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Abstract: Electromechanical actuators (EMAs), as the critical actuator system of next-generation
aircraft, have attracted the attention of many institutions and enterprises around the world. However,
due to harsh working conditions, their reliability cannot satisfy the requirements of widespread
application in aircraft. Therefore, in order to conduct fault diagnosis on EMAs, in this paper, we
establish a comprehensive dynamic model under numerous assumptions to study the fault charac-
teristics that may occur in the displacement and acceleration responses of EMA systems. First, an
eight-DOF dynamic model containing typical mechanical components of an EMA is established. Then,
by obtaining the impact forces between balls and the spalling fault and the nonlinear relationship
between the total elastic restoring forces and the change of ball deformation when the fault occurs,
a faulty dynamic model is established. Comparison of the simulation results between the normal
and faulty model reveals that the acceleration amplitude at the third harmonic of the ball passage
frequency increases when fault occurs. Based on this phenomenon, a numerical calculation method of
fault characteristics is proposed. Finally, the effectiveness of the established models and the identified
phenomenon are verified by experiments conducted on an EMA test rig in a laboratory environment.

Keywords: electromechanical actuators; dynamic modeling; ball-screw pairs; bearings; fault diagnosis;
feature extraction

1. Introduction

With the advantage of reducing or even eliminating complicated hydraulic systems,
more electric aircraft (MEA) and all-electric aircraft (AEA) have become research hotspots
recently. As the critical actuator system of MEA or AEA, electromechanical actuators
(EMAs) have also attracted the attention of many institutions and enterprises around the
world. However, due to harsh operating conditions and the insufficient technological ma-
turity of EMAs, their reliability cannot satisfy the requirements of widespread application
in the field of aviation.

The common fault modes of EMAs include motor faults, power-drive electric (PDE)
faults, mechanical faults and sensor faults [1,2]. Among all common fault modes of EMAs,
mechanical faults are generally considered the most concerning [3] because failure of
mechanical transmission may lead to jamming of the whole actuator system or even
disastrous consequences, such as loss of control of the flap or the rudder and unstoppable
diving of an aircraft. Therefore, it is necessary to conduct condition-based maintenance
(CBM) and fault diagnosis on EMA mechanical transmissions.

Some research has been conducted on EMA mechanical faults. The NASA Ames Re-
search Center established a flyable electromechanical actuator (FLEA) test stand and carried
out a series of experiments on ball-screw spalling faults, jamming faults, motor faults and
sensor faults [4–7]. The database established by the FLEA test stand has made useful con-
tributions to data-driven fault diagnosis methods for EMAs. Bodden et al. also conducted
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accelerated wear experiments on bearings in practical EMA systems and proposed some
potentially useful wear indicators [8]. Wang et al. proposed an extended convolutional
adversarial autoencoder (ECAAE) to diagnose ball-screw jamming faults, spalling faults
and motor faults in EMAs [9]. The accuracy and robustness of the proposed algorithm was
verified by the NASA FLEA dataset. Hussain et al. eatablished a detailed EMA model in the
Matlab/Simulink environment and verified the possiblity of using motor current signals to
identify jamming faults of ball-screw pairs in EMA systems [10]. Mazzoleni et al. proposed
a model-free methodology involving the use of current signals to monitor mechanical faults
in EMA systems [11]. Chirico and Kolodziej proposed a data-driven feature extraction
method to detect bearing and ball-screw defects in EMAs [12]. They adopted a resampling
technique and power spectral density as the signal preprocessing method and successfully
identified both bearing and ball-screw fault signatures using vibration signals in an EMA
system. Yang et al. proposed an EMA fault detection and fault isolation method based on
built-in testing (BIT), aiming to isolate ball-screw jamming faults and motor faults in EMAs
in unmanned aerial vehicles (UAVs) [13].

Although considerable effort has been devoted to fault diagnosis in EMA mechanical
transmissions, very few studies have established detailed dynamic models to describe
how mechanical faults could affect the vibration responses of EMA systems. Dynamic
modeling of EMA mechanical transmissions can better reflect the actual vibration behaviors
of EMAs than data-driven methods. After implantation with common EMA mechanical
faults, the established dynamic models can reveal the failure mechanism and the fault
characteristics that may occur in the vibration signals. Furthermore, detailed dynamic
models of EMA mechanical transmissions can generate data that can be used in data-driven
fault diagnosis algorithms. The generated data can be used to solve the most important
problem associated with most data-driven fault diagnosis methods for EMAs: the “lack
of available data”. Therefore, it is necessary to conduct research on dynamic modeling of
EMA mechanical transmissions.

Among the mechanical components of EMAs, the ball-screw pairs and bearings are
the two components that are most likely to cause faults [3]; ball-screw pairs are responsible
for 16% of the total mechanical failures [14] and represent the most critical mechanical
component of EMAs. Failure of the ball-screw pair could directly lead to jamming of
the whole EMA system. The common fault modes of ball-screw pairs include spalling,
backlash, degraded operation, binding, denting and lubricant problems [1,3]. According to
the research conducted by the NASA Ames Research Center, backlash and spalling are the
two fault modes that are most likely to occur in ball-screw pairs of EMA systems and could
lead to failures such as jamming of the EMA system or severe vibrations [3]. Therefore, in
this paper, we take nut spalling fault as the main subject, which is one of the most common
fault modes of ball-screw pairs.

Ball-screw pairs in EMAs usually have two actuation modes. One uses the nut as the
driving component, and the other uses the screw shaft as the driving component; their basic
structures are shown in Figure 1. For the convenience of installing sensors and capturing
fault characteristics, we take ball-screw pairs that use the nut as the driving component as
the subject of this paper.
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Figure 1. Basic structures of EMA systems [15]. (a) EMA using the screw shaft as the driving com-
ponent; (b) EMA using the nut as the driving component. 

