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Abstract: In this paper, we consider the robust stabilization control problem of underactuated trans-
lational oscillator with a rotating actuator (TORA) system in the presence of unknown matched
disturbances by employing continuous control inputs. A nonlinear continuous robust control ap-
proach is proposed by integrating the techniques of backstepping and linear extended state observer
(LESO). Specifically, based on the backstepping design methodology, a hyperbolic tangent virtual
control law is designed for the first subsystem of the cascaded TORA model, via which an integral
chain error subsystem is subsequently constructed and the well-known LESO technique is easy to
implement. Then, an LEO is designed to estimate the lumped matched disturbances in real-time, and
the influence of the disturbances is compensated by augmenting the feedback controller with the dis-
turbance estimation. The convergence and stability of the entire control system are rigorously proved
by utilizing Lyapunov theory and LaSalle’s invariance principle. Unlike some existing methods, the
proposed controller is capable of generating robust and continuous control inputs, which guarantee
that both the rotation and translation of TORA systems are stabilized at the origin simultaneously and
smoothly, attenuating the influence of disturbances. Comparative simulation results are presented to
demonstrate the effectiveness and superior control performance of the proposed method.

Keywords: underactuated mechanical systems; TORA; linear extended state observer (LESO);
backstepping; stabilization

1. Introduction

As a typical underactuated mechanical system [1–6], the translational oscillator with a
rotating actuator (TORA) is composed of an unactuated translational trolley and an actuated
rotational eccentric ball. It is thus featured by the characteristics of strong coupling and
high nonlinearity, and often used as a benchmark system for the design and performance
test of various nonlinear control algorithms [7–9]. In addition, the TORA system is also
used in engineering as an active mass damper (AMD) for the active vibration suppression
of large engineering systems [10–12], such as super high-rise buildings, long-span bridges,
offshore floating wind turbines, etc. Furthermore, after some extensions, it can also be
used to study the self-synchronized phenomenon of many mechanical systems [13,14],
e.g., vibration sifters, hands-held vibration tools, vibration conveyors, etc. Therefore, the
study of TORA systems is of great both theoretical and practical significance.

However, the stabilization control of TORA systems is very challenging because the
trolley and the ball need to be stabilized simultaneously using only one actuator (control
input). To achieve the stabilization objective, scholars have conducted extensive and in-
depth research, and published many ambitious achievements in the past decades [15–22].
Roughly speaking, the obtained results can be classified into three categories: passivity-
based control method, cascade-based control method, and other advanced/intelligent
control method.
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The passivity-based control method is to construct a control Lyapunov function ac-
cording to the passivity property of TORA systems and design a controller by making the
derivative of the Lyapunov function negative. In [23], the passivity property of TORA
systems is analyzed, based on which an energy control Lyapunov function is constructed,
and a simple state feedback controller is designed. In [24], a passivity-based adaptive
controller with an online observation mechanism is proposed. In [25], an output feedback
passive control method using energy shaping and damping injection techniques is pre-
sented. In [26], a virtual angular velocity feedback signal is constructed and an output
feedback global stabilization control method is proposed. More recently, based on the
virtual feedback signal, the authors in [27] improve the energy function and present an
output feedback control method that can avoid the phenomenon of small ball circulation.

The cascade-based control method requires a coordinate transformation to convert the
TORA model into a cascaded form. Due to the simple structure of the cascaded system,
the recursive backstepping technique can be easily applied to design a stable controller.
This merit makes the cascade-based method extremely favored by scholars. For example,
the TORA systems in [28] are transformed into a strict feedback cascaded form by using
a global coordinate transformation, and then an integral backstepping control method is
proposed. In [29], the state variables are treated as virtual control inputs and a nonlinear
backstepping controller is designed. Considering the drawback of “explosion of complexity”
in the backstepping design procedure, a nonlinear dynamic surface controller is designed
through a collocated partial feedback linearization and a global change of coordinates [30].
In [31], an adaptive backstepping control scheme is proposed and a TORA experimental
implementation is introduced.

