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Abstract: Nanopositioning systems driven by piezoelectric actuators are widely used in different
fields. However, the hysteresis phenomenon is a major factor in reducing the positioning accuracy
of piezoelectric actuators. This effect makes the task of accurate modeling and position control
of piezoelectric actuators challenging. In this paper, the learning and generalization capabilities
of the model are efficiently enhanced to describe and compensate for the rate-independent and
rate-dependent hysteresis using a kernel-based learning method. The proposed model is inspired
by the classical Preisach hysteresis model, in which a set of hysteresis operators is used to address
the problem of mapping, and then least-squares support-vector machines (LSSVM) combined with
a particle swarm optimization (PSO) algorithm are used for identification. Two control schemes
are proposed for hysteresis compensation, and their performance is evaluated through real-time
experiments on a nanopositioning platform. First, an inverse model-based feedforward controller is
designed based on the LSSVM model, and then a combined feedback/feedforward control scheme is
designed using a classical control strategy (PID) to further enhance the tracking performance. For
performance evaluation, different datasets with a variety of hysteresis loops are used during the
simulation and experimental procedures. The results show that the proposed method is successful
in enhancing the generalization capabilities of LSSVM training and achieving the best tracking
performance based on the combination of feedforward control and PID feedback control. The
proposed control scheme outperformed the inverse Preisach model-based control scheme in terms of
both positioning accuracy and execution time. The control scheme that uses the LSSVM based on
nonlinear autoregressive exogenous (NARX) models has significantly less computational complexity
compared to our control scheme but at the expense of accuracy.

Keywords: piezoelectric actuators; least-squares support-vector machine (LSSVM); hysteresis; control

1. Introduction

Hysteresis effects have played a critical role in many nanopositioning systems that
use piezoelectric actuators, such as microscopy [1] and nano-fabrication systems [2]. It
means that output displacement of the actuator lags behind input voltage; this property
can be seen as a form of a hysteresis loop [3]. Hence, hysteresis is considered as a multiple-
valued mapping. Hysteresis characteristics have always had a significant impact on the
resolution of nanopositioning systems [4]. In the literature, the hysteresis modeling and
compensation methods of piezoelectric actuators are of great interest in improving their
positioning accuracy. The improvement in the model fit can be obtained by accomplishing
two tasks: the first is to introduce a suitable mapping of hysteresis so that multivalued
mapping is transformed into a single-valued one; the second is to provide a model that can
be effectively used to characterize both rate-independent and rate-dependent hysteresis [5].
The rate-independent hysteresis term indicates that the output displacement depends only
on input voltage, while the rate-dependent hysteresis means that the output displacement
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depends not only on input voltage but also on input frequency (or input rate) [6,7]. Tra-
ditional hysteresis models often fail to describe the rate-dependent behavior, such as the
Duhem model [8,9], Bouc–Wen model [10], backslash model [6], Preisach model [9,11],
Krasnoselskii–Pokrovskii (KP) model [12], and Prandtl–Ishlinskii (PI) model [13]. Some of
these models have been improved to include rate-dependent hysteresis behavior, such as
the generalized P-I model [14], and the improved Preisach model [15,16]. However, their
implementation is usually very complicated [5,17,18] and they have a lot of parameters to
be tuned. Hence, building hysteresis compensators based on the inverse of such models
results in high implementation complexity.

To address the computational complexity issues, various types of machine learning
techniques have been proposed in the literature, among them artificial neural networks
(ANNs), which provide an effective approach to describing the complicated hysteresis non-
linearity and can implement a nonlinear input–output mapping. For instance, the authors
in [19] have proposed Multilayer Feedforward Neural Networks (MLFFNNs) for magnetic
hysteresis modeling. They have used it successfully to represent the approximation of the
Preisach distribution function. The simulation results have shown that artificial neural
networks (ANNs) provide an efficient way to represent hysteresis. The authors in [20]
have proposed a gray box neural network to identify the parameters of the rate-dependent
hysteresis model for a piezoelectric actuated stage. The simulation results have been closer
to the experimental data than the MLFFNNs. The authors in [21] have presented a deep
learning method to further improve the control accuracy of the ANN. They have designed
a feedforward controller based on a model of a recurrent neural network. The output dis-
placement error has been reduced and the PEA-RNN outperformed the ANN with fewer
training samples. However, the ANN-based models are prone to overfitting problems, as
they may fall into the local minimum during the optimization procedure, which results in
a low level of generalization, thus affecting the accuracy of the model [22,23].

To overcome the problem of overfitting, the support-vector machines (SVMs) [24]
have been put forward. SVMs have higher generalization capabilities than the model
based on the ANNs because they are based on the structural risk minimization (SRM)
principle which reduces the upper bound of the generalization error, whereas ANNs
are based on the principle of empirical risk minimization (ERM) which minimizes the
error on the training data [25,26]. Least-squares support-vector machine (LSSVM) [27]
is a modified version of the traditional SVM which utilizes equality constraints instead
of inequality constraints and a squared loss function instead of the ε-insensitive loss
function. This modification simplifies the problem and solves linear equations instead of
quadratic programming used in SVM, thus making it better than SVM in terms of accuracy
and computation time [27]. LSSVM techniques can only identify single-to-single mapping,
whereas hysteresis exhibits multi-valued mapping. For this purpose, in literature, nonlinear
autoregressive exogenous (NARX) models have been employed [28–30]. This method is
based on expanding input space into multidimensional space, where the current output
depends on the current input and previous inputs and outputs. The feedforward control
based on the inverse hysteresis model requires that the LSSVM-NARX model is pre-trained
to learn their inverse dynamics and then used as a direct controller. The authors in [31]
have developed a feedforward controller and employed the measured displacement as a
feedback correction so that the past displacement input includes the desired displacement
and the measured displacement according to a certain ratio. Although LSSVM-NARX
models have been employed successfully, more research is needed to address the problem
of error accumulation owing to the feedback of the inverse model [32].