Some scholars have studied the dynamic modeling method of ball-screw pairs. Liu 
et al. [16] established a 14-DOF dynamic model of a ball-screw feed system including a 
ball-screw pair and a linear guide rail. The radial and axial vibration of the ball-screw pair 
was studied, and the stiffness and nonlinear restoring force of each component were cal-
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and studied the relationship between the displacement of the ball nut and the nonlinear 
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model of a ball-screw feed system and proposed a calculation method for the dynamic 
axial contact stiffness of the ball-screw pair. Gu and Zhang [19] established a dynamic 
model of a ball-screw feed system considering the time-varying stiffness and studied the 
influence of the position of the worktable on the control performance and positioning ac-
curacy. Guo et al. [20] proposed a new dynamic modeling method for a ball-screw feed 
system. A model with high positioning accuracy of the ball-screw feed system was ob-
tained by combining the classical dynamic theory with an artificial neural network. Ber-
tolino et al. [21] built a high-fidelity model of a ball-screw pair, wherein the balls inside 
the nut were modelled as spring-damping systems, and the contact force of each ball was 
analyzed. In their subsequent research, a multibody dynamic model of a double-nut ball-
screw pair was established. In this model, the inertia of each subcomponent of the ball-
screw pair was considered, and the influence of friction and lubrication was also taken 
into account [22]. 

However, the studies mentioned above have examined the ball-screw feed system as 
the research subject. The main purpose of their models was to improve the control perfor-
mance and control accuracy of the ball-screw feed system. Few studies have implemented 
detailed dynamic modeling for the possible faults of the ball-screw pair in an EMA and 
investigated the possible impacts of faults on the radial or axial vibration characteristics 
of the ball-screw pair. Therefore, it is necessary to establish a systematic model of a ball-
screw pair and comprehensively study the impact of faults on the radial and axial vibra-
tion of the ball-screw pair. Furthermore, it is necessary to determine in which direction 
the fault characteristics are most obvious, analyze the specific performance of faults oc-
curring in the dynamic responses of the system and extract fault features or establish 
health indicators (HI) of the ball-screw pair so as to realize fault identification and fault 
diagnosis in EMA mechanical transmissions. 

This paper is dedicated to establishing a comprehensive dynamic model containing 
typical mechanical components of EMAs (such as ball-screw pairs and bearings) and stud-
ying the coupling effect between the radial and axial vibration of ball-screw pairs in 
EMAs. After implantation of a spalling fault on the raceway of the nut, the fault charac-
teristics that would possibly occur in the radial and axial responses of EMA systems are 
studied, the fault features are extracted and a specific calculation method for fault charac-
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and fault prognosis. The remainder of this paper is structured as follows. In Section 2, an 

Figure 1. Basic structures of EMA systems [15]. (a) EMA using the screw shaft as the driving
component; (b) EMA using the nut as the driving component.
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Some scholars have studied the dynamic modeling method of ball-screw pairs. Liu et al. [16]
established a 14-DOF dynamic model of a ball-screw feed system including a ball-screw pair
and a linear guide rail. The radial and axial vibration of the ball-screw pair was studied, and
the stiffness and nonlinear restoring force of each component were calculated. Xu et al. [17]
established a lumped parameter model of a ball-screw feed system and studied the relationship
between the displacement of the ball nut and the nonlinear restoring force under cycling load.
Liu and Ou [18] established an axial contact stiffness model of a ball-screw feed system and
proposed a calculation method for the dynamic axial contact stiffness of the ball-screw pair.
Gu and Zhang [19] established a dynamic model of a ball-screw feed system considering the
time-varying stiffness and studied the influence of the position of the worktable on the control
performance and positioning accuracy. Guo et al. [20] proposed a new dynamic modeling
method for a ball-screw feed system. A model with high positioning accuracy of the ball-screw
feed system was obtained by combining the classical dynamic theory with an artificial neural
network. Bertolino et al. [21] built a high-fidelity model of a ball-screw pair, wherein the balls
inside the nut were modelled as spring-damping systems, and the contact force of each ball was
analyzed. In their subsequent research, a multibody dynamic model of a double-nut ball-screw
pair was established. In this model, the inertia of each subcomponent of the ball-screw pair
was considered, and the influence of friction and lubrication was also taken into account [22].
However, the studies mentioned above have examined the ball-screw feed system as the
research subject. The main purpose of their models was to improve the control performance
and control accuracy of the ball-screw feed system. Few studies have implemented detailed
dynamic modeling for the possible faults of the ball-screw pair in an EMA and investigated
the possible impacts of faults on the radial or axial vibration characteristics of the ball-
screw pair. Therefore, it is necessary to establish a systematic model of a ball-screw pair
and comprehensively study the impact of faults on the radial and axial vibration of the
ball-screw pair. Furthermore, it is necessary to determine in which direction the fault
characteristics are most obvious, analyze the specific performance of faults occurring in the
dynamic responses of the system and extract fault features or establish health indicators
(HI) of the ball-screw pair so as to realize fault identification and fault diagnosis in EMA
mechanical transmissions.

This paper is dedicated to establishing a comprehensive dynamic model containing
typical mechanical components of EMAs (such as ball-screw pairs and bearings) and
studying the coupling effect between the radial and axial vibration of ball-screw pairs
in EMAs. After implantation of a spalling fault on the raceway of the nut, the fault
characteristics that would possibly occur in the radial and axial responses of EMA systems
are studied, the fault features are extracted and a specific calculation method for fault
characteristics is proposed, laying a foundation for subsequent research on EMA fault
diagnosis and fault prognosis. The remainder of this paper is structured as follows. In
Section 2, an eight-DOF dynamic model of an EMA mechanical transmission is established,
and the contact deformation of each ball inside the nut is analyzed. In Section 3, a detailed
method of implanting a spall in the inner raceway of the nut is described, and a dynamic
model of an EMA mechanical transmission with a nut spalling fault is established. In
Section 4, the vibration responses of the established normal and faulty models are analyzed,
and a numerical calculation method for fault characteristics is proposed. Finally, in Section 5,
the effectiveness of the established dynamic models and the proposed numerical calculation
method are verified by experiments conducted on an EMA test stand built in a laboratory
environment.

