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Abstract: This study proposes a solution to the speed control problem of servo machines in the form
of multi-loop current sensorless control with a reduction in the system model dependence level and
the number of feedback loops, which provides the two contributions: first, a model-independent
observer estimates speed and acceleration using only the position measurement, thereby ensuring
the first-order estimation error dynamics; second, the active damping acceleration stabilizes the
inner loop with the adaptive feedback gain increasing and decreasing automatically according to the
transient and steady-state operation modes. The experimental study highlighted the effectiveness
of the acceleration loop adaptation technique, which used an actual servo system comprising the
QUBE-servo2 and myRIO-1900.

Keywords: speed servo system; position filter; observer; adaptive gain; model-free control

1. Introduction

Industrial machines that need high accuracy (such as conveyor belts, roll-to-rolls
and electric vehicles) require their servo systems to increase their reliability and power effi-
ciency under severe and uncertain operating conditions. These concerns can be addressed
by the engineering in software and hardware layers. Fortunately, it has been reported
that the closed-loop performance of servo systems significantly depends on the embedded
system engineering (software layer) [1–6].

The multi-loop feedback system structure that contains a current controller (as the in-
ner loop) and a speed controller (as the outer loop) has been widely adopted as the soft layer
of speed servo system applications. Their hardware layers have been implemented using a
(single-phase) DC motor or (three-phase) brushless DC, permanent magnet synchronous
and induction motors, according to the output power specifications [7]. Proportional–
integral (PI) regulators have mainly been implemented in each loop through the error
signal feedback that is weighted by the gain and treated as the tuning factor. The desired
specifications for each loop are provided by the cut-off frequency from the reference and
output (current and speed) signals and the PI gains satisfy these requirements by apply-
ing Bode and Nyquist plots (frequency domain design techniques) [8,9]. However, servo
system parameters and load uncertainties limit the resulting closed-loop performance,
which can be addressed by the gain scheduler involving online membership tests [10].
Additionally, the signal error of the speed sensor or the speed control of the servo motor
problems may be solved by the use of a speedless sensing solution [11].

As a nonlinear approach, an integral back-stepping controller that forms part of the
multi-loop structure can yield the current and voltage commands for each loop, including
the parameter-dependent feedback gains of the system and the feed-forward compensator,
which cancels the open-loop zero to render the first-order current and speed transfer
function to the closed-loop [12]. These novel online parameter estimation techniques can
help to alleviate the parameter dependence levels of the system by increasing computational
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complexity and the number of tuning factors [13–15]. Optimal adaptive controllers that
directly handle model–plant mismatches have been be considered as alternatives [16–18].
An online auto-tuning mechanism has been presented as a subsystem for the adaptive
back-stepping controller to boost the feedback gain during transient periods; however,
the increased feedback gain value has raised concerns regarding a reduction in stability
margins [17]. The recently developed disturbance observer (DOB)-based controller has
adopted an energy-shaping technique that addresses this concern by incorporating the
damping terms into the auto-tuning system [19,20]. The DOB controller depends on system
parameters improving the closed-loop performance by producing the state and disturbance
estimates that are used for the nonlinear control actions [21]. A nonlinear DOB-based
multi-loop passive damping controller has solved these system parameter dependence
problems, thereby ensuring performance recovery properties by analyzing the closed-loop
dynamics using the Lyapunov analysis technique [22]. A sliding mode controller into which
a nonlinear DOB was embedded has achieved the finite convergence time of the desired
performance by reducing the steady-state chattering level; however, the discontinuous
feedback loop was still maintained [23]. The finite control set model predictive controls
(FCSMPCs) select the optimal current and voltage commands for the performance of each
loop by involving online membership tests and predicting the behavior of the current and
speed using a mathematical model of the servo system [24,25].

From the aforementioned literature survey, practical challenges are identified, such as
(a) the model dependence levels of the control and the observer and (b) the high gain of
the inner loop. The proposed solution forms a multi-loop structure to solve these practical
problems and presents the following contributions:

• For the entire loop, the observer gain is obtained by allowing each control loop, without
addressing the matrix algebra using a model-independent observer, to estimate speed
and acceleration as the pivotal subsystems;

• For the inner loop, the robust acceleration error stabilization loop is driven by the
active damping, according to the first-order dynamics, which leads to the pole-zero
cancellation;

• For the inner loop, the adaptive acceleration feedback gain is governed by the analytic
law with the nonlinear excitation term of the acceleration error, thereby boosting and
reducing its value according to the transient and steady-state operations.

The actual performance improvement of the proposed solution in terms of these
contributions is validated using experimental studies on servo systems that consisted of
QUBE-servo2 (hardware) and myRIO-1900 (software).

