not exist, it follows that the plant (Equation (6)) cannot be stabilized
by PD control. Otherwise, we choose kp appropriately to satisfy the magnitude condition
(Equation (24)). Finally, the stabilizing PD controller can be designed accordingly.

Algorithm 1 for computing the PD parameter region of the plant (Equation (6)) is
shown as follows:

Algorithm 1 The algorithm for the feasible PID parameter region of the plant (6).

Step 1: Compute the maximal value of −τω + arctan ω
p1

+ arctan ω
p2

. If the maximum is
less than π

2 , then the plant cannot be stabilized due to the overlarge τ.

Step 2: For fixed τ, determine the lower bound and upper bound of the range kd
kp
∈
[
d, d

]
.

d is initialized by a sufficiently large positive value. d is the smallest kd
kp
∈
[
0, d

]
, which

satisfies max{Φpd(ω)} > π.

Step 3: Select a kd
kp

in the range
[
d, d

]
and solve ωc1, ωc1 from Φpd(ω) = π.

Step 4: Compute the lower bound and upper bound of kp by kp = 1
Lpd(ωc1)/kp

, kp =

1
Lpd(ωc2)/kp

.

Step 5: By sweeping over kd
kp

in the range
[
d, d

]
, repeat Steps 3–4 to obtain the complete

feasible parameter region of PD controllers.

Remark 2. For the plants (Equations (26) and (31)), Algorithm 1 is not necessary.
For Equation (26), it is easy to determine its stabilizability under PD control by comparing τ
and 1

p1
. For Equation (31), it is unnecessary to verify its stabilizability under PD control according

to Corollary 2. In addition, the frequency of the first intersection between the Nyquist curve and
negative real axis, ωc1, is an infinitesimal positive value. It is obvious that the magnitude of the
first intersection is +∞, which implies that Lpd(ωc1) > 1.
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4. Stabilization of Delay Plants with Two Unstable Real Poles under PID Control
4.1. A Sufficient Condition for Stabilization by Fixed PID Parameters

In what follows, we consider the stabilization of the plant (Equation (6)) under the
PID controller (Equation (7)). The corresponding magnitude and phase of the open-loop
frequency response can be rewritten as

Lpid(ω) =

√√√√ k2
p + (kdω− ki

ω )2(
p2

1 + ω2
)(

p2
2 + ω2

) , (37)

and
Φpid(ω) = −τω + arctan

ω

p1
+ arctan

ω

p2
+ φ2(ω), (38)

where

φ2(ω) = arctan
(

kd
kp

ω− ki
kpω

)
. (39)

The equivalence between Equations (12), (13), (37) and (38) can be ascertained by
substituting a = −p1 − p2 ≤ 0, b = p1 p2 ≥ 0.

In the PD case, the magnitude and phase have distinct monotonicity over all non-
negative frequency, and a necessary and sufficient condition has been proposed in
Theorem 1. Furthermore, we are interested in the role that integral control plays in the
stabilization of delay plants. By taking the derivative of Equations (37) and (38) along
ω, it is difficult to find the monotonicity of Equations (37) and (38) analytically. Hence,
a sufficient condition on the stabilization of the plant (Equation (6)) under PID control is
given by Theorem 2.

Theorem 2. Let the plant given by Equation (6). Then, the PID controller (Equation (7)) can
stabilize P(s) if

max{Φpid(ω)} > π, (40)

ωs < ωc2, (41)

and
Lpid(ωc1) > 1 > Lpid(ωc2), (42)

hold, where ωs is the largest extreme point of Lpid(ω), and ωc1, ωc2 are the smallest two frequencies
satisfying Φpid(ω) = π.

Proof. Under PID control, the magnitude and phase of the open-loop frequency response
are Equations (37) and (38).

In Equation (38), −τω and arctan ω
pi

are convex with respect to ω, while φ2(ω) is
concave at low frequency and convex at high frequency. Φpid(ω) increases monotonically
at low frequency and decreases monotonically at high frequency. Similar to the PD case,
max{Φ(ω)} > π is also a necessary condition for closed-loop stability.

There exist infinite intersections between the Nyquist curve and the negative real axis,
whose frequencies are

0 < ωc1 < ωc2 < · · · < ωcq < · · · , (43)

with Φpid(ωc1) = Φpid(ωc2) = π.
By taking the derivative of L2

pid(ω) along ω, it is easy to find that the magnitude de-
creases monotonically at low and high frequencies, while the monotonicity in the medium-
frequency band depends on kd

kp
, p1 and p2. Denote the largest extreme point of Lpid(ω)
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by ωs. It follows that Lpid(ω) decreases to 0 monotonically as ω varies from ωs to +∞.

Furthermore, if ωs < ωc2 and
Lpd(ωc1)

kp
>

Lpd(ωc2)

kp
, it follows that

Lpid(ωci)

{
> 1 , for i = 1,
< 1 , for i ≥ 2,

(44)

under appropriate kp.
According to the above analysis on the monotonicity of magnitude and phase, if

Equations (40)–(42) hold simultaneously, then the Nyquist curve encircles the critical point
−1 + j0 two times anticlockwise, which ensures the stability of the closed-loop system
(Equation (1)). This completes the proof.