2. Dynamic Modeling under Normal Condition
2.1. Equations of Motion

In this research, the following assumptions are proposed before establishing the
dynamic models:
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(1) All the balls are closely distributed in the nut of the ball-screw pair;
(2) The direction of the preload applied on the nut is collinear with the axis of the nut;
(3) Both the nut raceway and the screw shaft raceway are rigid bodies;
(4) Each ball in the nut rotates at the same speed around the screw shaft when not in

contact with the spalling fault;
(5) The damping constants of the ball-screw pair are equal in all three directions;
(6) The influences of the machining and assembly errors are not considered;
(7) The profiles and materials of all balls are exactly the same, and the materials of the

nut raceway and the screw shaft raceway are also the same;
(8) Gravity is applied in the radial direction of the system;
(9) Backlash is not considered;
(10) As the total mass of the balls inside the nut is negligible, the inertial loads of the balls

are not considered;
(11) The motion of each ball inside the nut occurs by pure rolling only; and
(12) The influence of friction is not considered in the models.

In this paper, the EMA system used for experimental validation is simplified into the
model shown in Figure 2, which includes the motor, the coupling, the support bearings,
the screw shaft, the nut and the external loads applied on the nut. A dynamic model can
be established by equating the coupling and the bearings as a spring-damping system.
However, the nut of the ball-screw pair cannot be simply equated to a typical spring-
damped system. During the rotation of the screw shaft, the balls in the nut continuously
enter and exit the return device, which produces impacts, and the elastic restoring force of
each ball in the nut changes nonlinearly. Therefore, in this paper, the balls inside the nut are
equivalent to a nonlinear spring-damping system, and the stiffness of the nonlinear spring
is directly provided by the elastic restoring force divided by the relative displacement
between the nut and the screw shaft. The elastic restoring forces of the balls in the nut are
calculated in Section 2.2. The dynamic model of an EMA mechanical transmission is shown
in Figure 3.
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Figure 2. Simplified model of the EMA test stand.

Because of the lead angle (γ) in the ball-screw pair, there is a coupling relationship
between the angular displacement of the rotation of the screw shaft and the axial displace-
ment (z) of the nut. Therefore, when establishing an axial dynamic model of an EMA
mechanical transmission, the influence of the screw shaft and the motor in the torsional
direction should be considered [23,24], as shown in Figure 3a.
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In this paper, it is assumed that the motor and the supporting bearings are fixed,
and the nut only moves along its axis and does not rotate itself. In this paper, we mainly
investigate the vibration characteristics of the screw shaft and the nut in the axial direction (z
direction), plumb radial direction (y direction) and horizontal radial direction (x direction).
The dynamic models in the x direction and the y direction are basically the same (they only
differ in terms of the presence or absence of gravity). Therefore, the radial dynamic model
shown in Figure 3b can represent the dynamic models in the x and y directions.

According to Newton’s second law, the motion equation of an EMA mechanical part
can be expressed as:

M
..
q + C

.
q + Kq = F (1)

where M, C and K are the mass matrix, damping matrix and stiffness matrix of the EMA
mechanical transmission, respectively; and F is the load applied to a specific component.
The vector q is defined as follows:

q =
(

xs xn ys yn zs zn θs θm
)T (2)

where xs, ys and zs are the displacements of the screw shaft in the x, y and z directions,
respectively; xn, yn and zn are the displacements of the nut in the x, y and z directions, re-
spectively; θs is the angle displacement of the screw shaft; and θm is the angle displacement
of the motor output shaft.

Due to the complex coupling effects among the mechanical components of EMAs, it
is difficult to directly obtain the equations of motion. Therefore, in this paper, we use the
Lagrangian energy method to analyze the x, y and z directions.

According to Figure 3b, the kinetic energy equation in the y direction of the system
can be obtained as follows:

Ty =
1
2

mn
( .
yn −

.
ys
)2

+
1
2

ms
.
y2

s (3)

where ms is the mass of the screw shaft, and mn is the total mass of the nut and the additional
components installed on it.

The potential energy of the system in the y direction is expressed as:

Vy =
1
2
(kb1 + kb2)y2

s −msgys −mng(ys + yn) (4)

where kb1 and kb2 are the stiffness of the supporting bearings at each end of the screw
shaft, respectively.
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The dissipation function of the system in the y direction is expressed as [25]:

Dy =
1
2
(cb1 + cb2)

.
y2

s +
1
2

cn
( .
yn −

.
ys
)2 (5)

where cb1 and cb2 are the viscous damping coefficients of the supporting bearings at each
ends of the screw shaft, respectively.

Substitute Equations (3)–(5) into the Lagrange’s equations, and the equations of motion
in the y direction can be obtained as follows [26]:{

mn
( ..
ys −

..
yn
)
+ ms

..
ys + (cb1 + cb2)

.
ys + cn

( .
ys −

.
yn
)
+ (kb1 + kb2)ys = (mn + ms)g + Fsy0 − Fny

mn
( ..
yn −

..
ys
)
+ cn

( .
yn −

.
ys
)
= mng + Fny0 − Fny

(6)

where Fsy0 is the preload applied on the y direction of the screw shaft, Fny0 is the preload
applied on the y direction of the nut and Fny is the total elastic restoring force of all balls in
the nut in the y direction.

According to the Hertz contact theory, the relationship between the elastic restoring
force of the balls in the nut and the displacement of the nut is not linear. Therefore, in this
paper, we do not calculate the elastic potential energy of the balls in the nut but do calculate
the elastic restoring force of each ball and substitute it into the Lagrange equation. Owing
to the complexity of the solution process, the solution method for the elastic restoring force
of each ball will be described in detail in Section 2.2.

The vibration of an EMA mechanical transmission in the x direction is similar to that in
the y direction, despite the lack of influence of gravity. Therefore, according to Equation (6),
the equations of motion in the x direction can be expressed as follows:{

mn
( ..

xs −
..
xn
)
+ ms

..
xs + (cb1 + cb2)

.
xs + cn

( .
xs −

.
xn
)
+ (kb1 + kb2)xs = Fsx0 − Fnx

mn
( ..

xn −
..
xs
)
+ cn

( .
xn −

.
xs
)
= Fnx0 − Fnx

(7)

where Fsx0 is the preload applied in the x direction of the screw shaft, Fnx0 is the preload
applied in the x direction of the nut and Fnx is the total elastic restoring force of all balls in
the nut in the x direction.