2. Servo Machine Dynamics

The electrical and mechanical motions of three-phase servo machines (permanent
magnet synchronous and induction motors) can be expressed similarly to the DC servo
machine by applying the time-varying coordinate transform that is synchronized to the
machine position [26]. Thus, this study considers the DC servo machine to be the simplest
case to demonstrate the main idea of this work. The system dynamics are described as
a third-order linear system that is perturbed by a mismatched disturbance from the load
torque TL(t) (in Nm):

dθ(t)
dt

= ω(t), (1)

J
dω(t)

dt
= −Bω(t) + Te(ia(t))− TL(t), (2)

L
dia(t)

dt
= −Ria(t)− keω(t) + va(t), ∀t ≥ 0, (3)

where the armature voltage va(t) (in V) excites the armature current ia(t) (in A), the
electrical torque Te(ia(t)) = kTia(t) (in Nm) with coefficient kT > 0, the rotational speed
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ω(t) (in rad/s), and the position θ(t) (in rad), sequentially. The rotor inertia J (in kgm2),
viscous friction B (in Nm/rad/s), armature inductance L (in H), armature resistance R (in
Ω) and back electromotive force coefficient ke characterizes the actual dynamics of servo
machines, which involve uncertainties depending on the operating conditions, such as
J = J0 + ∆J with a known nominal value J0 (provided by the manufacturer) and unknown
variation ∆J.

A system parameter decomposition such that (·) = (·)0 + ∆(·) simplifies the dynamic
relationship between the armature voltage va(t) and the speed ω(t) using the original
dynamics in (2) and (3) as:

cω,0
d2ω(t)

dt2 = va(t) + f̄ω(t), ∀t ≥ 0, (4)

where the known coefficient cω,0 := J0L0
kT,0

> 0 and the unknown time-varying lumped

disturbance f̄ω(t) := −Ria(t)− keω(t)− BL
kT

dω(t)
dt −

dTL(t)
dt + ( J0L0

kT,0
− JL

kT
) d2ω(t)

dt2 , which not
only reduces the model dependence of the control algorithm compared to the use of the
original dynamics in (2) and (3) but also eliminates the requirement for the current feedback.
The following sections present the observer-based speed control law that is based on the
second-order open-loop dynamics (4) and analyze the resulting feedback system using the
notation ḟ (t) := d f (t)

dt for any differentiable functions f (t), ∀t ≥ 0.

3. Proposed Solution

The two signals ω∗(t) and ωre f (t) are defined as the desired closed-loop speed tra-
jectory and reference signal with their Laplace transforms Ω∗(s) and Ωre f (s), respectively.
This study defines the target closed-loop performance in the low-pass filter form, which is
given as:

Ω∗(s)
Ωre f (s)

=
ωsc

s + ωsc
, ∀s ∈ C, (5)

where the tracking performance ωsc represents the cut-off frequency of the system (5) in
rad/s (e.g., fsc =

ωsc
2π Hz). The application of inverse Laplace transform to (5) yields

ω̇∗(t) = ωsc(ωre f (t)−ω∗(t)), ∀t ≥ 0, (6)

defining the control objective as the exponential convergence

lim
t→∞

ω(t) = ω∗(t) (7)

to assign the target transfer function (5) to the closed-loop, incorporating the adaptive
feedback gain into the inner loop, thus stabilizing the acceleration error.

3.1. Model-Independent Observer

The speed ω(t) could be estimated using the servo system models in (1) and (2) by
applying the Luenberger observer design technique, depending on the machine parameter
information, as could the acceleration a(t) using the models in (1)–(3). The model depen-
dence could degrade not only the accuracy of the speed and acceleration estimation but
also the transient performance, which is a main challenge of this subsection.

Regarding the observer output θe(t) with its error eθ(t) := θ(t)− θe(t), the speed and
acceleration estimates are defined as ωe(t) and ae(t) for their actual measurements, with
ω(t)(= θ̇(t)) and a(t)(= ω̇(t)) leading to the estimation errors eω(t) := ω(t) − ωe(t)
and ea(t) := a(t) − ae(t), and the augmented observer error is defined as
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eθ :=
[

eθ(t) eω(t) ea(t)
]T . Based on these notations, this subsection presents the

proposed observer:

θ̇e(t) = (2kd,e + λe)eθ(t) + ωe(t), (8)

ω̇e(t) = (k2
d,e + 2λekd,e)eθ(t) + ae(t), (9)

ȧe(t) = k2
d,eλeeθ(t), ∀t ≥ 0, (10)

where the two tuning parameters kd,e > 0 and λe > 0 define the gains for each subsystem
such that l1 := 2kd,e + λe (for (8)), l2 := k2

d,e + 2λekd,e (for (9)) and l3 := k2
d,eλe (for (10)).

The proposed observer comprising (8)–(10) requires no model information, including the
structure and coefficient values, and it ensures the beneficial convergence property:

lim
t→∞

ex(t) = e∗x(t), x = θ, ω, a,

exponentially for the desired output and estimation error trajectories that satisfies the
desired system ė∗x(t) = −λee∗x(t) with e∗x(t) := x(t)− x∗e (t), x = θ, ω, a, ∀t ≥ 0, as shown
in Section 4.

3.2. Outer Loop: Speed Control

The outer loop determines the desired acceleration reference signal are f (t) according
to the speed error ωre f (t)−ω(t). Consequently, the new variables are defined as z1(t) :=
ωe(t) and z2(t) := ae(t), which yields the dynamics using (8):

ż1(t) = l2eθ(t) + ae(t)

= are f (t)− ∆z2(t) + l2eθ(t), ∀t ≥ 0, (11)

where are f (t) denotes the additional design variable and ∆z2(t) := are f (t)− z2(t). This
study chooses to use the update rule for are f (t) as the simple proportional feedback control:

are f (t) = ωsc z̃1(t), ∀t ≥ 0, (12)

with the error z̃1(t) := ωre f (t)− z1(t), which result in a controlled outer loop system by
substituting (12) into the open-loop dynamics (11):

ż1(t) = ωsc z̃1(t)− ∆z2(t) + cT
1 eθ(t), ∀t ≥ 0, (13)

where c1 :=
[

l2 0 0
]T . See Section 4 for a further analysis of the controlled outer loop

ωre f (t) 7→ ω(t).