It is clear that Equation (40) is a necessary condition for closed-loop stability. As
illustrated in Equation (38), if we increase τ, p1 and p2, the extreme of Φpid(ω) reduces,
which may destroy the necessary condition. It follows that there exists no PID control to
stabilize the plant (Equation (6)) with sufficiently large delay τ and poles p1, p2.

4.2. An Algorithm for Feasible Parameter Region of PID Control

Based on Theorem 2, Algorithm 2 is provided to compute the feasible PID control
parameter region to stabilize the plant (Equation (6)) as follows:

Algorithm 2 The algorithm for the feasible PID parameter region of the plant (6).

Step 1: Compute the maximal value of −τω + arctan ω
p1

+ arctan ω
p2

. If the maximum is
less than π

2 , then the plant cannot be stabilized due to the overlarge τ.
Step 2: Determine the upper bound of the range ki

kp
∈
[
0, i
]
. i is initialized by a sufficiently

large positive value.
Step 3: Select a ki

kp
in the range

[
0, i
]

and determine the lower bound and upper bound

of the range kd
kp
∈
[
d, d

]
. d is initialized by a sufficiently large positive value. d is the

smallest kd
kp
∈
[
0, d

]
, which satisfies max{Φpid(ω)} > π.

Step 4: Select a kd
kp

in the range
[
d, d

]
, and solve ωc1, ωc1 from Φpid(ω) = π and ωs from

dL2
pid(ω)

dω = 0.
Step 5: Compute the lower bound and upper bound of kp by kp = 1

Lpid(ωc1)/kp
, kp =

1
Lpid(ωc2)/kp

.

Step 6: By sweeping over kd
kp

in the range
[
d, d

]
, repeat Steps 4–5 to obtain the complete

feasible parameter region of PID controllers with fixed ki
kp

.

Step 7: By sweeping over ki
kp

in the range
[
0, i
]
, repeat Steps 3–6 to obtain the complete

feasible parameter region of PID controllers.

Remark 3. Algorithm 2 can be divided into two parts. First, the potential feasible range of ki
kp

must

be determined based on Equation (40). The introduction of ki
kp

may not influence the maximum of

Equation (38) with a sufficiently large kd
kp

. In other words, the upper bound of ki
kp

is +∞. However,

a sufficiently large kd
kp

is usually meaningless in practice, which implies that d is a finite positive real

number. It follows that only a finite range of ki
kp

will be considered in the realization of the algorithm.

Second, for each ki
kp

, it is easy to obtain the feasible PD parameter region by Algorithm 2, respectively.
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5. Illustrative Examples

In this section, we present two simulation examples to verify the theoretical results.

Example 1. Consider the stabilization of the plant (Equation (6)) with p1 = 1, p2 = 0.5 and
τ = 0.3 under PD control.

For τ = 0.3, the plant is given by

P(s) =
1

(s− 1)(s− 0.5)
e−0.3s. (45)

Under PD control, it is easy to obtain the tendency of max{Φpd(ω)} with respect to
kd
kp

given by Figure 5a. The result in Figure 5a indicates that the maximal phase is larger

than π for a sufficiently large kd
kp

. It follows that the plant (Equation (45)) may be stabilized
by PD and PID control. Next, following Algorithm 1, the feasible PD parameter region is
obtained to stabilize the plant (Equation (45)), as depicted in Figure 5b.

0 5 10 15 20 25 30 35 40 45 50

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

(a) The max{Φpd} varies with respect to kd
kp

.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

1.5

2

2.5

3

3.5

4

4.5

(b) Feasible PD parameter region of Equation (6) with
p1 = 1, p2 = 0.5 and τ = 0.3.

Figure 5. Stabilization under PD control. The first figure indicates that the maximal phase is larger
than π for a sufficiently large kd

kp
. The second figure show the set of stabilizing PD parameter.

To verify the effectiveness of Algorithm 1, we select kp, kd arbitrarily in the feasible
parameter region in Figure 5b, which are given in Table 1. The corresponding Nyquist
curves are given in Figure 6. Figure 6a,c indicate that the Nyquist curves of points A and C
encircle the critical point −1 + j0 zero times, which does not satisfy the Nyquist stability
condition. On the contrary, the Nyquist curves of points B and D encircle the critical point
−1 + j0 two times anticlockwise, depicted in Figure 6b,d, which ensures the stability of the
closed-loop system (Equation (1)).

Table 1. kp − kd parameters.

A B C D

kp 0.8 0.8 0.8 1.4
kd 1.5 3 4.2 3
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(a) Point A: kp = 0.8, kd = 1.5
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(b) Point B: kp = 0.8, kd = 3
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(c) Point C: kp = 0.8, kd = 4.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-3

-2

-1
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(d) Point D: kp = 1.4, kd = 3

Figure 6. Nyquist curves of the plant (Equation (45)) for different PD parameters.