However, for the z direction and the torsional direction, there is a coupling relationship
between the translation of the nut and the rotation of the screw shaft, so it is necessary to
conduct additional analysis for the motion in the z and torsional directions.

According to Figure 3a, the total kinetic energy of the system in the z and torsional
directions is:

Tz =
1
2

mn

( .
zn −

.
zs − η

.
θs

)2
+

1
2

ms
.
z2

s +
1
2

Js
.
θ

2
s +

1
2

Jm
.
θ

2
m (8)

where η = Ph/2π, Ph is the lead of the screw shaft, the relationship between the displacement
of the nut in the z direction (zn) and the angle displacement of the screw shaft (θs) is zn = ηθs,
the equivalent torque of the elastic restoring force in the torsional direction of the screw
shaft is ηFnz [27], Js is the rotary inertia of the screw shaft and Jm is the rotary inertia of the
motor rotor and motor output shaft.

The potential energy of the system in the z and torsion directions is:

Vz =
1
2
(kb1 + kb2)z2

s +
1
2

kc(θs − θm)2 (9)

where kc is the torsional rigidity of the coupling.
The dissipation function of the system in the z and torsional directions is:

Dz =
1
2
(cb1 + cb2)

.
z2

s +
1
2

cn

( .
zn −

.
zs − η

.
θs

)2
+

1
2

cc(
.
θs −

.
θm)

2
(10)
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Substitute Equations (8)–(10) into the Lagrange equations, and the equations of motion
in the z and torsional directions can be obtained as follows.

mn

(..
zs + η

..
θs −

..
zn

)
+ ms

..
zs + (cb1 + cb2)

.
zs + cn

( .
zs + η

.
θs −

.
zn

)
+ (kb1 + kb2)zs = Fsz0 − Fnz

mn

(..
zn −

..
zs − η

..
θs

)
+ cn

( .
zn −

.
zs − η

.
θs

)
= Fnz0 − Fnz

mnη
(..

zs + η
..
θs −

..
zn

)
+ Js

..
θs + cnη

( .
zs + η

.
θs −

.
zn

)
+ cc

( .
θs −

.
θm

)
+ kc(θs − θm) = Ts0 − ηFnz

Jm
..
θm + cc

( .
θm −

.
θs

)
+ kc(θm − θs) = Tm0 + Tm(t)

(11)

where Fsz0 is the preload applied in the z direction of the screw shaft; Fnz0 is the preload
applied in the z direction of the nut; Fnz is the total elastic restoring force of all balls in the
nut in the z direction; Ts0 and Tm0 are the constant torque applied on the screw shaft and
the motor output shaft, respectively; and Tm(t) is the motor output torque, which can be
directly measured by sensors installed on the EMA.

In addition, the supporting bearings used in the established model are angular-contact
ball bearings. Therefore, only one bearing bears the axial load at a given moment. Assuming
that the basic parameters of the bearings at both ends are the same, i.e., kb1 = kb2 = kb,
cb1 = cb2 = cb, the equations of motion in the z and torsion directions can be rewritten as:

mn

(..
zs + η

..
θs −

..
zn

)
+ ms

..
zs + cb

.
zs + cn

( .
zs + η

.
θs −

.
zn

)
+ kbzs = Fsz0 − Fnz

mn

(..
zn −

..
zs − η

..
θs

)
+ cn

( .
zn −

.
zs − η

.
θs

)
= Fnz0 − Fnz

mnη
(..

zs + η
..
θs −

..
zn

)
+ Js

..
θs + cnη

( .
zs + η

.
θs −

.
zn

)
+ cc

( .
θs −

.
θm

)
+ kc(θs − θm) = Ts0 − ηFnz

Jm
..
θm + cc

( .
θm −

.
θs

)
+ kc(θm − θs) = Tm0 + Tm(t)

(12)

Combining Equations (6), (7) and (12) and the assuming that the parameters of the
supporting bearings are the same, the equations of motion in the four directions of the
EMA mechanical transmission can be obtained as follows:

mn
( ..

xs −
..
xn
)
+ ms

..
xs + 2cb

.
xs + cn

( .
xs −

.
xn
)
+ 2kbxs = Fsx0 − Fnx

mn
( ..

xn −
..
xs
)
+ cn

( .
xn −

.
xs
)
= Fnx0 − Fnx

mn
( ..
ys −

..
yn
)
+ ms

..
ys + 2cb

.
ys + cn

( .
ys −

.
yn
)
+ 2kbys = (mn + ms)g + Fsy0 − Fny

mn
( ..
yn −

..
ys
)
+ cn

( .
yn −

.
ys
)
= mng + Fny0 − Fny

mn

(..
zs + η

..
θs −

..
zn

)
+ ms

..
zs + cb

.
zs + cn

( .
zs + η

.
θs −

.
zn

)
+ kbzs = Fsz0 − Fnz

mn

(..
zn −

..
zs − η

..
θs

)
+ cn

( .
zn −

.
zs − η

.
θs

)
= Fnz0 − Fnz

mnη
(..

zs + η
..
θs −

..
zn

)
+ Js

..
θs + cnη

( .
zs + η

.
θs −

.
zn

)
+ cc

( .
θs −

.
θm

)
+ kc(θs − θm) = Ts0 − ηFnz

Jm
..
θm + cc

( .
θm −

.
θs

)
+ kc(θm − θs) = Tm0 + Tm(t)

(13)

Considering the matrix equation in Equation (1), the coefficient matrices in the equa-
tion are:

M=



mn + ms

−mn

0

0

0

0

0

0

−mn

mn

0

0

0

0

0

0

0

0

mn + ms

−mn

0

0

0

0

0

0

−mn

mn

0

0

0

0

0

0

0

0

mn + ms

−mn

ηmn

0

0

0

0

0

−mn

mn

−ηmn

0

0

0

0

0

ηmn

−ηmn

η2mn + Js

0

0

0

0

0

0

0

0

Jm


(14)
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C=



2cb + cn
−cn
0
0
0
0
0
0

−cn
cn
0
0
0

0
0
0

0
0

2cb + cn
−cn

0
0
0
0

0
0
−cn
cn
0
0
0
0

0
0
0
0

cb + cn
−cn
ηcn
0

0
0
0
0
−cn

cn
−ηcn

0

0
0
0
0

ηcn
−ηcn

η2cn + cc
−cc

0
0
0
0
0
0
−cc
cc


(15)