The author in [33] has proposed a model to describe the rate-independent and rate-
dependent hysteresis based on a kernel-based learning method. This model is inspired by
the classical Preisach hysteresis model in which a set of stop operators is used to address
the problem of mapping and then least-squares support-vector machines (LSSVMs) are
used for identification. One of the main advantages of this model is that it is not susceptible
to error accumulation as there is no feedback from the output of the model back to the input.
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Meanwhile, it is easy to obtain enough representative training data through small numbers
of hysteresis operators. The datasets for the hysteresis loops have been generated using the
Prandtl–Ishlinskii model [34] for magnetostrictive actuators. The obtained datasets have
been then used to train and validate the proposed hysteresis model as well as to evaluate
the control strategy performance. The simulation results have shown that LSSVM provides
higher accuracy and better tracking performance compared to ANN and NARX-based
models. This method has been only tested for modeling and controlling a specific type
of actuator. Additionally, machine learning applications usually require an intelligent
optimization algorithm to fine-tune the hyper-parameters [35,36], while the author has
used Coupled Simulated Annealing (CSA) and simplex method to optimize the hyper-
parameters of LSSVM; this strategy has a probability to accept a worse solution than the
current solution, and thus it does not guarantee finding of a global optimum. Moreover,
the practical issues of control have not been investigated in his study.

In this study, LSSVM based on a stop operator for mapping problems is evaluated
for modeling and controlling a piezoelectric actuator in a nanopositioning system. The
main contribution of this study is to evaluate a control strategy for piezoelectric actuators,
based on LSSVM as an intelligent tool to provide more accurate position tracking than
LSSVM-NARX models and has less execution time than that based on Preisach. For this
purpose, a multiple-valued mapping is first converted into a one-to-one mapping using
a strategy inspired by the Preisach model; then, mapping is trained using LSSVM. This
construction provides a complete memory for hysteresis and avoids an accumulation of
feedback errors in the inputs. Including the stop operator with the derivative of input in
the LSSVM model supports the model to deal with rate-dependent hysteresis, which means
that the output displacement depends on input voltage and input frequency (or input rate)
and thus has a great generalization ability to model piezoelectric actuators. In addition,
the learning capabilities of LSSVM are improved by a Particle Swarm Optimization (PSO)
algorithm [37] which has a strong ability to search for the global optimal solution. Based on
the hysteresis model and its inversion, a feedforward control strategy is used to compensate
hysteresis effect in which LSSVM is trained inversely. Then, a further enhancement of the
reference tracking performance is achieved by inserting a PID controller (Incremental PID)
into the control loop. Different datasets are applied on a nanopositioning platform for
the performance evaluation of the proposed method. The contributions of this study are
listed below:

1. This paper presents a generalized LSSVM model to characterize the rate-dependent
hysteresis of the piezo-actuated stage. This objective is achieved using a hysteresis
memory combined with a kernel-based learning method (LSSVM) optimized by PSO.
The hysteresis memory is used to solve the problem of hysteresis mapping and LSSVM
is used as a density function estimator.

2. This paper presents a hysteresis compensator that can provide accurate position
tracking with less execution time; reaching the second objective depends on achieving
the first as well as the capability of the PID controller to minimize residual errors.

3. This paper evaluates the proposed approach using a nanopositioning platform.

2. Hysteresis Modeling with the LSSVM

In this section, the main concept of the proposed method for hysteresis modeling is
presented, containing details about hysteresis mapping, hysteresis modeling, and hyper-
parameter optimization methods.

2.1. Least-Squares Support-Vector Machine

The support-vector machine (SVM) is one of the most common machine learning
techniques used for classification and regression [38]. In regression, SVMs predict model
outputs using an ε-insensitive loss function, its error is minimized by an optimization
algorithm. In this paper, a revised version of SVM, called LSSVM, was used [27,39,40].
LSSVM utilizes equality constraints instead of inequality constraints and squared loss
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function instead of the ε-insensitive loss function. This modification simplifies the problem
and solves linear equations instead of quadratic programming used in SVM, thus making
it better than SVM in terms of accuracy and computation time. Therefore, it has been
successfully applied to solve regression problems in many applications. The algorithm of
LSSVM regression can be described as follows:

Let us assume a piezoelectric hysteresis model takes the form:

y(z) = wT∅(z) + b (1)

and assume the model is trained by the dataset
{

zk, yk

}N

k=1
with N samples, ∅(·) represents

a nonlinear mapping function that maps input space into multidimensional space, w
represents weight vector and b represents bias. The optimal parameters of w and b can be
obtained by solving the following optimization problem:

min
w,e,b

Jp(w, e) =
1
2

wTw + C
1
2

N

∑
k=1

e2
k (2)

subject to:
yk = wT∅

(
zk
)
+ b + ek (3)

where C denotes the regularization parameter. The Lagrangian function is used to solve
this optimization problem and find the extreme values as follows:

L(w, b, e; α) = Jp(w, e)−
N

∑
k=1

αk

[
wT∅

(
zk
)
+ b + ek − yk

]
(4)

where αk are the Lagrange multipliers. The optimal solutions can be obtained by using
Karush–Kuhn–Tucker (KKT) conditions which can be formulated as follows:

∂L
∂w

= 0→ w =
N

∑
k=1

αk∅
(

zk
)

(5)

∂L
∂ek

= 0→ αk = Cek (6)

∂L
∂b

= 0→
N

∑
k=1

αk = 0 (7)

∂L
∂αk

= 0→ wT∅
(

zk
)
+ b + ek − yk (8)

by combining Equation (4) and KKT equations, the solutions are obtained as a set of linear
equations as follows: [

0 1T
N

1N Ω + I/C

][
b
α

]
=

[
0
y

]
(9)

where 1N = [1, 1, . . . , 1]T , y = [y1, y2, . . . , yN ]
T , I is an identity matrix and the Gram

matrix is represented as:

Ωkj = K
(

zk, zj
)
= ∅

(
zk
)
∅
(

zj
)

, k, j = 1, 2, . . . , N (10)

where K is the kernel function. In this study, we used the radial base function (RBF) kernel,
which corresponds to:
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K
(

z, zk
)
= exp

(
−‖z− zk‖

σ2

)
(11)

where σ is the kernel parameter. Therefore, the LSSVM regression function is derived as:

ŷ(z) = ∑N
k=1 αkK

(
z, zk

)
+ b (12)

2.2. LSSVM Hysteresis Model Based on Hysteresis Operator

The idea, in this paper, is inspired by the Preisach model, which has been widely
used to represent hysteresis nonlinearity. The Preisach model has been proposed at the
end of the last century to represent hysteresis behavior and then developed by including
relay operators to represent the rate-independent [41,42]. The relay operator is usually
characterized by a pair of thresholds, a1 and a2, where a1 ≤ a1, as shown in Figure 1a, where
its output takes a value equal to +1 or −1. The details of the Preisach model are introduced
as follows:

Assume that a piezoelectric actuator is driven by a given input voltage z(t), its output
can be represented by the Preisach model as follows:

y(t) =
∫ +∞

0

∫ +∞

−∞
µ(r, s)Rs−r,s+r[z](t)dsdr (13)

where µ is the density function, Rs−r,s+r[·] is the hysteresis relay operator, r is the half-width
value of the relay operator which is determined by a1 and a2, where r = (a2 – a1)/2, and s is
the mean value of the operator. The half-plane r > 0 is separated into two distinct regions
using a dividing curve ψ(t,r) so that the relay takes either the value of −1 (in the upper
region) or +1 (in the lower region). This curve can be described as a play operator, as shown
in Figure 1b, where:

ψ(t, r) = Pr[z](t) ∀r ≥ 0 (14)

Equation (13) can be rewritten as:

y(t) =
∫ +∞

0

[∫ ψ(t,r)

−∞
µ(r, s)ds−

∫ +∞

ψ(t,r)
µ(r, s)ds

]
dr (15)

and thus, the Preisach hysteresis model can be expressed as:

y(t) = Q(r, ψ(t, r)) (16)

as can be seen from Equation (16), the Preisach model contains two parts; a hysteresis
memory defined as a continuous set of play operators, and a memoryless functional defined
by a single-to-single mapping function. The most important challenge in the Preisach model
is how to approximate the density function µ by more accurate methods and the process
should be less time-consuming. To address these issues, various approaches have been
proposed in the literature. One of the most effective ways is to use a Discrete Preisach
Model with neural networks, in which the Preisach plane is first divided into a finite
number of intervals (cells); then the density function is approximated by artificial neural
networks (NN) [19,43]. Although the results demonstrated that ANN-based methods were
successful, ANNs are based on the principle of empirical risk minimization, thus they are
prone to overfitting problems and low generalization ability.
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Figure 1. Representation of hysteresis operator of Preisach model: (a) Relay operator; (b) play
operator; (c) stop operator.

In this study, an alternative approximation strategy was assessed on a piezoelectric
actuator for a nanopositioning system, where the LSSVM model was tested according to
its ability to approximate the mapping function. Figure 2 illustrates the proposed model
architecture. The hysteresis memory was constructed in a discrete form using a set of n stop
operators, and then the memoryless mapping function was identified by an LSSVM-based
regression model. The stop operator can be described, as indicated in Figure 1c, with two
thresholds +r and −r. The output of the stop operator can be mathematically expressed on
each subinterval [ti,ti+1] for the input x(t), where 0 = t0 < t1 < . . . tN, as follows:

z(0) = Er[x(0)]

z(t) = Er[x(t)− x(ti) + z(ti)]

for ti ≤ t ≤ ti+1; 0 ≤ i ≤ N − 1

(17)

where:
Er[.] = min{max{−r, .},+r} (18)

where Er[·] is the stop operator, and z(t) is the current state of the stop [42]. The threshold
is determined by the following formula:

ri =
i

(n + 1)|x|max
, i = 1, 2, 3, . . . , n (19)

where |x|max is the maximum absolute value of the input x(t) and n is the number of stop
operators which can directly affect the model’s accuracy and its complexity. The high
capability of generalization and learning of the proposed model comes from the following:

1. The classical Preisach hysteresis model is rate-independent, which means that the
output displacement depends only on input voltage and not input frequency (or
input rate) [7]. The proposed method of LSSVM makes it possible to deal with
rate-dependent and thus have a great generalization ability to model piezoelectric

actuators. For this purpose, we included the input signal x(t) and the input rate
.

x(t) in
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the LSSVM model. The values of
.

x(t) were calculated using the backward difference
formula [44].

2. We used the stop operators to gain a more detailed description of the characteristics
of the hysteresis loop, thus locating the model response as close as possible to the
experimental results. Additionally, the hysteresis multivalued mapping is converted
into a single-to-single valued mapping without feedback which accumulates errors
over time, as in LSSVM-NARX.

3. We used a very effective search technique, called Particle Swarm Optimization
(PSO) [37], to set the appropriate values of hyper-parameters α and C. The PSO has
been successfully used to tune the LSSVM parameters in diverse fields and both simu-
lation and experimental results showed that the PSO algorithm enhanced the accuracy
of the models and improved the generalization ability of the LSSVM model [31,45,46].
The details of the PSO algorithm will be discussed in the next subsection.
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Figure 2. Structure of the proposed LSSVM hysteresis model.

The LSSVM model is trained with a dataset containing the input vector z(t) and

the output displacement y(t), where z(t) = [z1(t) z2(t) . . . zn(t) x(t)
.

x(t)], and n is the
number of stop operators. A description of the input signals applied to the piezoelectric
actuator will be presented later. Simulations in this work have been implemented using
MATLAB/Simulink (version R2021b, Mathworks, Natick, MA, USA) and with the help of
the LS-SVMlab Toolbox (version 1.8, KU Leuven, Leuven, Belgium) [47].