It should be noted that most of the above literature does not consider the influence
of unknown disturbances. To deal with uncertainties, some advanced/intelligent control
techniques such as equivalent input disturbance (EID) [32], adaptive control [33], fuzzy con-
trol [34], and neural network [31] have been employed to improve the robustness of TORA
systems. However, these methods require either prior knowledge of the system model
or online learning mechanisms, which make the developed control algorithms not only
computationally expensive but also very difficult for engineering applications. Moreover,
by combining the sliding mode control with the observer technique, many composite con-
trol schemes have been proposed. For example, two nonlinear disturbance observer-based
sliding mode control approaches are presented in [35,36], where the nonlinear disturbance
observers are used to estimate unknown external disturbances and compensate for their
effects, and the sliding mode controllers are designed to stabilize the system. Nevertheless,
the inherent chattering problem of the sliding mode control cannot be avoided, and the
generated control signals are discontinuous.

Based upon the above analysis of the current research status of TORA systems, it is
noted that there are still some open problems worthy of being further investigated, which
are summarized as follows.

(1) The control algorithms developed by the passivity-based control method are compu-
tationally simple but they are difficult to deal with unknown disturbances. In other
words, when these controllers are applied for TORA systems in practice where un-
known disturbances widely exist, the control performances of the controllers would
deteriorate and even unstable results may be caused.

(2) By introducing a coordinate transformation, the model of TORA systems becomes a
relatively simple cascaded form, based on which the uncertain issue can be addressed
by incorporating neural network/fuzzy system or sliding model control techniques.
However, the transient control performances of the control system under these control
schemes cannot be guaranteed as the corresponding inherent problems of computa-
tional complexity and chatting phenomenon cannot be avoided.

To tackle the above issues, this paper investigates the stabilization control problem of
TORA systems suffering from unknown lumped matched disturbances. A novel continu-
ous robust control approach is proposed by integrating the techniques of backstepping and
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linear extended state observer (LESO). Firstly, the TORA dynamics with matched distur-
bances are transformed into a cascaded form through a series of coordinate transformations.
Then, a hyperbolic tangent virtual control law is designed for the first subsystem of the
cascaded model based on the backstepping design technique. After that, an integral chain
error subsystem under the virtual control law is constructed, and an LESO is designed
to estimate the unknown disturbances. Based on the estimation of the LESO, a nonlinear
state feedback control law with a compensation term is derived subsequently. Finally,
the stability of the resulting control system is proved by using strict mathematical analysis,
and numerical simulations with comparisons to the existing method are conducted to
demonstrate the effectiveness and superiority of the proposed method.

To sum up, the main contributions and novel features of this paper are underlined as
follows.

(1) By borrowing the idea from the backstepping methodology, a hyperbolic tangent
virtual control law is designed to obtain an integral chain error subsystem, which
makes the well-known LESO technique easy to implement for the control design of
TORA systems.

(2) By employing the LESO, the unknown lumped matched disturbances are accurately
estimated and timely compensated by augmenting the feedback controller with the es-
timate of disturbances, which guarantees the controller a strong robustness against dis-
turbances.

(3) Unlike some existing intelligent or sliding model control methods, the developed
controller can generate robust and continuous control inputs to stabilize the rotation
and translation of TORA systems smoothly and efficiently, without any learning
mechanisms.

The remainder of this paper is organized as follows. The dynamics of an underac-
tuated TORA system and the corresponding control problem are presented in Section 2.
In Section 3, the detailed designs of the control approach, including a virtual control law,
a LESO, and a continuous nonlinear feedback control law are described. The stability anal-
ysis of the closed-loop system is given in Section 4. Simulation results with comparisons
are shown in Section 5. The main concluding remarks are ended in Section 6.

2. Control Problem Formulation

This paper focuses on the stabilization control problem of an underactuated horizontal
TORA system subject to unknown matched disturbances. The physical structure of the
TORA system is shown in Figure 1, and the physical parameters are given in Table 1.