K=



2kb
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0

2kb
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
kb
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
kc
−kc

0
0
0

0
0
0
−kc
kc


(16)

F=



Fsx0 − Fnx
Fnx0 − Fnx

(mn + ms)g + Fsy0 − Fny
mng + Fny0 − Fny

Fsz0 − Fnz
Fnz0 − Fnz
Ts0 − ηFnz

Tm0 + Tm(t)


(17)

2.2. Solution of the Total Elastic Restoring Force of Balls

Due to the existence of the return device in the ball-screw pair, the elastic restoring
force borne by each ball changes with the ball continuously entering and exiting the return
device. Therefore, when calculating the total elastic restoring force, it is necessary to
calculate the forces of the balls in the nut raceway and the balls entering or exiting the
return device. Xu et al. proposed a solution for the axial elastic restoring force when the ith
ball bears the axial load, considering the preload [28]. Fai =

lpkn sin α cos β
δ1+lp−δp

δ1
3/2

δ1 =
√(

lp sin α + δai cos β
)2

+
(
lp cos α

)2 − lp + δp

(18)

where la is the distance between the curvature center of the nut raceway and the curvature
center of the screw shaft raceway under axial load, δai represents the ball deformation
caused by the relative axial displacement between the nut and the screw shaft when the ith
ball bears the load, α is the contact angle and β is the lead angle of the screw shaft and the
nut raceway. As shown in Figure 4, lp is the distance between the curvature center of the
nut raceway and the screw shaft raceway when only the preload is applied, which can be
obtained by lp = rs + rn − ds + δp; rs and rn are the radius of the curvature of the screw shaft
raceway and the nut raceway, respectively; and δp is the deformation of the ball caused by
the preload, which can be calculated by the following formula.

δp =

(
Fp

Nkn sin α cos β

)2/3
(19)

where Fp is the axial preload on the nut, and the relationship between Fp and the preloads in
the equations of motion is as follows: Fsx0 = 0, Fnx0 = ηFp; Fsy0 = (ms + mn)g, Fny0 = ηFp + mng;
and Fsz0 = 0, Fnz0 = Fp. N is the number of balls in the nut raceway, and kn is the Hertz contact
stiffness between the balls and the nut or screw shaft raceway [29].
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Figure 4. Deformation of a single ball when only preload is applied.

Figure 5 shows δai and δni after the ith ball bears the load, indicating that ball defor-
mation caused by the relative axial and radial displacement between the nut and the screw
shaft. Due to the coupling relationship between the axial displacement of the nut and
the angular displacement of the screw shaft, θs also influences the deformation of balls.
The radial direction of each ball is different, so xs, ys, xn and yn cannot be directly used
to calculate ball deformation. Instead, the related parameters should be projected to the
corresponding radial direction of each ball before calculation.
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Figure 5. Change in nut displacements after the ith ball bears the load.

The solution of δai is:

δai =
(
δxi + δyi

)
sin β + δzi cos β (20)
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where δxi, δyi and δzi are the projections of the nut displacements in the axial direction and
radial direction of the ith ball. Their solutions are as follows:

δxi = |xn − xs| sin
(
θpr + ωbsmod(t, Tb) + iθ

)
δyi = |yn − ys| cos

(
θpr + ωbsmod(t, Tb) + iθ

)
δzi = zn − zs − ηθs

(21)

where θpr is the included angle between the beginning (or end) of the return tube and the y
axis, which can be obtained with the information provided by the ball screw manufacturer;
θ is the included angle between two adjacent balls; mod (t, Tb) is the remaining time (t)
divided by Tb; Tb = θ/ωbs is the period during which the balls pass through a specific point
on the nut; f b = 1/Tb is the ball passage frequency; and ωbs is the angular velocity of the
ball center rotating around the screw shaft and can be calculated as follows:

ωbs =
1
2

ωs

(
1 +

db
ds

cos α

)
cos β (22)

where ωs is the angular velocity of the screw shaft, ds is the diameter of the screw shaft
pitch circle and db is the diameter of the balls.

After calculating Fai of the ith ball with the obtained parameters, the corresponding
Fai of each ball can be composed into the total axial elastic restoring force (Fnz).

Fnz = Faex + Faen +
N−2

∑
i=1

Fai (23)

where Faex and Faen are the elastic restoring force of the ball exiting and entering the return
tube, respectively [28].

The solution for Fni is roughly the same that for Fai, but the direction of the forces
is changed. Therefore, the sin α in Equation (18) should be changed into cos α, and
Equation (18) can be revised as: Fni =

lpkn cos α cos β
δ2+lp−δp

δ2
3/2

δ2 =
√(

lp sin α + δni cos β
)2

+
(
lp cos α

)2 − lp + δp

(24)

where δni is the deformation caused by the relative radial displacement between the nut and
the screw shaft when the ith ball bears the load. The solution is similar to Equation (20).

δni =
(
δxi + δyi

)
cos β + (zn − zs − ηθs) sin β (25)

However, when composing the radial elastic restoring forces of each ball, it is necessary
to project them to the x axis and y axis, respectively, because the Fni direction of each ball is
different, as shown in Figure 6. The solutions of Fnx and Fny are as follows [30]:

Fnx = −Fnen sin θpr + Fnex sin θpr +
n−2

∑
i=1

Fni sin
(
θpr + ωbsmod(t, Tb) + iθ

)
(26)

Fny = Fnen cos θpr + Fnex cos θpr +
n−2

∑
i=1

Fni cos
(
θpr + ωbsmod(t, Tb) + iθ

)
(27)
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3. Dynamic Modeling under Faulty Conditions

Figure 7 shows the model when a ball passes through a spall in the nut raceway.
Unlike the screw shaft and the balls, the nut raceway always bears a load during the EMA
system operation. Therefore, a spalling fault is more likely to occur in the raceway of the
nut, which is why the nut spalling fault is investigated in this paper. When the ball reaches
the front edge of the fault, the support of the subsequent nut raceway disappears, but the
pressure of the screw shaft on the ball still exists. Therefore, the ball rotates around the
front edge and enters the spalling fault area under the pressure of the screw shaft.
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As the ball gradually enters the spalling fault area, the elastic deformation of the ball
gradually releases until the ball center reaches the fault centerline and the release amount
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reaches its maximum [31]. When passing through the fault centerline, the ball impacts the
edge of the spall due to inertia, at which point the ball center crosses the fault centerline,
the ball gradually leaves the spall and the elastic deformation of the ball gradually returns
to the level under normal conditions [14].