2.3. Optimization of LSSVM Parameters Based on PSO

The strategy of tuning hyper-parameters C and σ plays a significant role to enhance
the accuracy of the LSSVM model. To this purpose, PSO is used in this study to optimize
the hyper-parameters. The basic idea of the PSO algorithm was inspired by the movement
of a bird swarm while searching for food [37,48]. The movement of each particle in D-
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dimensional search space is controlled via the inter-communications among them to find
the best position for food. In every iteration, each particle follows the nearest one to the food
until reaching the most optimal, which is the final, solution. This intelligent scenario makes
the PSO algorithm acts as a powerful tool in optimization problems. Every particle in the
swarm is specified by its current position and velocity information which are updated in
every iteration. The following formulas describe how the position and velocity are updated
for a particle i at iteration t in D-dimensional search space:

vi(t) = ηvi(t− 1) + c1r1(pbest,i − pi(t− 1)) + c2r2(gbest − pi(t− 1))

pi(t) = pi(t− 1) + vi(t)
(20)

where pi(t) and vi(t) are the current position and the current velocity, respectively, η is
the inertia weight, pbest,i is the current personal best, gbest is the current global best, c1
and c2 are individual and group learning rates, and r1 and r2 are uniformly distributed
random numbers in the range [0, 1]. In this study, cross-validation was used to evaluate
the performance of each particle, which measures the error between actual and predicted
outputs. The detailed steps of the PSO-based LSSVM algorithm are thus given as follows:

1. Set the parameters of PSO, take the parameters σ and C as swarms, and randomly
initialize the position and velocity of each particle.

2. Initialize parameters of LSSVM, train the LSSVM model and then test and evaluate
objective values of each particle based on cross-validation.

3. Find personal best and global best. Particle i replaces personal best if it is superior
and best particle replaces global best if it is superior.

4. Update the position and velocity of each particle as shown in Equation (20).
5. Repeat steps 2 and 3 until the maximum number of iterations or the optimum solution

(minimum error) is reached.

3. Experimental Setup and Modeling Results

This section provides a brief description of the platform used in experiments and
discusses the validation results of the proposed model.

3.1. Experimental Setup

All experiments were carried out on a piezo-actuated nanopositioning platform for
the performance evaluation of the proposed approach. As shown in Figures 3 and 4, the
experimental environment includes the following components:
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• Nanopositioning stage: A single-axis high-precision piezoelectric stage (P-752.21C,
manufactured by Physik Instrumente Company, Karlsruhe, Germany) [49] was used.
This stage contains a flexure-hinge-guided mechanism driven by a piezoelectric stack
actuator as well as a capacitive sensor, as shown in Figure 5. The flexure-hinge-guided
mechanism provides motion through elastic deformations, as there are no sliding
parts, thereby avoiding undesired nonlinear effects, such as backlash and friction. The
piezoelectric stack actuator is composed of several layers of piezoelectric materials
connected mechanically in series and wired electrically in parallel. Each layer is
made of a piezoelectric ceramic material (PICMA® P-885) which converts an electrical
signal into displacement and generates a force on the mechanism. The actuator
expands and contracts according to the sign of the applied voltage, V. The considered
piezoelectric actuator has a travel range of up to 35 µm, a 0.1 nm displacement
resolution, and can be driven in the −20 to 120 voltage range. The displacement is
measured by the capacitive sensor (D-015) which has an extended measuring range
of 45 µm and can provide a subnanometer resolution (0.01 nm). This sensor has high
bandwidth (10 kHz) and produces an analog output voltage in the range of 0 to 10 V.
Table 1 presents the specifications of the considered piezo-actuated nanopositioning
stage. These characteristics of the piezoelectric stage make it suitable for high-speed
precision actuation.

• Piezo Amplifier Module: A voltage amplifier (E-505.00, manufactured by Physik
Instrumente Company, Germany) [50] with a fixed gain of 10 was used to amplify the
control signal and drive the piezoelectric actuator. The bandwidth of this amplifier is
3 kHz, and it can operate in the input voltage range from −2 to +12 V and produce
output voltages ranging from −30 to +130 V.

• Control Board: The control algorithms were executed on the dSPACE1104 board
(DS1104, dSPACE Inc., Wixom, MI, USA) [51] which allows a perfect real-time ex-
ecution of the control algorithms on hardware-in-the-loop simulation (HILS). The
dSPACE1104 is popular in academic engineering research and particularly well-suited
for prototyping control systems [52–54]. It provides many advantages in terms of
speed and precision which can allow extended algorithms to be practically imple-
mented in real-time, as it is equipped with a 250 MHz processor (MPC8240) with
32 MB of SDRAM and 8 MB of flash memory. The input control signals and output
displacements of the piezoelectric actuator are sent from/to the dSPACE controller
via a built-in A/D converter, D/A converter, and the dSPACE CLP1104 connector
which has 16 BNC ports. The input voltage range is from −10 to +10 V on eight
A/D conversion ports with 16 bits of resolution for the first four ports and 12 bits of
resolution for the remaining ports. The board also includes low-pass filters to avoid
aliasing effects. The cutoff frequency is set at 40 Hz. The dSPACE1104 is directly
connected with a PC that executes the control simulation.
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• Development Computer: The host computer includes Matlab Real-time Interface
(RTI) and ControlDesk. The RTI is MATLAB-Simulink software used to create the
control part and generate a real-time C-code. The ControlDesk contacts the C-code for
real-time measurement and visualization.
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Table 1. Specification of the considered piezoelectric actuator.