Figure 1. Physical structure diagram of an underactuated horizontal TORA system.

According to Euler–Lagrange modeling method, the dynamic equations of the TORA
system are mathematically obtained as [18]{

(M + m)ẍ + mrθ̈ cos θ −mrθ̇2 sin θ + kx = 0
mrẍ cos θ + (mr2 + J)θ̈ = τ + d

(1)
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where d denotes the sum of matched unknown disturbances. In practice, it is mainly
determined by the friction term and the bounded external disturbances.

Table 1. Physical parameters and variables of the TORA system.

Parameters/Variables Meaning Unit

M Mass of the translational trolley kg
m Mass of the rotational ball kg
k Stiffness coefficient of the spring N/m
r Rotational radius of the ball m
x Translational displacement of the trolley m
θ Rotational angle of the ball with respect to the vertical position rad
J Moment of inertia of the ball kg ·m2

τ Control torque applied on the ball N ·m

To facilitate the controller design and stability analysis, the following dimensionless
auxiliary variables are introduced [17]:

χ =

√
M + m
mr2 + J

x, u =
M + m

k(mr2 + J)
τ, ε =

mr√
(mr2 + J)(M + m)

T =

√
k

M + m
t, dτ =

M + m
k(mr2 + J)

d

(2)

where T represents the dimensionless time, χ is the dimensionless trolley displacement,
u is the dimensionless control torque, and dτ is the dimensionless lumped disturbance.
For the simplicity of notation, unless otherwise specified, the expression of “time” herein
stands for “the dimensionless time”.

According to the introduced dimensionless variables in (2), the dynamics (1) can be
rewritten as {

χ̈ + χ + ε(θ̈ cos θ − θ̇2 sin θ) = 0
θ̈ + εχ̈ cos θ = u + dτ

(3)

Define the following variable transformations [35]:

ξ1 = χ + ε sin θ, ξ2 = χ̇ + εθ̇ cos θ, y1 = θ, y2 = θ̇ (4)

then the dynamic Equation (3) is rearranged as the following cascaded form:{
ξ̇1 = ξ2

ξ̇2 = −ξ1 + ε sin y1
(5)


ẏ1 = y2

ẏ2 =
δ1 + u + dτ

δ2

(6)

where
δ1 = ε cos y1[ξ1 − (1 + y2

2)ε sin y1]

δ2 = 1− ε2 cos2 y1
(7)

Note that 0 < ε < 1, which indicates that δ2 > 0.
Therefore, the control problem of this paper is formulated as: Consider the TORA sys-

tem described by Equations (5) and (6) in the presence of unknown matched disturbances.
Design a proper controller u such that the TORA system is stabilized at the equilibrium
point, that is,

lim
T→∞

[ξ1 ξ2 y1 y2]
> = [0 0 0 0]> (8)
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which, applying the transformations (2) and (4), is equivalent to

lim
T→∞

[χ χ̇ θ θ̇]> = [0 0 0 0]> (9)

and
lim

T→∞
[x ẋ θ θ̇]> = [0 0 0 0]> (10)

3. LESO-Based Backstepping Controller Design

In this section, to achieve the above control objective, a virtual control law is firstly
designed for the subsystem (5) based on the methodology of backstepping, and then a
linear extended state observer (LESO) is employed to estimate the unknown disturbances
based on which a state feedback control law is finally developed.

3.1. Virtual Control Law

Motivated by the control idea of backstepping methodology, the variable y1 can be
considered as the control input of subsystem (5), and a virtual control law defined as y1d
is designed to stabilize ξ1 and ξ2. To this end, the following control Lyapunov function is
constructed:

V1 =
1
2

ξ1
2 +

1
2

ξ2
2 (11)

Taking the time derivative of (11) along (5) yields

V̇1 = ξ1ξ̇1 + ξ2ξ̇2 = ξ1ξ2 + ξ2(−ξ1 + ε sin y1d) = ξ2ε sin y1d (12)