The impact force of the ball on the fault edge (Ft) can be calculated by the theorem
of momentum.

Fftf = mbvf cos β (28)

where mb is the mass of the ball, and tf is the fault impact time. vf = ωbnlf is the linear
velocity of the ball during the impact, where lf is the width of the fault crack, and ωbn is
the angular velocity of the ball rotating around a point on the nut raceway. Ismail et al.
provide the corresponding relationship between ωbn and the speed of ωbs [4].

ωbn = ωbs
ds − db cos α

ds + db cos α
(29)

Although Equation (29) is based on the assumption that there is no slipping and no
deformation, because the deformation of the ball is particularly small (about 10−7 m), as
shown in Section 4, and the motion of each ball inside the nut is assumed to occur by pure
rolling only, the results of Equation (29) are not strongly affected and can still be used for
analysis of fault characteristics.

In addition to the impact force, the elastic restoring force of the ball when passing
through the crack fault also changes to a certain extent. When a ball enters the spalling
fault area, the vacancy on the subsequent nut raceway reduces the elastic deformation of
the ball. Assuming that the release amount of elastic deformation of the ball when passing
through the spall is δf, when the ball is entering the fault area, δf gradually increases until
the ball center reaches the fault centerline and δf reaches its maximum value.

δfmax =
db −

√
db

2 − lf2

2
(30)

Then, as the ball center crosses the fault centerline, δf gradually decreases until the
ball leaves the fault area and becomes 0 again. The calculation method of the total elastic
restoring force of balls under faulty conditions is similar to that under normal conditions.
The only difference is that δai and δni have to be changed into (δai − δf) and (δni − δf),
respectively, when calculating the elastic restoring force of the ball passing the fault. Then,
the total elastic restoring force in the x, y and z directions under faulty conditions (Fnxf, Fnyf
and Fnzf) can be obtained. After substituting Fnx, Fny and Fnz in Equation (17) with Fnxf,
Fnyf and Fnzf, the equations of motion under faulty conditions can be expressed as follows:

M
..
q+C

.
q+Kq=Ff (31)

where Ff is the vector of external forces under faulty conditions, which can be specifically
expressed as follows:

Ff=



Fsx0 − Fnxf
Fnx0 − Fnxf

(mn + ms)g + Fsy0 − Fnyf
mng + Fny0 − Fnyf

Fsz0 − Fnzf
Fnz0 − Fnzf
Ts0 − ηFnz

Tm0 + Tm(t)


(32)

4. Simulation Results and Fault Characteristic Analysis

In order to facilitate experimental verification, we set the parameters of simulation
based on the EMA test stand. The main parameters are listed in Table 1.
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Table 1. Main parameters of the normal/faulty simulation model.

Parameter Value

Ball diameter, db (m) 0.003175
Diameter of the screw shaft pitch circle, ds (m) 0.025

Lead angle, β (rad) 0.063576
Contact angle, α (rad) 0.25π

Number of turns of the nut raceway, Ns 4.8
Mass of the nut, mn (kg) 0.6605

Mass of the screw shaft, ms (kg) 3.4285
Axial preload, Fp (N) 25

Width of nut spalling fault, lf (m) 0.001
Screw shaft rotating speed (rpm) 180

In this paper, the five-order Runge–Kutta method is used to solve the differential equa-
tions in Equations (17) and (31). Because the sampling frequency used in the experimental
verification is 25.6 kHz, in order to make the simulation parameters consistent with the pa-
rameters adopted in actual experiments, the simulation step size is set to 3.90625 × 10−5 s.
In the testing stage of the simulation, it is verified that such a step setting will not cause
distortion of the simulation results. In order to ensure that the simulation signals contain
enough screw shaft rotation cycles for subsequent analysis, the simulation time is set to
10 s. The geometric parameters, such as the ball diameter and the lead angle, are directly
obtained from the manufacturer of the ball-screw pair. The damping coefficients can be
calculated by the following equation [32]:

c = 2ζ
√

km (33)

where k is the stiffness of the component. In this paper, the calculated Hertz contact
stiffnesses are adopted to calculate damping coefficients. m is the mass of the component,
and ζ is the damping ratio, which is generally set between 0.02 and 0.1 based on engineering
experience [33]. Therefore, in the simulation of the established model, ζ is set to 0.05, and
according to the simulation results, such a parameter setting is appropriate.

The preload is set to 25 N. The reason for such a low preload is that the EMA test stand
used for experimental verification was not designed to bear a large external load. Therefore,
the EMA test stand only operates under a particularly small or even no external load, and
the data acquired on this test stand are only used to verify the method proposed in this
paper. Under such circumstances, a preload as low as 25 N is enough to ensure normal
operation of the test stand. In the future studies, a test stand that is closer to actual EMA
systems applied in engineering practice will be built and could support further research on
the dynamic behaviors of actual EMAs used in aircraft. Then, experiments with parameters
that are closer to those of EMAs in practical applications can be conducted and provide
improved verification of the proposed model and identified fault characteristics.

Figures 8–11 shows the simulation results when the angular velocity of the screw shaft
is 6π rad/s (180 rpm), i.e., the rotation frequency is 3 Hz.

Figure 8 shows the displacement (angular displacement) response and acceleration
(angular acceleration) response of the screw-shaft-related parameters (xs, ys, zs and θs)
under normal conditions. Figure 9 shows the displacement (angular displacement) response
and acceleration (angular acceleration) response of the nut-related parameters (xn, yn and
zn), as well as the rotation of the motor output shaft (θm) in under normal conditions.