Properties Values

Driven input voltage (V) −20 to 120
Resonant frequency (Hz) 2100

Resolution (nm) 0.1
Travel range (µm) 0–35

Stage mass (kg) 0.35
Electrical capacitance (µF) 3.7

Load capacity (N) 30
Stiffness in motion direction (N/µm) 20

3.2. Modeling Results

For proper modeling of hysteresis, the training datasets have to be thoughtfully
designed to include various hysteresis loops for different frequencies. The training and test
data should include the rate-dependent and rate-dependent hysteresis loops. Therefore,
in this study, the piezoelectric actuator was excited by different input signals in the range
of 1 to 20 Hz which include the rate-dependent and rate-dependent hysteresis loops. The
sampling rate for each input signal is 0.002 s. Seven input signals were used, as shown in
Figure 6, where three of which were used for training and four for testing. In addition, as
mentioned in Section 3.1, the considered piezoelectric actuator can only be driven in the
−20 to 120 voltage range so that the voltage at the reference input should be less than 12 V,
which is then amplified by a fixed gain of 10. A higher voltage at reference input results
in oscillations which can cause irreparable damage to the piezo actuator. Accordingly, the
maximum input voltage considered in this study is 8.5 V. Table 2 lists detailed information
about these datasets. The experimental data obtained were then used for the identification
and validation of the proposed model. The corresponding hysteresis loops under the
training and test input signals were generated as shown in Figure 7, it can be noticed
that these loops include rate-independent and rate-dependent hysteresis by which the
generalization ability of the proposed model was examined in this study. To measure their
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effect on performance, the Root Mean Square of Error (RMSE) [55] was calculated for the
given training and test datasets A, B, C, D, E, F, and G, and was 1.7466 µm, 2.0566 µm, and
0.8623 µm, 1.7708 µm, 0.7140 µm, 0.4443 µm, and 5.8008 µm, respectively. This accounts
for 4.990%, 5.876%, 2.463%, 5.059%, 2.040%, 1.2695%, and 16.5736% of the travel range,
respectively, thus it is necessary to achieve accurate modeling and control.

All simulations were performed with the sampling rate of the input signals (0.002 s),
one second for each input signal, meaning that the number of samples was 500 for each.
The maximum absolute value of the input x(t) (this is a parameter for the stop operator) was
set to 8.5. LSSVM hysteresis model was trained with 55 stop operators on the given training

data, as well as the input x(t) and the input rate
.

x(t), thereby the order of the LSSVM model
is 57. For the sake of comparison, we first adopted the 5-fold cross-validation method to
optimize the hyper-parameters based on Coupled Simulated Annealing (CSA) [56] and the
simplex method [57]. The CSA was used to initially determine proper initial starting values
and the simplex method uses these values to find more optimal parameters. The obtained
optimized hyper-parameter values (C and σ2) were 3.0450 × 107 and 6.5814, respectively.
These parameters were then used to train the model to obtain the bias b and the support
values αk. The obtained bias value was 1.389 and the features of the support-vector were
sufficient to make a prediction close to the actual output. Table 3 shows a list of simulation
parameters. In this study, we use proposed model (1) as a name for the model that uses the
optimization method mentioned above and proposed model (2) for the model based on the
PSO technique. Figure 8a–c compares the results of the trained proposed model (1) with the
experimental data, it can be noted that proposed model (1) shows a good performance for
the piezoelectric hysteresis under different sinusoidal and random signals. This model was
also tested on the test data; D, E, F, and G; Figure 8d–g shows the corresponding hysteresis
loops compared with the experimental data. The Root Mean Square of Error (RMSE) was
also used to evaluate proposed model (1) for training and test data. The RMSEs for training
samples A, B, and C were 0.0326 µm, 0.1146 µm, and 0.0047 µm, respectively. In addition,
it was tested by D, E, F, and G data where it produced RMSEs of 0.0193 µm, 0.0316 µm,
0.0176 µm, and 0.033 µm, respectively, which account for 0.055%, 0.090%, 0.050%, and
0.094% of the travel range.
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Table 2. Description of training and testing data.

Signal Information Frequency

A x(t) = 2.5sin(6πt − π/2) + 2.5 3 Hz
B x(t) = 2.5sin(20πt − π/2) + 2.5 10 Hz
C Random sinusoidal 1–7 Hz
D x(t) = 2.5sin(4πt − π/2) + 2.5 2 Hz
E xt = 2e−0.13t[cos(3πte−0.09t − 3.15) + 1] 1–20 Hz
F Random sinusoidal 1–5 Hz
G Random sinusoidal 1–20 Hz

Table 3. Summary of simulation parameters.

Parameter Value

No. of samples (N) 500 for each data
Sampling rate 0.002 s

The maximum input (|x|max) 8.5
Cross-validation 5

Model input order 57
Regularization factor (C) 3.0450 × 107

Kernel sample variance (σ2) 6.5814
Bias (b) 1.389
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For comparison, the classical Preisach and LSSVM-NARX models were also trained on
the same given training data. The Preisach plane was discretized into n discrete intervals
(cells) to numerically approximate the density function, as already used in a previous
study [38,39,58–60]. Higher discretization levels increase the model order, making the
computational implementation of the Preisach model more time-consuming. In this study,
we evaluated the Preisach model at different levels of discretization; 50, 100, and 120,
which account for 1275, 5050, and 7260, respectively, of Preisach elements n. The formula
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for calculating the number of Preisach elements is given as n = (L(L + 1))/2, where
L is the level of discretization. In our study, the LSSVM-NARX model was trained by
introducing current and past inputs and past output displacements to estimate current
output displacements. According to a previous study [59], it has been found that the
increase in the order of the LSSVM-NARX model increases its accuracy in training, but also
increases the computational complexity. Additionally, the different selections of order do
not monotonically affect the resulting modeling accuracy in test samples. As a compromise,
the authors recommended that both n and m are set to 3. That is:

zk = [xk xk−1 . . . xk−n yk−1 . . . xk−m] (21)

where n = m = 3.
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Figures 9 and 10 and Table 4 show the error between the actual output of the actuator
and the simulation output of proposed model (1) and those obtained by the classical
Preisach and LSSVM-NARX models for test data D, E, F, and G. The results demonstrate
that the LSSVM based on the hysteresis operator is superior and more accurate in terms of
RMSE (0.0193, 0.0316, 0.0176, and 0.033 µm, respectively) than the classical Preisach and the
LSSVM-NARX models. The LSSVM-NARX model presents better results than the Preisach
model for all data. It can be also seen the accuracy of the Preisach model increases with
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increasing its order, but the computation time increases. It was also found that proposed
model (1) is less time-consuming (nearly 7 times) than the Preisach (with n = 7260) which
gives the highest accuracy. Although proposed model (1) requires more time (nearly five
times) than the LSSVM-NARX model, its high accuracy and reasonable computation time
make it more advantageous to provide a real-time tracking control of the piezoelectric
actuator compared to all other models considered in this paper.
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Table 4. Comparison of modeling results with Preisach and LSSVM-NARX models.