In order to make V̇1 negative, the virtual control law y1d is designed as

y1d = − tanh (αξ2) (13)

where α is a positive constant. The deviation between y1 and y1d is defined as

e1 = y1 − y1d = y1 + tanh (αξ2) (14)

Calculating the first and second-time derivatives of (14) yields
ė1 = e2

ë1 =
δ1 + u + dτ

δ2
− ÿ1d

(15)

where ẏ1d and ÿ1d can be expressed explicitly as

ẏ1d =α(ξ1 − ε sin y1)
(

1− tanh2(αξ2)
)

ÿ1d =
(

α(ξ2 − εy2 cos y1)− 2α2(ξ1 − tanh(αξ2))
)(

1− tanh2(αξ2)
) (16)

Letting [e2 ė2]
> = [ė1 ë1]

> and using (14)–(16), the cascaded model (5) and (6) of the
TORA system can be written as{

ξ̇1 = ξ2

ξ̇2 = −ξ1 + ε sin (e1 + y1d)
(17)

and 
ė1 = e2

ė2 =
δ1 + u + dτ

δ2
− ÿ1d

(18)
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Remark 1. Note that by designing the virtual control law (13), a simple integral chain error
subsystem is obtained as (18). It will prove in Section 4 that if a proper controller u is designed such
that the error subsystem (18) is stabilized at the origin, then the subsystem (17) is also stabilized
at the origin; that is, the control objective is realized. However, there exists an unknown matched
disturbance dτ in Equation (18), which makes the controller design quite difficult. To address this
problem, a linear extended state observer (LESO) is employed to estimate the unknown disturbance
in real-time and the estimation value is fed back to the controller to compensate for its effect. This is
the basic idea of the proposed control method.

3.2. Linear Extended State Observer (LESO)

As a crucial part of the active disturbance rejection control (ADRC), extended state
observer (ESO) is an effective and practical disturbance estimation and attenuation ap-
proach [37,38]. To make the controller easy to implement, a linear ESO (LESO) is proposed
in [39], where nonlinear gains are replaced with linear ones. Due to this promising feature,
LESO has already been widely applied in many engineering control systems.

To implement the LESO technique, the subsystem (18) is further rearranged as

ė1 = e2

ė2 =
δ1

δ2
+

1
δ2

u− ÿ1d + dn

dn =
dτ

δ2

(19)

Letting [z1 z2 z3]
> = [e1 e2 dn]>, Equation (19) is written as

ż1 = z2

ż2 =
δ1

δ2
+

1
δ2

u− ÿ1d + z3

ż3 = h

(20)

where h is the change rate of the lumped disturbance, i.e., h = ḋn and it is assumed to be
an unknown but bounded function. Then, the LESO of the system (20) is designed as

es1 = ẑ1 − z1
˙̂z1 = ẑ2 − β1es1

˙̂z2 = ẑ3 − β2es1 +
δ1

δ2
+

u
δ2
− ÿ1d

˙̂z3 = −β3es1

(21)

where ẑi(i = 1, 2, 3) are the estimate values of zi, and the quantities βi(i = 1, 2, 3) are the
observer gains, which, for the sake of stability, should be chosen such that

s3 + β1s2 + β2s + β3 = (s + ωo)
3 (22)

where ω0 > 0 is the adjustable error feedback gain, which is also called the bandwidth of
the LESO. From (22), the gains of the LESO are selected as[

β1 β2 β3
]>

=
[
3ωo 3ω2

o ω3
o
]> (23)

Combining (20) and (21), the error dynamics of the LESO is obtained as
ės1 = es2 − β1es1

ės2 = es3 − β2es1

ės3 = −h− β3es1

(24)
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where esi = ẑi − zi(i = 1, 2, 3) are the estimation errors.