Next, the ways in which the time delay may affect the feasible PD parameter region
will be discussed. Let us reduce time delay τ to 0.1. Figure 7 shows that the region will be
expanded with respect to the case of τ = 0.3 (Figure 5b).

0 5 10 15 20 25 30 35 40

0

5

10

15

Figure 7. Feasible PD parameter region with p1 = 1, p2 = 0.5 and τ = 0.1.

To determine how unstable poles affect the stabilizing parameter region, the stabi-
lization of the plant (Equation (6)) with p1 = 1, p2 = 2 and τ = 0.1 under PD control is
investigated. Figure 8 indicates that the region will be reduced with respect to the case of
p2 = 0.5 (Figure 7).
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0 5 10 15 20 25 30 35 40

0

5

10

15

Figure 8. Feasible PD parameter region with p1 = 1, p2 = 2 and τ = 0.1.

It is worth noting that the feasible parameter region depends on both the pole locations
of the system and the size of the time delay.

Example 2. To demonstrate the effectiveness of Algorithm 2 proposed in Section 4.2, a chemical
process example proposed by Panda in [34] is to be studied, whose transfer function is

P(s) =
2e−0.3s

(3s− 1)(s− 1)
. (46)

Based on the PID synthesis method proposed in [34], the PID controller is given by
C(s) = 0.881 + 0.881

5.1103s + 3.013s. On the contrary, by using Algorithm 2, the stabilizing PID
parameter region is given by Figure 9. For ki

kp
= 1

5.1103 , the corresponding parameter region
is given by Figure 10. The PID parameters given by [34] are located within our feasible
PID parameter region, and the corresponding closed-loop system is asymptotically stable,
which is shown in Figure 11. This indicates that we provide the complete feasible parameter
region to stabilize the delay systems, while [34] gives the special case with guaranteed
performance by placing the closed-loop poles at specific locations.

Figure 9. Feasible PID parameter region of the plant (Equation (46)).
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Figure 10. Feasible PID parameter region with ki
kp

= 1
5.1103 .
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0
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1

State

Figure 11. System state under PID control with kp = 0.881, ki =
0.881

5.1103 , kd = 3.013.

To illustrate how integral control affects the feasible PID parameter region, the corre-
sponding parameter regions are given by Figure 12 with ki

kp
= 4 and ki

kp
= 7, respectively. It

is clear that the feasible parameter region may be reduced if the integral control is enhanced.
In the limit, ki

kp
= 0 corresponds to the largest feasible parameter region with respect to the

projection on the kp − kd plane.

0 0.5 1 1.5 2 2.5 3 3.5

1

2

3

4

5

6

7

(a) Feasible PID parameter region with ki
kp

= 4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

1

2

3

4

5

6

7

(b) Feasible PID parameter region with ki
kp

= 8

Figure 12. Feasible PID parameter region. The above two figures show the feasible PID parameter
region with ki

kp
= 4 and ki

kp
= 7.

The aim of this paper was to find the complete feasible PID control parameter region
by using the Nyquist stability criterion. We focused on the stabilization of second-order
delay plants with two unstable poles under PID control, but not the optimal PID controller
for the specified performance.
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From the simulation results, several observations can be made: (i) increasing the delay
value may reduce the feasible parameter region; (ii) increasing the poles may reduce the
feasible parameter region; (iii) integral control may reduce the feasible parameter region;
(iv) a small kd

kp
corresponds to a smaller phase margin. Even though the best PID gains

cannot be ascertained, the above observations may be helpful in obtaining good PID gains.
If there exist uncertainties in model parameters, the PID parameters should be chosen with
a sufficient margin accordingly.

6. Conclusions

In this paper, the stabilization problem of a second-order delay plant with two unstable
real poles is investigated. In contrast to previous works, the methods proposed in this paper
are based on the Nyquist stability criterion, which provides an exact and explicit parameter
region for delay systems without complex derivation. The stabilization conditions under
PD and PID control are proposed, respectively. Moreover, algorithms for computing
the feasible PD and PID parameter region are also given. It is safe to conclude that the
time delay and integral control may reduce the feasible parameter region through the
simulation results.

In this paper, we focus on the second-order delay plants with two real unstable poles.
We suggest that this may still be true for second-order delay plants with either one pair of
conjugate poles or oscillatory poles. Whether there are novel observations in these cases,
a much deeper investigation is required in our future work. In addition, we also note
that, to maintain the performance of control systems, the controller and plant model can
also be updated online in advanced process control (APC) systems; see, e.g., [35,36]. For
details, Fan et al. apply the partial least squares (PLS) method to the MIMO semiconductor
processes in the run-to-run (R2R) control practice and address several crucial issues that can
realistically occur. Compared with the offline PID tuning approaches, the online algorithms
are important to some extent. However, their widespread use depends critically on the
real-time capability and reliability of the online algorithms. Hence, from an application
point of view, the robustness of our proposed algorithms will be investigated in depth in
future work.
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