3.3. Inner Loop: Acceleration Error Stabilizer

The inner loop determines the desired commands for the armature voltage va(t)
according to the input signal are f (t) from the outer loop (e.g., are f (t) 7→ va(t)), which
comprises two parts: a desired acceleration trajectory generator that was driven by the
adaptive feedback gain (Section 3.3.1) and an error stabilizer (Section 3.3.2).

3.3.1. Desired Acceleration Trajectory Generator

For the input signal are f (t) from the outer loop, the error ã∗(t) := are f (t)− a∗(t) is
defined as driving the subsystem that generates the desired acceleration trajectory a∗(t)
such that

ȧ∗(t) = ω̂ac(t)ã∗(t), ∀t ≥ 0, (14)

subject to the adaptive feedback gain ω̂ac(t) that is updated by the rule:

˙̂ωac(t) = γac((ã∗(t))2 + ρacω̃ac(t)), ∀t ≥ 0, (15)
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where ω̃ac(t) := ωac − ω̂ac(t) for some steady-state gains and ωac > 0, which initializes
ω̂ac(0) = ωac. The first tuning parameter γac > 0 adjusts the excitation level of ω̂ac(t) and
the remaining ρac > 0 determines the decay ratio to the steady-state gain ωac. The two
subsystems of (14) and (15) constitute the input–output mapping are f (t) 7→ a∗(t) along the
adaptive feedback gain ω̂ac(t). Owing to the time-varying nature of the feedback gain
ω̂ac(t) for the subsystem in (14) and the nonlinear excitation term (ã∗(t))2 for the subsystem
in (15), the stability issue of the system are f (t) 7→ a∗(t) remains questionable. See Section 4
for a further analysis.

3.3.2. Acceleration Error Stabilizing Control

For the input signal a∗(t) from the subsystem in (14), the error
z̃2(t) := a∗(t)− z2(t) is defined as yielding the dynamics (using (4) and (10)):

cω,0 ˙̃z2(t) = −cω,0 ȧe(t) + cω,0 ȧ∗(t)

= −va(t) + fω(t) + cω,0 ėa(t), ∀t ≥ 0, (16)

with the newly defined lumped disturbance fω(t) := cω,0 ȧ∗(t)− f̄ω(t), which is stabilized
using the proposed active damping control:

va(t) = (kd,ac + cω,0λac)z̃2(t) + kd,acλac

∫ t

0
z̃2(τ)dτ + f̂ω(t), ∀t ≥ 0, (17)

with the two tuning parameters: active damping kd,ac > 0 and stabilization rate λac > 0.
The DOB governs the dynamics of the feed-forward compensation term f̂ω(t) as:

q̇ω(t) = −lωqω(t)− l2
ωcω,0z̃2(t) + lωva(t), (18)

f̂ω(t) = qω(t) + lωcω,0z̃2(t), ∀t ≥ 0, (19)

where the gain lω > 0. The substitution of the control law (17) into the open-loop dynamics
(16) produces the closed-loop dynamics for z̃2(t):

cω,0 ˙̃z2(t) = −kd,ac z̃2(t) + cω,0λac(r(t)− z̃2(t)) + kd,acλac

∫ t

0
(r(τ)− z̃2(τ))dτ

+e fω
(t) + cω,0 ėa(t), ∀t ≥ 0, (20)

where the dummy signal r(t) := 0 and the disturbance estimation error e fω
(t) := fω(t)−

f̂ω(t), ∀t ≥ 0.
The proposed controller (17) improves the acceleration error stabilization performance

by assigning the first-order dynamics to the system r(t) 7→ z̃2(t), which invokes the
pole-zero cancellation that is inherent from the active damping term kd,ac z̃2(t), the formal
analysis of which is presented in Section 4. Figure 1 visualizes the configuration of the
proposed solution.
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4. Analysis

Figure 1 shows the resultant closed-loop system within the multi-loop structure, which
comprises the observer, the outer loop to control speed and the inner loop to stabilize the
acceleration error. This system is sequentially analyzed in the following subsections to
guarantee the accomplishment of the control objective (7).

4.1. Observer

The specialized design parameter structure that is adopted in the proposed observer
(8)–(10) drives the observer output error dynamics according to the first-order perturbed
system due to its order-reduction property, which is formally analyzed in Lemma 1.

Lemma 1. The observer that is driven by a system consisting of (8)–(10) ensures:

ėθ = −λeeθ + x2, (21)

with the perturbation term x2 filtered from fa, such that:

ẋ2 = −kd,ex2 + x1, ẋ1 = −kd,ex1 + fa, (22)

where a = a0 (DC component) +∆a (AC component) and fa := ∆ȧ and | fa| ≤ f̄a, ∀t ≥ 0.