3.3. Continuous Nonlinear Feedback Control Law

Based on the virtual control law (13) and the LESO (21), we are ready to design a
feedback control law to stabilize the subsystem (18), which is equivalent to (20). To this
end, the following control Lyapunov function is constructed:

V2 =
1
2

z1
2 +

1
2

z2
2 (25)

Taking the time derivative of (25) along (20) yields

V̇2 = z1z2 + z2ż2 = z2

[
z1 +

δ1

δ2
+

1
δ2

u− ÿ1d + z3

]
(26)

To make V̇2 negative, a nonlinear state feedback control law is designed as

u = −
(

k1z2 + z1 + ẑ3 +
δ1

δ2
− ÿ1d

)
δ2 (27)

where k1 > 0 is the control gain.
So far, the designed controller is made up of the virtual control law (13), the LESO (21),

and the nonlinear feedback control law (27). The block diagram of the control system is
shown in Figure 2.

TORA

Variable 

Transformations

Feedback 

Control Law

LESO

Virtual 

Control Law

Subsystem 

(6)

Subsystem 

(5)

−

−

Cascaded Form of TORA

Figure 2. Block diagram of the closed-loop TORA control system.

Remark 2. It can be seen from Equation (27) and Figure 2 that the structure of the proposed
controller, compared with other methods like [17,35], is relatively simple, which only needs the state
feedback signals z1, z2, the estimate ẑ3, and the virtual control signal ÿd. The estimate signal ẑ3
comes from the LESO, which is used to timely compensate for the effect of the unknown disturbance
dτ . In addition, unlike the methods using sliding mode control (SMC), where the inherent chattering
phenomenon cannot be eliminated, the proposed controller can generate a continuous control signal,
which would achieve a smooth and robust control performance. This merit will be further verified
through comparison simulation studies in Section 5.

4. Stability Analysis

In this section, the convergence of the estimation errors of the proposed LESO (21)
is first analyzed from the error dynamics (25) using Lyapunov stability theory. Then,
the stability of the resulting TORA control system (5) and (6) under the virtual control
law (13), the feedback control law (27) and the LESO (21) is rigorously proved by using
LaSalle’s invariance principle.
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To facilitate the stability analysis, the following assumptions are made for the TORA
system.

Assumption 1 ([35]). The first order derivatives of the unknown matched disturbances dτ and dn
are bounded, i.e., ∥∥ḋτ

∥∥ 6 σp, ‖h‖ =
∥∥ḋn

∥∥ 6 σes (28)

where σp and σes are positive constants.

Theorem 1. Consider the proposed LESO (21) for subsystem (20), if Assumption 1 holds, then the
estimation error of the LESO is bounded, and satisfies

lim
ωo→∞, T→∞

‖es‖ = 0 (29)

where es =
[
es1 es2 es3

]>.

Proof. Letting ηi =
esi
ωi

o
(i = 1, 2, 3), Equation (24) is written as


η̇1 = ωo(η2 − 3η1)

η̇2 = ωo(η3 − 3η1)

η̇3 = ωo

(
− h

ω4
o
− η1

) (30)

Rewriting Equation (30) into a compact form obtains

η̇ = ωo Aηη + Bη
h

ω3
o

(31)

where η =
[
η1 η2 η 3

]>,

Aη =

−3 1 0
−3 0 1
−1 0 0

, Bη =

 0
0
−1

 (32)

It can be seen from Equations (22) and (31) that, for any ωo > 0, Aη is obtained as (32),
which is a Hurwitz matrix, thus select a Lyapunov function as

V(η) = η>Pηη (33)

where Pη is a positive definite symmetric matrix and satisfies Aη
>Pη + Pη Aη = −Qη .