Model
RMSE (µm) Average Computation Time per

One Test Sample (ms)Data D Data E Data F Data G

Preisach (n = 1275) 0.2508 0.2941 0.2512 1.3620 0.25
Preisach (n = 5050) 0.1198 0.1996 0.1289 1.3443 1.14
Preisach (n = 7260) 0.0803 0.1779 0.0737 1.3367 1.62

LSSVM-NARX 0.0208 0.0718 0.0254 0.1660 0.05
Proposed model (1) (n = 55) 0.0193 0.0316 0.0176 0.0330 0.23

Although the results show good performance of proposed model (1), the hysteresis
should be more accurately identified, especially for training samples B and the test samples
E and G. This may because the optimization problem needs a stronger search capability to
find optimal hyper-parameters C and σ, or the proposed model requires higher levels of
discretization to provide a higher degree of accuracy. To investigate these hypotheses, the
PSO algorithm was first proposed and evaluated to optimize the hyper-parameters, and
then the effect of the number of stop operators on the model’s performance was examined.

Some parameters of the PSO should be chosen carefully before the algorithm is applied,
which are the population size, the maximum iteration number, the inertia values, and the
local and global accelerations. In most applications, the population size is recommended to
be in the range of 20–50 [60–62]. The maximum number of iterations is the sopping criterion
in the PSO algorithm, and a higher number allows for more accurate tuning but with a
high computational cost. A larger value of c2 indicates that the algorithm evolves quickly,
whereas a larger value of c1 indicates the algorithm evolves slowly and the optimization
process may be terminated before reaching the best solution. Therefore, according to
previous recommendations [63,64] and based on our experiments, the parameters of the
PSO algorithm were set in as follows: the size population is set to 30, and the maximum
iteration number is set as 100. The inertia values are 0.9 and 0.4 and c1 = c2 = 2. Accordingly,
the tuning process was conducted, and the best-found hyper-parameters values were
σ = 3.13544 and C = 3.8155 × 103. Then, these parameters were used to optimize LSSVM.

Figure 11 compares the simulation results of proposed model (2) with the experimental
data. The results showed that proposed model (2) outperformed proposed model (1) on
all given data where the RMSEs for datasets A, B, C, D, E, F, and G were 0.01040 µm,
0.00249 µm, 0.003081 µm, 0.01061 µm, 0.01086 µm, 0.0123 µm, and 0.0126 µm, respectively.
Figure 12a,b shows the error between the actual output of the actuator and the simulation
output of proposed model (1) and proposed model (2). It can be concluded that the PSO
algorithm contributed greatly to providing better identification results and enhancing the
model’s capability for different hysteresis cases.

To evaluate the effect of the number of stop operators on the model performance,
different models have been considered, each has a different number of stop operators lying
in the range of 20 to 110. This requires retuning the hyper-parameters C and σ. Table 5
shows the optimum hyper-parameters for each n. Figure 13 clearly shows the simulation
results in terms of RMSE for a different number of stop operators, the results demonstrate
the effect of the number of stop operators on the RMSE in dataset B. It can be noted that
the increase in the number of stop operators improves the RMSE of the trained model.
However, it should be also noted that the results show only a slight improvement in the
RMSE (decreases from 0.00231 to 0.00198 µm) in the range of 28 to 105 stop operators,
respectively. As mentioned previously, the higher number of input variables (higher
number of stop operators) certainly increases the computation time. Since one of the
objectives of this study is to reduce the model complexity and guarantee performance
improvement, the correlation between execution speed and accuracy has been investigated
in this study. This discussion will be presented later in the next section.
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Table 5. The optimum values of hyper-parameters for different numbers of stop operators of proposed
model (2).

No. of Stop Operators
Hyper-Parameters of LSSVM Model

Ln(C) σ

21 18.01070 6.62159
28 10.17186 3.69526
36 10.06112 3.68417
55 8.246823 3.13544
78 8.243789 2.94893
91 8.238002 3.31544

105 8.233014 4.02981
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4. Control Design for Piezo-Actuated Nanopositioning Stage

In this section, two control schemes are presented and their performances are evaluated
through real-time experiments on the proposed piezo-actuated nanopositioning stage.
First, a feedforward (FF) control scheme is proposed for hysteresis compensation, and
then it is combined with a feedback (FB) controller to correct for residual errors. Finally,
the comparisons of results obtained from these experiments are presented to verify the
feasibility and strength of the method proposed in this paper.
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4.1. Hysteresis Compensation Using the Inverse LSSVM Model

The high-precision position control of piezoelectric-actuated nanopositioning stages
is often a challenging task due to the nonlinear hysteresis effects. The inverse-based
control strategies have been widely and successfully applied to control the position of a
piezoelectric actuator [5,65]. In this subsection, to compensate for the hysteresis nonlinearity,
a feedforward control scheme was designed using the inverse LSSVM model. For this
purpose, the model was first trained offline inversely with the given training data where
the output displacement was used as the input of the LSSVM model, whereas the input
voltage was used as an output. The inverse LSSVM model was then used for the FF
control to directly correct the positioning errors online, as shown in Figure 14. The test
data D, E, F, and G were employed to evaluate the proficiency of the proposed FF control
scheme. Since hyper-parameter tuning algorithms are only required during training,
there is certainly no difference in time execution between the two previously proposed
LSSVM models. Thus, only one of the proposed models (model 2) was chosen to be
used to assess our control scheme. The laboratory results of the FF control are presented
in Figure 15. The results show the measured output displacements (the output of the
piezoelectric actuator) track the reference (the desired output) precisely as the controller
achieves a perfect compensation with RMSEs of 0.0258 µm, 0.0361 µm, 0.0236 µm, and
0.0415 µm, which account for 0.0737%, 0.1031%, 0.0674%, and 0.1186% of the travel range,
respectively. These results demonstrate the capability of LSSVM model inversion as well as
the effectiveness of the hysteresis operators in compensating the hysteresis nonlinearity
and achieving high-precision tracking.
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Figure 14. Block diagram of the proposed FF control scheme.