Proof. The two additional time derivatives in the subsystem (8) leads to the dynamics
along the remaining subsystems (9) and (10):

...
e θ = −(2kd,e + λe)ëθ − (k2

d,e + 2λekd,e)ėθ − λek2
d,eeθ + fa

= −2kd,e ëθ − k2
d,e ėθ + λe(r̈− ëθ) + 2λekd,e(ṙ− ėθ) + λek2

d,e(r− eθ) + fa, ∀t ≥ 0,

where fa = ȧ and r = 0 (so that ṙ = r̈ = 0). The other form is obtained after applying the
Laplace transform (Θe(s), R(s) and Fa(s) denote the Laplace transforms of θe, r and fa):

(s3 + (2kd,e + λe)s2 + (k2
d,e + 2λekd,e)s + λek2

d,e)Θe(s) = λe(s2 + 2kd,es + k2
d,e)R(s) + Fa(s),

which results in order-reduction (using the two factorization (s3 + (2kd,e + λe)s2 + (k2
d,e +

2λekd,e)s + λek2
d,e) = (s + kd,e)

2(s + λe) and (s2 + 2kd,es + k2
d,e) = (s + kd,e)

2):

(s + λe)Θe(s) = λeR(s) + X2(s), ∀s ∈ C,

with the filters X2(s) = 1
s+kd,e

X1(s) and X1(s) = 1
s+kd,e

Fa(s), which completes the proof by
taking the inverse Laplace transform.

According to Lemma 2, the perturbation term x2 rapidly vanishes, such that a first-
order convergence system governs the observer output motion, subject to a specific tuning
parameter range for kd,e.

Lemma 2. The observer that is driven by a system comprising (8)–(10) ensures:

lim
t→∞

eθ = e∗θ , (23)

exponentially, where e∗θ := θ − θ∗e satisfies:

ė∗θ = −λee∗θ , ∀t ≥ 0, (24)

for any tuning parameter setting kd,e > 0, such that 2 f̄a
kd,e
≈ 0.
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Proof. The error εθ := θ∗e − θe is defined to satisfy the dynamics (using (24) and (21))
as ε̇θ = −λeεθ − x2 with its expanded version for xθ :=

[
εθ x2

]T being given by
(using (22)):

ẋθ = Aθxθ + bθ x1, ∀t ≥ 0, (25)

where the stable system matrix Aθ :=
[
−λe −1

0 −kd,e

]
and the input matrix bθ :=

[
0
1

]
.

This system guarantees the existence of a unique solution Pθ = PT
θ > 0 to the matrix

problem (called the Lyapunov equation) AT
θ Pθ + PθAθ = −I. The Lyapunov function

candidate is defined as:

Vθ :=
1
2

xT
θ Pθxθ +

κx1

2
x2

1, κx1 > 0, (26)

whose time derivative V̇θ is obtained along the trajectories (22) and (25):

V̇θ = xT
θ Pθ(Aθxθ + bθ x1) + κx1 x1(−kd,ex1 + fa)

= −‖xθ‖2 + xT
θ bθ x1 −

κx1 kd,e

2
x2

1 + κx1 x1(−
kd,e

2
x1 + fa)

≤ −1
2
‖xθ‖2 − 1

2
(κx1 kd,e − ‖bθ‖2)x2

1, ∀t ≥ 0, ∀|x1| ≥
2 f̄a

kd,e
,

where the Young’s inequality shows the inequality above. The selection κx1 = 1
kd,e

(‖bθ‖2 + 1)

eliminates the indefinite term in the upper bound of V̇θ , such that:

V̇θ ≤ −1
2
‖xθ‖2 − 1

2
x2

1

≤ −αθVθ , ∀t ≥ 0, (27)

where αθ := min{ 1
λmin(Pθ)

, 1
κx1
} and the tuning parameter setting kd,e > 0 satisfies 2 f̄a

kd,e
≈ 0,

which completes the proof.

Remark 1. The exponential convergence (23) as a result of Lemma 2 shows that the proposed
observer constrains the output error dynamics to |eθ − e∗θ | ≈ 0 with the setting kd,e > 0, such that
2 f̄a
kd,e
≈ 0. Thus, the use of the observer output error dynamics is acceptable:

ėθ = −λeeθ , ∀t ≥ 0, (28)

which leads to the results (using the observer subsystem (8)):

ëθ = −λe ėθ ⇔ (ω̇− (l1 ėθ + ω̇e)) = −λe(ω− (l1eθ + ωe))

⇔ ėω + l1λeeθ = −λeeω + l1λeeθ ,

which indicates:

ėω = −λeeω, ∀t ≥ 0, (29)

leading to the following result by using the same process above (using the observer subsystem (9)):

ėa = −λeea, ∀t ≥ 0. (30)

Therefore, this remark concludes this subsection by showing the estimation error dynamics for
eθ through the combination of (28)–(30) as:

ėθ = −λeeθ , ∀t ≥ 0. (31)
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4.2. Outer Loop

According to Lemma 3, the outer loop in the form of the proportional feedback with
gain ωsc ensures a conditional stability from the input ωre f to output z1 considering the
observer error dynamics (31). The analysis result is adopted to show the guarantee of the
control objective (7) in Theorem 1.

Lemma 3. The outer loop system that is shown in Figure 1 ensures the L2 stability of the input–
output mapping (z̃2 + ã∗ + ω̇re f ) 7→ z̃1.