When the angular velocity of the screw shaft is constant, θs and θm increase linearly,
and the rotation of the screw shaft drives the nut to move axially, so the axial displacement
of the nut (zn) also increases, as shown in Figure 9. However, affected by the impacts of
the balls entering and exiting the return device, the value of zn fluctuates slightly with
increased rotation of the screw shaft. Because the amplitude of the fluctuation is far less
than the value of zn (at about 10−7 level), it is difficult to directly determine the impacts
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of balls in the displacement response of zn, although they are much more obvious in the
acceleration response.
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Figure 8. Displacement responses and acceleration responses of the screw-shaft-related parameters 
under normal conditions. 

When the angular velocity of the screw shaft is constant, θs and θm increase linearly, 
and the rotation of the screw shaft drives the nut to move axially, so the axial displacement 
of the nut (zn) also increases, as shown in Figure 9. However, affected by the impacts of 
the balls entering and exiting the return device, the value of zn fluctuates slightly with 
increased rotation of the screw shaft. Because the amplitude of the fluctuation is far less 
than the value of zn (at about 10−7 level), it is difficult to directly determine the impacts of 
balls in the displacement response of zn, although they are much more obvious in the ac-
celeration response. 

Figure 8. Displacement responses and acceleration responses of the screw-shaft-related parameters
under normal conditions.
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Figure 9. Displacement responses and acceleration responses of the nut or motor output shaft-re-
lated parameters under normal conditions. 

As shown in Figures 8 and 9, the impacts of the balls can be observed in the acceler-
ation responses in the x, y and z directions. Whenever a ball exits (or enters) the raceway 
of the nut, the total elastic restoring force changes accordingly, and the nut displacement 
exhibits similar behavior to that of step responses, as shown in Figure 9. For the screw 
shaft, the impact generated by the balls entering and exiting the return device can be re-
garded as an external vibration excitation source, which generates impacts at different 
amplitudes but the same frequency. Then, the screw shaft exhibits forced vibration under 
the excitation of these impacts and the constraint of the bearings. Therefore, the displace-
ment of the screw shaft exhibits behavior similar to that of impulse responses, as shown 
in Figure 8. 

The displacement and acceleration responses of the system after the spalling fault is 
implanted into the model are shown in Figures 10 and 11. Figure 10 shows that the re-
sponses of the screw-shaft-related parameters under faulty conditions are also impulse 
responses, similar to those under normal conditions. However, besides the two impacts 
of the ball entering and exiting the return device, there is another fault impact in both 
displacement and acceleration responses under faulty conditions. Furthermore, in the dis-
placement and acceleration responses of the nut-related parameters, fault impacts can be 
more obviously identified. As shown in Figure 11, it is obvious that there is an additional 
fault impact between the two original impacts in the displacement responses of xn and yn. 

Figure 9. Displacement responses and acceleration responses of the nut or motor output shaft-related
parameters under normal conditions.
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Figure 10. Displacement responses and acceleration responses of the screw-shaft-related parameters 
under faulty conditions. 

Fast Fourier transform (FFT) is then applied to the acceleration responses to acquire 
the frequency spectra of the normal and fault models. Figure 12 shows the acceleration 
spectra of the screw-shaft-related parameters under normal and fault conditions. The ball 
passage frequency (fb), which is at about 40.29 Hz, can be observed in the normal fre-
quency spectra. The harmonics of the ball passage frequency can also be found in the 
spectra. In the fault spectrum, the positions of fb and each of its harmonics are roughly the 
same as those in the normal spectra, despite the change in amplitude. After the spalling 
fault occurs, the amplitude at the first and second harmonics of fb decrease, whereas the 
amplitude at the third harmonic increases. This phenomenon can also be observed in the 
frequency spectra of nut-related parameters, as shown in Figure 13. This is because when 
the spalling fault occurs, the number of impacts in the same ball passage cycle changes 
from two to three, resulting in an increase in the amplitude at the third harmonic of fb in 
the frequency spectra obtained by FFT and a decrease at the first and second harmonics 
of fb. 

Figure 10. Displacement responses and acceleration responses of the screw-shaft-related parameters
under faulty conditions.

Actuators 2022, 11, 226 17 of 25 
 

 

3 3.02 3.04 3.06 3.08 3.1 3.12
t(s)

−2

0

2
10−3

3 3.02 3.04 3.06 3.08 3.1 3.12
t(s)

57

58

59

3 3.02 3.04 3.06 3.08 3.1 3.12
t(s)

−0.5
0

0.5

3 3.02 3.04 3.06 3.08 3.1 3.12
t(s)

0.045

0.046

0.047

3 3.02 3.04 3.06 3.08 3.1 3.12
t(s)

−0.5
0

0.5

3 3.02 3.04 3.06 3.08 3.1 3.12
t(s)

2

2.1

10−7

3 3.02 3.04 3.06 3.08 3.1 3.12
t(s)

−0.5
0

0.5

3 3.02 3.04 3.06 3.08 3.1 3.12
t(s)

1.6

1.7

10−7 Fault impact

Fault impact

x n
 (m

)
y n

 (m
)

z n
 (m

)

A
cc

el
er

at
io

n(
m

/s2 )
A

cc
el

er
at

io
n(

m
/s2 )

A
cc

el
er

at
io

n(
m

/s2 )
A

cc
el

er
at

io
n(

ra
d/

s2 )

θ m
 (r

ad
)

Fault impact

Fault impact

Fault impact

Fault impact

 
Figure 11. Displacement responses and acceleration responses of the nut or motor output shaft-
related parameters under faulty conditions. 