As previously mentioned, the applicability of the proposed control scheme should
be examined to determine possible requirements to have both high tracking accuracy and
low execution time. Therefore, different control schemes with different numbers of stop
operators lying in the range of 20 to 110 (the same range investigated in the modeling
stage) have been considered. Table 6 shows the effect of the number of stop operators
on the execution time and the RMSE of hysteresis compensation for datasets E. It can be
noted that the increase in the number of stop operators resulted in a decrease in the RMSE.
However, the control algorithm with n > 55 of stop operators cannot be implemented
(overrun) within the sample time (2 ms). This error occurs because the LSSVM algorithm is
a kernel-based learning method in which the prediction of the output relies on a (N × N)
kernel matrix, where N is the training sample size. Accordingly, the time complexity of the
proposed control scheme comes mainly from the increase in the total number of training
samples as well as the number of stop operators. Therefore, it can be concluded that the
optimal tradeoff between speed and accuracy that guarantees performance improvement is
at n = 55 and the residual tracking errors can be reduced by combining a FB control with
the FF control. This will be discussed in the next subsection.
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Table 6. The effect of the number of stop operators on the execution time of control tasks for dataset
E.

No. of Stop Operators Tracking Result
RMSE (µm) Maximum Execution Time (ms)

21 0.0483 0.55
28 0.0456 0.84
36 0.0413 1.21
55 0.0361 1.64

78 overrun condition
91 overrun condition

105 overrun condition
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references precisely.

4.2. Feedforward–Feedback Control and Results Comparison

To mitigate the residual errors, and hence further improve the tracking precision,
the FF control was combined with FB control. This has been accomplished by summing
the outputs of FF and FB controllers and then fed to the piezoelectric actuator. Figure 16
shows the block diagram of the proposed FF–FB control. The FB controller was designed
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based on the incremental PID control algorithm in which the output control variable is the
incremental value ∆u(k) rather than the absolute value. Thus, the control increment ∆u(k)
takes the form:

∆u(k) = u(k)− u(k− 1)

= Kp[e(k)− e(k− 1)] + Kie(k)+

Kd[e(k)− 2e(k− 1) + e(k− 2)]

(22)

where Kp, Ki, and Kd are the proportional, integral, and derivative gains of the PID controller,
respectively, and e is the displacement error. Therefore, the actuating signal of the FF–FB
scheme can be expressed as:

vc(k) = vFF(k) + vFB(k− 1) + Kp[e(k)− e(k− 1)] + Kie(k)

+Kd[e(k)− 2e(k− 1) + e(k− 2)]
(23)

where vFF is the output voltage of the inverse LSSVM model, and vFB is the output voltage
of the PID controller. From the above equation, it can be seen that there is no accumulation
required and the determination of the incremental PID output is only related to the last
three samplings. This makes the influence of the error action, as well as the amount of
computation, relatively small. It will then be easier to obtain better results using an LSSVM-
based compensator in combination with an incremental PID-based controller compared
with the positional PID-based controller.

PID parameters Kp, Ki, and Kd were determined via the well-known Zeigler–Nichols
formula [66] through experiments. The Zeigler–Nichols method is a heuristic method
of tuning a PID controller and has been successfully used to online tune SISO stable
systems. The process was carefully achieved for all trajectories in which the integral and
proportional gains are initially set to zero and then the proportional gain is raised until
obtaining self-sustaining oscillations that the proportional gain is called ultimate gain (Ku),
and the period of sustained oscillations is called the ultimate period Tu. The optimum
proportional, integral, and derivative gains are then calculated from Zeigler–Nichols tuning
rules; Kp = 0.6Ku, Ki = 1.2 Ku/Tu, 0.075 KuTu. A certain amount of trial and error was also
used to minimize the error in the position of the signal peak. Finally, the PID parameters
were fixed at Kp = 35, Ki = 715, and Kd = 0.43 for all test experiments.
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The datasets D, E, F, and G were also used to test the effect of the PID controller
on the tracking performance. The laboratory results of the FF–FB controller for the four
test samples are presented in Figure 17, it shows the measured output displacements (the
output of the piezoelectric actuator) and the reference (the desired output). It produced
RMSEs of 0.0214 µm, 0.0267 µm, 0.0195 µm, and 0.0250 µm, respectively, which account for
0.0611%, 0.0763%, 0.0557%, and 0.0714% of the travel range, and the mean of control results
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obtained from four test datasets is 0.0232 µm. It is concluded that the developed FF–FB
control scheme can reduce the hysteresis nonlinearity of the piezoelectric actuator and
enhance tracking capabilities better and more accurately than the proposed FF controller.
The tracking results of the FF–FB control schemes have been also compared with results
obtained from different FF control schemes designed using LSSVM-NARX and Preisach
models, respectively, as shown in Table 7. It can be seen that the proposed FF–FB control
scheme has smaller RMSE than other considered control methods and can be implemented
with low execution time. Figure 18 shows the laboratory results, the error between the
reference (the desired output) and the measured output displacements (the output of
piezoelectric actuator), of the FF–FB control scheme and other control schemes. The results
show that it has better tracking ability and its tracking errors are smaller and smoother
compared with those obtained by other methods considered in our experiments.
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Actuators 2022, 11, 217 22 of 26Actuators 2022, 11, x FOR PEER REVIEW 22 of 26 
 

 

 

Figure 18. Tracking errors of the FF–FB control scheme compared to other control schemes on data 

E. 

Table 7. Performance comparisons of different control schemes for dataset E. 