Proof. Regarding the relationship ∆z2 = z̃2 + ã∗, the closed-loop system (13) yields the
error dynamics for z̃1 as:

˙̃z1 = −ωsc z̃1 + z̃2 + ã∗ − cT
1 eθ + ω̇re f , ∀t ≥ 0,

which turns the time derivative of the Lyapunov function candidate:

Vz̃1 :=
1
2

z̃2
1 +

κz̃1

2
‖eθ‖2, κz̃1 > 0, ∀t ≥ 0, (32)

into (using (31) and Young’s inequality (xy ≤ ε
2 x2 + 1

2ε y2, ∀x, y ∈ R, ∀ε > 0)):

V̇z̃1 = z̃1(−ωsc z̃1 + z̃2 + ã∗ − cT
1 eθ + ω̇re f )− κz̃1 λe‖eθ‖2

≤ −ωsc

2
z̃2

1 − (κz̃1 λe −
‖c1‖2

2ωsc
)‖eθ‖2 + (z̃2 + ã∗ + ω̇re f )z̃1, ∀t ≥ 0.

Its indefinite term is cleared by choosing κz̃1 = 1
λe
( ‖c1‖2

2ωsc
+ 1

2 ) as:

V̇z̃1 ≤ −ωsc

2
z̃2

1 −
1
2
‖eθ‖2 + (z̃2 + ã∗ + ω̇re f )z̃1

≤ −αz̃1 Vz̃1 + (z̃2 + ã∗ + ω̇re f )z̃1, ∀t ≥ 0, (33)

where αz̃1 := min{ωsc, 1
κz̃1
}, which indicates the strict passivity of the input–output map-

ping (z̃2 + ã∗ + ω̇re f ) 7→ z̃1, ensuring the L2 stability of this system [27].

4.3. Inner Loop

The inner loop exponentially stabilizes the acceleration error z̃2 that involves the active
damping, DOB and adaptive feedback gain, which is formally provided as the result of
Lemma 8. Lemma 4 begins with the analysis of the adaptive gain system (15) to ensure the
existence of its lower bound.

Lemma 4. The acceleration feedback gain ω̂ac from the subsystem in (15) ensures the existence of
ωac as its lower bound, e.g.:

ω̂ac ≥ ωac, ∀t ≥ 0. (34)

Proof. The acceleration feedback gain ω̂ac solves the differential Equation (15), which is
given by:

ω̂ac = e−γacρactωac +
∫ t

0
e−γacρac(t−τ)(γacρacωac + γacω̃2

ac)dτ

≥ ωac, ∀t ≥ 0,

owing to the property γacω̃2
ac > 0. This validates the result of this lemma.

Lemma 5 determines an energy function with a dissipation property for the desired
acceleration reference trajectory generator that is driven by the two systems in (14) and (15),
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which clarifies the stability issue of the time-varying system in (14) by incorporating the
dynamics in (15) within the analysis task.

Lemma 5. The subsystems in (14) and (15) ensure the two boundedness properties: the adaptive
feedback gain boundedness |ω̂ac| < ∞, ∀t ≥ 0 and the desired acceleration trajectory boundedness:

|ã∗| ≤ b1e−b2t, ∀t ≥ 0, ∀|ã∗| ≥
2 f̄are f

ω̂ac
,

for some bi > 0 and i = 1, 2, where fare f := ȧre f , | fare f | ≤ f̄are f and ∀t ≥ 0.

Proof. The system consisting of (14) and (15) yields the dynamics for errors
ã∗ = are f − a∗ and ω̃ac = ωac − ω̂ac:

˙̃a∗ = −ω̂ac ã∗ + fare f

= −ωac

2
ã∗ +

ω̃ac

2
ã∗ − ω̂ac

2
ã∗ + fare f ,

˙̃ωac = −γac((ã∗)2 + ρacω̃ac), ∀t ≥ 0,

where fare f = ȧre f , | fare f | ≤ f̄are f and ∀t ≥ 0, which turns the time derivative of the
Lyapunov function candidate:

Vã∗ :=
1
2
(ã∗)2 +

1
4γac

ω̃2
ac, ∀t ≥ 0, (35)

into:

V̇ã∗ = ã∗(−ωac

2
ã∗ +

ω̃ac

2
ã∗) + ã∗(− ω̂ac

2
ã∗ + fare f )−

ω̃ac

2
((ã∗)2 + ρacω̃ac)

≤ −αã∗Vã∗ , ∀t ≥ 0, ∀|ã∗| ≥
2 f̄are f

ω̂ac
(36)

where αã∗ := min{ωac, 2γacρac}, which confirms the result of this lemma using the compar-
ison principle [27].

Remark 2. The feedback gain magnification property (34) (e.g., ω̂ac ≥ ωac and ∀t ≥ 0) means

that a set of tuning parameters γac > 0 and ρac > 0 could be chosen, such that
2 f̄are f

ω̂ac
≈ 0 during

transient periods. Thus, it roughly follows from (36) that:

V̇ã∗ ≤ −αã∗Vã∗ , ∀t ≥ 0, (37)

which is used to prove Theorem 1.

The DOB in (18) and (19) does not explicitly identify the disturbance estimation
dynamics, which is addressed using Lemma 6 by applying the additional time derivative
to the output (19), considering the dynamics (18).