Taking the time derivative of V(η) along (32) and using Assumption 1 yields

V̇(η) = −ωoη>Qηη + 2η>Pη Bη
h

ω3
o
6 −ωoλmin

(
Qη

)
‖η‖2 +

2σesλmax
(

Pη

)
‖η‖

ω3
o

(34)

For V(η), there exists λmin
(

Pη

)
‖η‖2 6 V(η) 6 λmax

(
Pη

)
‖η‖2, i.e.,

V(η)

λmax
(

Pη

) 6 ‖η‖2 6
V(η)

λmin
(

Pη

) (35)

Substituting (35) into (34) yields

V̇(η) 6 −ωo
λmin

(
Qη

)
λmax

(
Pη

)V(η) +
2σesλmax

(
Pη

)
ω3

o

√
λmin

(
Pη

)√V(η) (36)
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Letting W =
√

V(η), it obtains that Ẇ = V̇(η)

2
√

V(η)
. Substituting it into (36) yields

Ẇ 6 −ωo
λmin

(
Qη

)
2λmax

(
Pη

)W +
σesλmax

(
Pη

)
ω3

o

√
λmin

(
Pη

) (37)

According to Gronwall–Bellman inequality [40], it follows from (37) that

W 6−

 2σesλ2
max
(

Pη

)
ω4

o

√
λmin

(
Pη

)
λmin

(
Qη

) −W(T0)

 · e−ωo
λmin(Qη)
2λmax(Pη)

(T−T0)

+
2σesλ2

max
(

Pη

)
ω4

o

√
λmin

(
Pη

)
λmin

(
Qη

)
(38)

Combining (35) and (38), it is then obtained that

‖η‖ 6
√

V(η)√
λmin

(
Pη

) 6
2σesλ2

max
(

Pη

)
ω4

o λmin
(

Pη

)
λmin

(
Qη

) =
Me

ω4
o

, (T → ∞) (39)

where Me =
2σesλ2

max(Pη)
λmin(Pη)λmin(Qη)

> 0. Since Pη and Qη are both irrelevant to ωo, it follows

from (39) that
lim

ωo→∞, T→∞
‖η‖ = 0 (40)

By noticing ηi =
esi
ωoi

(i = 1, 2, 3), it obtains

lim
ωo→∞, T→∞

‖es‖ = 0 (41)

which means that the estimation error of the LESO can be made arbitrarily small by
increasing the value of ωo. This completes the proof.

Theorem 2. Consider the cascade TORA system (5) and (6) in the presence of unknown lumped
disturbance dτ . Design the controller as (27) with (13) and the LESO as (21). If the control gain is
selected satisfying k1 > 1

2 , then all the state variables remain bounded, and the system is stabilized
at the target position, i.e.,

lim
t→∞

[ξ1 ξ2 y1 y2]
> = [0 0 0 0]> (42)

Proof. First of all, the stability of system (20) is proven. Substituting (27) into (26) yields

V̇2 = −k1z2
2 + z2(z3 − ẑ3) = −k1z2

2 + z2es3 (43)

Using Young’s inequality [41], it obtains

V̇2 6 −k1z2
2 +

1
2

z2
2 +

1
2

es3
2 = −

(
k1 −

1
2

)
z2

2 +
1
2

es3
2 (44)

According to Theorem 1, noting that lim
T→∞
‖es‖ = 0, if the control gain is selected satis-

fying k1 > 1
2 , then V̇2 6 0, which leads to lim

T→∞
z2 = 0. Employing LaSalle’s invariance

principle [40], it is straightforward to obtain

lim
T→∞

[z1 z2]
> = [0 0]> ⇒ lim

T→∞
[e1 e2]

> = [0 0]> (45)
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Then, the stability of the subsystem (17) is analyzed. Applying (45), it assumes that
e1 = 0, then the subsystem (17) becomes{

ξ̇1 = ξ2

ξ̇2 = −ξ1 + ε sin y1d
(46)

Note that the control Lyapunov function defined in (11) is

V1 =
1
2

ξ1
2 +

1
2

ξ2
2 (47)

Taking the time derivative of (47) along (46) and using (13) yields

V̇1 = −ξ2ε sin[tanh(αξ2)] ≤ 0 (48)

where ε > 0, α > 0, and the following properties of a generalized hyperbolic tangent
function y = tanh(s) have been utilized.

y ∈ (−1, 1)
tanh(0) = 0
s · tanh(s) ≥ 0

(49)

It follows from (48) that the closed-loop subsystem (46) under (13) is stable in the sense of
Lyapunov, and all the state variables are bounded, i.e.,

V1 ≤ V1(0) ∈ L∞ ⇒ ξ1, ξ2, y1d ∈ L∞ (50)

However, there is no guarantee that the state variables converge to zeros as V1 is nega-
tive semi-definite.