Control Scheme 
No. of  

Discretization Elements 

RMSE 

(µm) 

RMSE Percentage % to 

Travel Range 

Maximum  

Execution Time of 

One Step (ms) 

FF scheme with Preisach 1275 0.4981 1.4229 1.84 

FF scheme with Preisach 5050 overrun overrun overrun 

FF scheme with Preisach 7260 overrun overrun overrun 

FF with LSSVM-NARX  - 0.1572 0.4491 0.78 

The proposed FF scheme 21 0.0483 0.0683 0.55 

The proposed FF scheme 28 0.0456 0.0760 0.84 

The proposed FF scheme 36 0.0413 0.0883 1.21 

The proposed FF scheme 55 0.0361 0.1031 1.64 

The proposed FF scheme 78 overrun overrun overrun 

The proposed FF scheme 91 overrun overrun overrun 

The proposed FF scheme 105 overrun overrun overrun 

The proposed FF–FB scheme 55 0.0267 0.0763 1.66 

To evaluate the accuracy of our approach, we present a comparison of our results 

with those presented in previous studies in the area of control of piezoelectric actuators 

in the literature. The comparison is presented in terms of RMSEs, as in Table 8. The ap-

proach that uses LSSVM without modeling hysteresis has the highest tracking error (0.62 

μm), whereas the control approach that uses the inverse LSSVM model with the NARX 

model for hysteresis mapping has presented better results (0.03 μm). The improved ver-

sion of the classical Preisach has an RMSE of 0.15 and is better than the RNN model (0.465 

μm). On the contrary, the tracking result for our proposed approach which uses an 

LSSVM model and hysteresis operators is superior and more accurate as its error is the 

best among the others (0.0232 μm). The results in this paper showed that, compared to 

other considered control methods and previous studies in the literature, the proposed 

control strategy: (1) has lower generalization errors; (2) achieves better tracking perfor-

mance with a smaller number of stop operators; and (3) reduces the controller complexity 

compared to Preisach-based control. Therefore, we can say that the inverse PSO-LSSVM 

model combined with a PID feedback controller is an effective control scheme for reduc-

ing the hysteresis effects in the piezoelectric actuators. 

  

Figure 18. Tracking errors of the FF–FB control scheme compared to other control schemes on data E.

Table 7. Performance comparisons of different control schemes for dataset E.

Control Scheme No. of
Discretization Elements

RMSE
(µm)

RMSE Percentage %
to Travel Range

Maximum
Execution Time of

One Step (ms)

FF scheme with Preisach 1275 0.4981 1.4229 1.84
FF scheme with Preisach 5050 overrun overrun overrun
FF scheme with Preisach 7260 overrun overrun overrun
FF with LSSVM-NARX - 0.1572 0.4491 0.78

The proposed FF scheme 21 0.0483 0.0683 0.55
The proposed FF scheme 28 0.0456 0.0760 0.84
The proposed FF scheme 36 0.0413 0.0883 1.21
The proposed FF scheme 55 0.0361 0.1031 1.64
The proposed FF scheme 78 overrun overrun overrun
The proposed FF scheme 91 overrun overrun overrun
The proposed FF scheme 105 overrun overrun overrun

The proposed FF–FB scheme 55 0.0267 0.0763 1.66

To evaluate the accuracy of our approach, we present a comparison of our results with
those presented in previous studies in the area of control of piezoelectric actuators in the
literature. The comparison is presented in terms of RMSEs, as in Table 8. The approach
that uses LSSVM without modeling hysteresis has the highest tracking error (0.62 µm),
whereas the control approach that uses the inverse LSSVM model with the NARX model
for hysteresis mapping has presented better results (0.03 µm). The improved version of the
classical Preisach has an RMSE of 0.15 and is better than the RNN model (0.465 µm). On the
contrary, the tracking result for our proposed approach which uses an LSSVM model and
hysteresis operators is superior and more accurate as its error is the best among the others
(0.0232 µm). The results in this paper showed that, compared to other considered control
methods and previous studies in the literature, the proposed control strategy: (1) has lower
generalization errors; (2) achieves better tracking performance with a smaller number
of stop operators; and (3) reduces the controller complexity compared to Preisach-based
control. Therefore, we can say that the inverse PSO-LSSVM model combined with a PID
feedback controller is an effective control scheme for reducing the hysteresis effects in the
piezoelectric actuators.
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Table 8. Comparison between the proposed method and previous studies.

Contributor Method RMSE

Yongcheng Xiong et al. [21] FF control using recurrent neural networks (PEA-RNN) 0.465

Wei Tech Ang et al. [16] FF control using the inverse of the improved Preisach
(P-I) model using a linear function. 0.15

Qingsong Xu [30] FF–FB control using LSSVM Without Modeling
Hysteresis Inverse. 0.62

Liangsong Huang et al. [28] FF–FB control using the inverse LSSVM-NARX model
optimized by colony algorithm and PID controller. 0.03

The proposed method FF–FB control using PSO-LSSVM with hysteresis operators
and incremental PID controller. 0.0232

5. Conclusions

In this paper, the LSSVM model has been extended to include the case of the rate-
dependent hysteresis behavior of piezoelectric actuators. The basic idea is that the learning
and generalization capabilities of the proposed model are improved using a discrete mem-
ory structure and a kernel-based learning method. For this purpose, the stop hysteresis
operators have been first proposed to provide a one-to-one mapping; then, the PSO-LSSVM
model has been used for highly accurate training. Different datasets with a variety of
hysteresis loops have been used for a more efficient evaluation of the proposed model.
The simulation results demonstrated that the proposed model has significantly better
generalization capability than the classical Preisach and LSSVM-NARX models. In addi-
tion, the proposed LSSVM model has a reasonable time cost due to the reduced number
of stop operators required. Based on the inverse LSSVM model, two control schemes
have been proposed and investigated through real-time experiments. The experimental
results indicated that the combination of feedforward control and PID feedback control
outperformed the feedforward control scheme in terms of tracking performance. Moreover,
compared with control schemes based on the classical Preisach, which has produced RMSE
of 0.498 µm and execution time of 1.84 ms, and LSSVM-NARX-based, which has produced
RMSE of 0.1572 µm and execution time of 0.78, the proposed PSO-LSSVM/PID control
scheme has the advantage of lower position error (RMSE = 0.0267 µm) with reasonable
time complexity (execution time = 1.66).

The obtained results of this paper can be further improved with a sufficiently large
numbers of hysteresis operators and training samples, and this in turn leads to higher time
complexities and limits the practicability of the developed scheme. The control task also
becomes more complex in the presence of cross-coupling effects in multiple axes systems.
These issues should be the subject of future research.
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