Lemma 6. The DOB that is driven by a subsystem comprising (18) and (19) ensures the disturbance
estimation error dynamics for e fω

:

ė fω
= −lωe fω

+ cT
fω

eθ + d fω
, ∀t ≥ 0, (38)

where d fω
:= ḟω, |d fω

| ≤ d̄ fω
, ∀t ≥ 0 and c fω

:=
[

0 0 lωcω,0λe
]T .
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Proof. The output (19) satisfies the dynamics along the trajectory (18):

˙̂fω = q̇ω + lωcω,0 ˙̃z2

= −lω( f̂ω − lωcω,0z̃2)− l2
ωcω,0z̃2 + lωva + lωcω,0 ˙̃z2

= lω(cω,0 ˙̃z2 + va − f̂ω)

= lω( fω − f̂ω)− lωcω,0λeea, ∀t ≥ 0,

where fω = cω,0 ˙̃z2 + va − cω,0 ėa (obtained from the open-loop dynamics in (16)) and (30)
are applied for the last equality, which is equivalent to the result in (38) from e fω

= fω − f̂ω ,
thereby confirming the result of this lemma.

The proposed controller (17) in the inner loop assigns the first-order dynamics to
the acceleration error stabilization task by incorporating the active damping term into
the feed-forward loop through the use of specialized design parameters, which is shown
in Lemma 7.

Lemma 7. The acceleration stabilization loop from the subsystem of the stabilizer in (17) and
the DOB in (18) and (19) ensures the first-order dynamics:

˙̃z2 = −λac z̃2 − eF + az̃2,1(e fω
+ cT

2 eθ) (39)

perturbed by the filtered signal eF, such that:

ėF = −az̃2,2eF + az̃2,3(e fω
+ cT

2 eθ), ∀t ≥ 0, (40)

for some az̃2,i > 0 and i = 1, 2, 3.

Proof. Using the result in (31) of the closed-loop dynamics in (20), it holds that:

cω,0 ˙̃z2 = −kdac z̃2 + cω,0λac(r− z̃2) + kd,acλac

∫ t

0
(r− z̃2)dτ + e fω

(t) + cT
2 eθ , ∀t ≥ 0,

where c2 :=
[

0 0 −cω,0λe
]T , which yields the Laplace transform after applying the

additional time derivative to this system as:

(cω,0s2 + (kdac + cω,0λac)s + kd,acλac)Z̃2(s) = λac(cω,0s + kd,ac)R(s) + s(E fω
(s) + cT

2 Eθ(s)),

∀s ∈ C, with Z̃2(s), R(s), E fω
(s) and Eθ(s) representing the Laplace transforms of z̃2,

r = 0, e fω
and eθ , respectively. The factorization (cω,0s2 + (kd,ac + cω,0λac)s + kd,acλac) =

(s + λac)(cω,0s + kd,ac) results in:

(s + λac)Z̃2(s) = −EF(s) +
1

cω,0
(E fω

(s) + cT
2 Eθ(s))

with the filter EF(s) = 1
cω,0

( kd,ac
cω,0

s+
kd,ac
cω,0

)
(E fω

(s) + cT
2 Eθ(s)), owing to R(s) = 0 and ∀s ∈ C.

This validates the claim of this lemma.

As the main result of this subsection, Lemma 8 proves the exponential acceleration
error stabilization using the observer and disturbance estimation error dynamics and the
pole-zero cancellation result from Lemma 7.

Lemma 8. The subsystem comprising the acceleration error stabilizer in (17), the DOB in (18)
and (19) and the observer in (8)–(10) ensures:

lim
t→∞

z̃2 = 0,
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exponentially for any DOB gain setting of lω > 0, such that
2d̄ fω

lω
≈ 0.

Proof. Consider the vector xz̃2 :=
[

z̃2 eF
]T obtaining the dynamics:

ẋz̃2 = Az̃2xz̃2 + bz̃2(e fω
+ cT

2 eθ), ∀t ≥ 0, (41)

where the stable system matrix Az̃2 :=
[
−λac −1

0 −az̃2,2

]
and the input matrix bz̃2 :=[

az̃2,1
az̃2,3

]
. This system guarantees the existence of a unique solution Pz̃2 = PT

z̃2
> 0 to the

Lyapunov equation AT
z̃2

Pz̃2 + Pz̃2Az̃2 = −I. The Lyapunov function candidate is defined

for the augmented vector xacc :=
[

xT
z̃2

e fω
eT

θ

]T
using the positive definite matrix

Pacc := diag{Pz̃2 , κ fω
, κθI} with κ fω

> 0 and κθ > 0 as:

Vacc :=
1
2

xT
accPaccxacc, ∀t ≥ 0, (42)(

=
1
2

xT
z̃2

Pz̃2xz̃2 +
κ fω

2
e2

fω
+

κθ

2
‖eθ‖2, κ fω

> 0, κθ > 0
)

whose time derivative V̇acc is obtained along the trajectories in (31), (38) and (41):

V̇acc = xT
z̃2

Pz̃2(Az̃2xz̃2 + bz̃2(e fω
+ cT

2 eθ)) + κ fω
e fω

(−lωe fω
+ cT

fω
eθ + d fω

)− κθλe‖eθ‖2

= −1
2
‖xz̃2‖

2 + xT
z̃2

Pz̃2bz̃2(e fω
+ cT

2 eθ) + κ fω
e fω

(− lω
2

e fω
+ cT

fω
eθ)