To further prove the asymptotic convergence of the state variables, define the following
invariant set

Ω = {(ξ1, ξ2)|V1 ≤ V1(0)} (51)

Let ΩM be the largest invariant set contained in Ω:

ΩM =
{
(ξ1, ξ2)

∣∣V̇1 = 0
}

(52)

When V̇1 = 0, it follows from (48) that

ξ2 = 0⇒ ξ̇2 = 0 (53)

Further, substituting (53) into (13) and (46) yields

ξ̇1 = 0, y1d = 0⇒ ξ1 = 0 (54)

As the set ΩM is only made up of one point, according to LaSalle’s invariance theorem, it
concludes that the subsystem (17) is globally asymptotically stable at the origin, i.e.,

lim
T→∞

[
ξ1 ξ2

]>
=
[
0 0

]> (55)

Finally, it needs to analyze the convergence of the entire cascade system consisting of
(17) and (18). Based on the above stability analysis, it is known that both the subsystem
(17) and the subsystem (18) are globally asymptotically stable at the origin. Moreover,
the right side of (17) is globally Lipschitz and bounded. By invoking Theorem 6.2 in [42], it
concludes that the entire system is asymptotically stable at the equilibrium point, i.e.,

lim
T→∞

[
ξ1 ξ2 e1 e2

]>
=
[
0 0 0 0

]> (56)
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which, by utilizing (14), is equivalent to

lim
T→∞

[
ξ1 ξ2 y1 y2

]>
=
[
0 0 0 0

]> (57)

Therefore, the control objective of the TORA system is realized and the proof of the Theo-
rem 2 is completed.

5. Simulation Results

In this section, the effectiveness of the proposed control scheme is validated by nu-
merical simulations in the MATLAB/Simulink platform. Moreover, the superior control
performance of the devised controller is discussed by a series of comparison results with
the sliding mode (SMC) controller proposed in [35].

During the simulation, the system parameter of the dimensionless model (3) is set as
ε = 0.2. By trial and error, the gains of the proposed controller in (13) and (27) are chosen
as α = 2.4, k1 = 3. The bandwidth of the LESO in (21) is ω0 = 10, and the gains of the
LESO are obtained from (23) as β1 = 30, β2 = 300, β3 = 1000. To ensure fair comparison,
the control parameters of the comparative controller are chosen as the same as [35].

5.1. Case 1: Robustness to Continuous Disturbance

First of all, without loss of generality, the following continuous disturbance is im-
posed on the system, and the initial state of the system is set to be [χ χ̇ θ θ̇]> =

[1 0 0 0]>.

dτ =
10 sin t

(10 + 0.5t2)
(58)

The simulation results of the TORA system under the two controllers are depicted in
Figures 3–5, which record the curves of the dimensionless trolley displacement, the ball
rotational angle, and the dimensionless control input, respectively.

10 20 30 40 500

0.5

0

-0.5

-1.0

1.0
10 20 30 40 50

0.5

0

-0.5

-1.0

1.0

0

T

27

33

(a)

(b)

Figure 3. Curves of the dimensionless trolley displacement with a continuous disturbance [(a) Pro-
posed method; (b) Method in [35]].
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Figure 4. Curves of the dimensionless ball rotational angle with a continuous disturbance [(a) Pro-
posed method; (b) Method in [35]].
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Figure 5. Curves of the dimensionless control input with a continuous disturbance [(a) Proposed
method; (b) Method in [35]].

From Figures 3–5, it is observed that the trolley and the ball of the TORA system under
the two controllers are stabilized at the equilibrium point. However, from Figures 3 and 4,
we find that the settling time the proposed method, which is about 27, is much shorter
than that (about 33) of the SMC controller in [35]. In addition, from Figure 5, it can be
seen that there exists a serious chattering phenomenon in the SMC controller. In contrast,
the controller proposed in this paper generates a continuous and smooth control input
signal. These results demonstrate that the proposed control scheme achieves a faster and
smoother control performance in the presence of continuous disturbance.