+κ fω
e fω

(− lω
2

e fω
+ d fω

)− κθλe‖eθ‖2

≤ −1
6
‖xz̃2‖

2 − 1
2
(κ fω

lω − 3‖Pz̃2‖
2‖bz̃2‖

2 − 1)e2
fω

−(κθλe −
3
2
‖Pz̃2‖

2‖bz̃2‖
2‖c2‖2 −

κ2
fω
‖c fω
‖2

2
)‖eθ‖2, ∀t ≥ 0, ∀|e fω

| ≥
2d̄ fω

lω
,

where Young’s inequality obtains the inequality above. The selection of

κ fω
= 1

lω
(3‖Pz̃2‖2‖bz̃2‖2 + 2) and κθ = 1

λe
( 3

2‖Pz̃2‖2‖bz̃2‖2‖c2‖2 +
κ2

fω
‖c fω ‖

2

2 + 1
2 ) eliminates

the indefinite terms in the upper bound of V̇z̃2 , such that:

V̇acc ≤ −1
6
‖xz̃2‖

2 − 1
2

e2
fω
− 1

2
‖eθ‖2

≤ −αaccVacc, ∀t ≥ 0, (43)

with αacc > 0 defined as αacc := min{ 1
3λmax(Pz̃2 )

, 1
κ fω

, 1
κθ
} and the DOB gain setting lω > 0

satisfying
2d̄ fω

lω
≈ 0, which completes the proof.

4.4. Entire Loop

Theorem 1 concludes this analysis section by proving the accomplishment of control
objective (7) using the energy functions that are obtained from (32), (35) and (42).

Theorem 1. The feedback system that is shown in Figure 1 accomplishes the control objective (7),
e.g., ensuring exponential convergence:

lim
t→∞

ω = ω∗.
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Proof. Consider the performance error εω = ω∗ − z1 leading to the closed-loop motion
along the trajectories in (6) and (13):

ε̇ω = −ωscεω + z̃2 + ã∗ − cT
1 eθ , ∀t ≥ 0, (44)

with the identity ∆z2 = z̃2 + ã∗. Define the function using (32) as:

Vεω := Vz̃1

∣∣∣∣
z̃1=εω

, (45)

leading to its time derivative along (44):

V̇εω ≤ −αz̃1 Vεω + εω(z̃2 + ã∗), ∀t ≥ 0. (46)

The Lyapunov function candidate is defined by compositing (35), (42) and (45) as:

V∗ := Vεω + ηã∗Vã∗ + ηaccVacc, ηã∗ > 0, ηacc > 0, ∀t ≥ 0,

which yields its time derivative using the inequalities (37), (43) and (46) and the Young’s
inequality as:

V̇∗ = V̇εω + ηã∗ V̇ã∗ + ηaccV̇acc

≤ −αεω Vεω + εω(z̃2 + ã∗)− ηã∗αã∗Vã∗ − ηaccαaccVacc

≤ −αεω

3
Vεω − (ηã∗αã∗ −

3
αεω

)Vã∗ − (ηaccαacc −
3

αεω λmin(Pacc)
)Vacc, ∀t ≥ 0.

The settings ηã∗ =
1

αã∗
( 3

αεω
+ 1) and ηacc =

1
αcc

( 3
αεω λmin(Pacc)

+ 1) show the upper bound

of V̇∗ to be:

V̇∗ ≤ −αεω

3
Vεω −Vã∗ −Vacc

≤ −α∗V∗, ∀t ≥ 0,

where α∗ := min{ αεω
3 , 1

ηã∗
, 1

ηacc
}, which completes the proof.

5. Experimental Results
5.1. Set-Up

In this section, the servo system comprising the QUBE-servo2 and myRIO-1900 was
used to validate the effectiveness of the proposed technique in reference tracking tasks,
which is shown in Figure 2. The datasheet of QUBE-servo2 provided the identification
results of the servo machine parameters for J, B, kT , L, R and ke. This section chose their
nominal values as J0 = 0.6J, B0 = 1.2B, R0 = 0.7R, L0 = 1.2L and kT,0 = ke,0 = 1.2kT , so as
to consider the effects of the lumped disturbance fω from the model–plant mismatches and
load variations. The internal interrupt 0.1 ms implements the controller (both the inner and
outer loops) through a pulse-width modulation of 10 kHz using the LabVIEW software
including the MathScript.

��������		


��
�������

Figure 2. Servo system implementation for the experimental study.
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This experiment tuned the proposed solution as: kd,e = 3000 and fλe = 95 Hz for
λe = 600 for the observer; fsc = 3 Hz for ωsc = 6π rad/s for the outer loop control;
γac = 5, ρac = 2/γac and ωac = 6 for the adaptive feedback gain; lω = 300 for the
DOB; and kd,ac = 0.1 and λac = 10 for the acceleration error stabilizer. The following
experiments were conducted by comparing the proposed solution to the integral back-
stepping controller including the recent active damping compensator (called ADBSC),

which was given by: ia,re f =
1

kT,0

(
− kd,scω + J0ωsc(ωre f −ω) + kd,sc

∫ t
0 (ωre f −ω)dτ

)
for

the stator current reference; va = −kd,ccia + L0ωcc(ia,re f − ia) + kd,ccωcc
∫ t

0 (ia,re f − ia)dτ for
the control input; and the tuned results kd,sc = 0.1, ωsc = 2π fsc rad/s with fsc = 3 Hz
and ωcc = 2π fcc rad/s with fcc = 100 Hz for the current-loop cut-off frequency for the
best performance.

5.2. Tracking Comparison for Stair Speed Reference

This experiment evaluated the stair reference tracking performance of the proposed
controller and the ADBSC and the main comparison results for the speed and stator
current responses are presented in Figure 3. The left-hand side of Figure 3 shows that the
current-loop independence when using the proposed solution not only effectively reduced
the steady-state ripples but also lowered the over/undershoot in transient operations.
Meanwhile, the right-hand side of this figure indicates that the adaptive feedback gain
reduced the required current level in transient periods by automatically adjusting the inner
loop gain (as shown in Figure 4). This benefit (the reduction in maximum current level)
could be enlarged for high-power servo system applications and could lead to an increase
in power efficiency when using the proposed solution. Figure 5 presents the proposed
model-independent observer performance, which shows its capability for rapid estimation
error removal. The desired adaptive feedback gain response is shown on the left-hand
side of Figure 4, where lowering the steady-state gain improved the closed-loop stability
margin. The right-hand side of this figure presents the estimated disturbance that aided
the performance of the main control action.

( ): Proposed Controllerω

( ): ADBSCω

����� ���

( )*
: desired performanceω

( ): Proposed Controller
a

i

( ): ADBSC
a

i

Figure 3. Comparison of speed and stator current responses in stair speed reference tracking mode.
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5.3. Frequency Response Comparison

This experiment demonstrated the effectiveness of the proposed solution for the in-
creasing sinusoidal speed references of 1, 2 and 3 Hz. Figure 6 presents the main comparison
results. These results show that the proposed controller successfully drove the actual output
speed to be almost equal to the desired trajectory ω∗ from the system in (6) owing to the
collaboration of the novel subsystems (the model-independent observer for feedback-free
current, active damping and adaptive feedback gain). The ADBSC, however, failed to
show this desired performance due to the dependence of the current feedback, which
required the additional low-pass filter and caused the phase and magnitude distortions in
the current measurements. Figure 7 reveals the decreased stator current using the proposed
controller, which resulted in improved power efficiency and was similar to the case of the
stair reference tracking comparison in the previous subsection.

�
:

ac
ω �

: f
ω

��������	
������
	���� ���	��������

Figure 4. Comparison of adaptive feedback gain and DOB responses in stair speed reference track-
ing mode.

:
e

ω ω− :
e

a a−

�����������		�
����
������
���
������������������[rad/s]
2

[rad/s ]

[rad/s] 2
[rad/s ]

:
e

ω
( ): ω θ= ɺ

:
e

a

( ): a θ= ɺɺ

�	���
��������������
������������
���������

�	���
��		�
����
������
���
�������		�
����
������������

Figure 5. Comparison of observer responses in stair speed reference tracking mode.
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( ): Proposed Controllerω

( ): ADBSCω

( )*
: desired performanceω

��������	
��
�� ��������	
��
�� ��������	
��
��

��������	
��
�� ��������	
��
�� ��������	
��
��

( ): Proposed Controllerω

( ): ADBSCω

( )*
: desired performanceω

Figure 6. Comparison of speed responses for increasing sinusoidal speed references of 1, 2 and 3 Hz.

( ): Proposed Controller
a

i

( ): ADBSC
a

i

��������	
��
�� ��������	
��
�� ��������	
��
��

Figure 7. Comparison of stator current responses for increasing sinusoidal speed references of 1, 2
and 3 Hz.

6. Conclusions

This study presented a current-feedback independent speed servo system, which
included analog to digital converer (ADC) sensitivity for current sensing and a model-
independent observer for ensuring order reduction properties in order to eliminate current
feedback and strengthen measurement noise. The various closed-loop properties were
derived by analyzing the closed-loop dynamics using the Lyapunov stability criterion.
The resultant beneficial property (performance recovery) used a low inner loop feedback
gain, which was experimentally verified using an experimental servo system comprising
QUBE-servo2 and myRIO-1900, and demonstrated the actual robustness improvements,
even with errors in the current sensor. However, the proposed controller needed to tune
the numerous design factors via an ad-hoc process, which will be solved in a future study
incorporating the optimization problems and the constraints that were described by the
linear and bilinear matrix inequalities.
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Nomenclature

Plant variable
va(t), ia(t) DC voltage and current
θ(t), ω(t), a(t) Position, speed and acceleration of rotor
J, B, L, R Inertia, viscous friction, inductance and resistance of rotor
Te, TL Electric torque and load torque
ke, kt Back electromotive force coefficient and torque coefficient
Controller variable
ω∗(t), ωre f (t) Desired closed-loop speed trajectory and reference signal
Ω∗(s), Ωre f (s) Laplace transforms of ω∗(t), ωre f (t)
θe(t), ωe(t), ae(t) Observer output, speed and acceleration estimation
eθ(t), eω(t), ea(t) Observer error
kd,e, λe Observer tuning parameters
ωac, γac, ρac Steady-state gain, tuning parameter and remainder
fω(t) Lumped disturbance
ω̂ac(t) Adaptive feedback gain
kd,ac, λac Active damping and stabilization rate tuning parameters
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