5.2. Case 2: Robustness Test to Different Disturbances

To further examine the robustness of the controllers to different disturbances, two
different disturbances are imposed on the TORA system. The first one is a pulse with an
amplitude of 3, which is added between the interval 6 and 6.2. Another one is a sinusoid
disturbance with an amplitude of 3, which is added from 20 to 30. The initial state of the
system is selected as [χ χ̇ θ θ̇]> = [0 0 0 0]>.

The simulation results of the TORA system under the two controllers are shown in
Figures 6–8. It can be seen from Figures 6 and 7 that the states of the TORA system are
affected by the external disturbances and deviate from the equilibrium position. How-
ever, soon, both the two controllers can attenuate the disturbances and be re-stabilize the
system at the equilibrium point. However, by comparing the results in Figures 6 and 7, it is



Actuators 2022, 11, 220 13 of 17

found that the resettling time and the deviation magnitudes of the trolley displacement and
the ball rotational angle with the proposed controller are smaller than those of the SMC
method in [35]. In addition, from Figure 8, it is also seen that there exists a serious chattering
phenomenon in the SMC controller, while the control input of the proposed controller is
continuous and smooth. This group of simulation results demonstrates that the proposed
control scheme achieves stronger and smoother robustness to external disturbances.
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0.1
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Figure 6. Robustness test results of the dimensionless trolley displacement under different exter-
nal disturbances [(a) Proposed method; (b) Method in [35]].
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Figure 7. Robustness test results of the ball rotational angle under different external disturbances
[(a) Proposed method; (b) Method in [35]].
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Figure 8. Robustness test results of the dimensionless control input [(a) Proposed method; (b) Method
in [35]].

5.3. Estimation Performance of LESO

Finally, the estimation performance of the proposed LESO to the disturbances in the
previous two cases are examined. To facilitate the analysis, the estimation error of the LESO
is redefined as

d̃n = dn − d̂n (59)

The obtained results of the two groups are shown in Figures 9 and 10, respectively.
From these figures, it can be observed that as the time approaches infinity, the estimation
errors approach zeros, and the proposed LESO can accurately estimate the uncertain
disturbances. These simulation results demonstrate that the proposed LESO achieves a
satisfactory estimation performance.

It should be noted that the parameters of the LESO are selected by regulating the band-
width wo according to (23). Generally speaking, increasing the bandwidth wo would obtain
a fast and good observation ability of the LESO but will result in a peaking phenomenon or
serious oscillation. Therefore, a good wo should be carefully selected by trial and error.
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Figure 9. Estimation performance of LESO to the disturbance in Case 1.
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Figure 10. Estimation performance of LESO to the disturbance in Case 2.

6. Conclusions

This paper has proposed a nonlinear continuous robust control approach for the sta-
bilization of underactuated TORA systems with unknown matched disturbances. The
proposed control approach consists of backstepping virtual control law, a LESO, and a
nonlinear state feedback control law. The proposed control algorithm can estimate and
compensate the unknown disturbances in real-time, ensuring strong robustness to distur-
bances. In addition, it is capable of generating continuous control signals. The convergence
and stability of the entire control system are rigorously guaranteed by Lyapunov theory
and LaSalle’s invariance principle. Simulation results with comparisons to the existing
method show that the proposed approach achieves a better control performance, including
shorter settling time, and smoother and stronger robustness to unknown disturbances.

It is worth noticing that only matched disturbances are taken in account in this paper.
As stated in [17], for underactuated TORA systems with both matched and mismatched
disturbances, there does not exist a feedback controller that can asymptotically stabilize
all the state variables at the origin simultaneously. Therefore, the stabilization of TORA
systems in the presence of matched and mismatched disturbances is still very challenging
and needs to be further investigated in our future work.
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