Assuming that Pn1, Pn2 and Pn3 are the peak values of the first three harmonics of fb in 
the normal spectra, Pf1, Pf2 and Pf3 are the peak values of the first three harmonics of fb in 
the faulty spectra. The specific values of Pn1, Pn2, Pn3, Pf1, Pf2 and Pf3 can be obtained through 
the peak-detection algorithms. Based on the amplitude-increasing phenomenon described 
in the previous paragraph, we propose a numerical calculation method for the character-
istics of nut spalling faults to describe the decrease and increase in the amplitudes of the 
harmonics of fb after the spalling fault occurs. 

f3 n3n1 f1 n2 f2

n1 n2 n3

−− −= + + P PP P P PFC
P P P

 (34) 

The proposed FC values of the frequency spectra of all eight parameters (xs, ys, zs, θs, 
xn, yn, zn and θm) are calculated; the results are shown in Figure 14. The FC values in the y 
direction of the nut and the screw shaft are the highest among all eight parameters, with 
values of 1.4072 and 0.9949, respectively. The FC values in the x and z directions are 
smaller than those in the y direction, which indicates that the spalling fault has less of an 
influence on the vibration in the x and z directions. However, the FC values in the torsional 
direction are less than 0, and the FC value of θm reaches −0.6752, in contrast to the fault 
characteristic described in this paper. This may because that the acceleration amplitudes 
of θm caused by the vibration of the screw shaft and the nut are particularly small under 
both normal and faulty conditions, which makes the influence of the fault on θm appear 
to be abnormal. Therefore, the FC values in the torsional direction cannot be used as the 
features of the nut spalling fault. 

Figure 11. Displacement responses and acceleration responses of the nut or motor output shaft-related
parameters under faulty conditions.
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As shown in Figures 8 and 9, the impacts of the balls can be observed in the acceleration
responses in the x, y and z directions. Whenever a ball exits (or enters) the raceway of the
nut, the total elastic restoring force changes accordingly, and the nut displacement exhibits
similar behavior to that of step responses, as shown in Figure 9. For the screw shaft, the
impact generated by the balls entering and exiting the return device can be regarded as an
external vibration excitation source, which generates impacts at different amplitudes but
the same frequency. Then, the screw shaft exhibits forced vibration under the excitation of
these impacts and the constraint of the bearings. Therefore, the displacement of the screw
shaft exhibits behavior similar to that of impulse responses, as shown in Figure 8.

The displacement and acceleration responses of the system after the spalling fault
is implanted into the model are shown in Figures 10 and 11. Figure 10 shows that the
responses of the screw-shaft-related parameters under faulty conditions are also impulse
responses, similar to those under normal conditions. However, besides the two impacts
of the ball entering and exiting the return device, there is another fault impact in both
displacement and acceleration responses under faulty conditions. Furthermore, in the
displacement and acceleration responses of the nut-related parameters, fault impacts can be
more obviously identified. As shown in Figure 11, it is obvious that there is an additional
fault impact between the two original impacts in the displacement responses of xn and yn.

Fast Fourier transform (FFT) is then applied to the acceleration responses to acquire
the frequency spectra of the normal and fault models. Figure 12 shows the acceleration
spectra of the screw-shaft-related parameters under normal and fault conditions. The ball
passage frequency (f b), which is at about 40.29 Hz, can be observed in the normal frequency
spectra. The harmonics of the ball passage frequency can also be found in the spectra. In
the fault spectrum, the positions of f b and each of its harmonics are roughly the same as
those in the normal spectra, despite the change in amplitude. After the spalling fault occurs,
the amplitude at the first and second harmonics of f b decrease, whereas the amplitude
at the third harmonic increases. This phenomenon can also be observed in the frequency
spectra of nut-related parameters, as shown in Figure 13. This is because when the spalling
fault occurs, the number of impacts in the same ball passage cycle changes from two to
three, resulting in an increase in the amplitude at the third harmonic of f b in the frequency
spectra obtained by FFT and a decrease at the first and second harmonics of f b.
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Figure 12. Frequency spectra of the screw shaft related parameters under normal and faulty condi-
tions. 
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Figure 12. Frequency spectra of the screw shaft related parameters under normal and faulty conditions.
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Figure 12. Frequency spectra of the screw shaft related parameters under normal and faulty condi-
tions. 
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Figure 13. Frequency spectra of the nut or motor output shaft-related parameters under normal and
faulty conditions.

Assuming that Pn1, Pn2 and Pn3 are the peak values of the first three harmonics of f b
in the normal spectra, Pf1, Pf2 and Pf3 are the peak values of the first three harmonics of f b
in the faulty spectra. The specific values of Pn1, Pn2, Pn3, Pf1, Pf2 and Pf3 can be obtained
through the peak-detection algorithms. Based on the amplitude-increasing phenomenon
described in the previous paragraph, we propose a numerical calculation method for the
characteristics of nut spalling faults to describe the decrease and increase in the amplitudes
of the harmonics of f b after the spalling fault occurs.

FC =
Pn1 − Pf1

Pn1
+

Pn2 − Pf2
Pn2

+
Pf3 − Pn3

Pn3
(34)

The proposed FC values of the frequency spectra of all eight parameters (xs, ys, zs,
θs, xn, yn, zn and θm) are calculated; the results are shown in Figure 14. The FC values in
the y direction of the nut and the screw shaft are the highest among all eight parameters,
with values of 1.4072 and 0.9949, respectively. The FC values in the x and z directions are
smaller than those in the y direction, which indicates that the spalling fault has less of an
influence on the vibration in the x and z directions. However, the FC values in the torsional
direction are less than 0, and the FC value of θm reaches −0.6752, in contrast to the fault
characteristic described in this paper. This may because that the acceleration amplitudes of
θm caused by the vibration of the screw shaft and the nut are particularly small under both
normal and faulty conditions, which makes the influence of the fault on θm appear to be
abnormal. Therefore, the FC values in the torsional direction cannot be used as the features
of the nut spalling fault.

In summary, the FC values in the y direction are the most suitable to be used as a fault
feature. However, this is only the result obtained under a certain rotational frequency of
the screw shaft. Further exploration is necessary to obtain fault characteristics suitable for
different working conditions.
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Figure 14. Simulated FC values of all eight parameters. 

5. Experimental Verification 
In order to further verify the accuracy and effectiveness of the models established in 

this paper, we use an EMA test stand built in a laboratory environment to verify the pro-
posed dynamic models. The main components of the test stand are shown in Figure 15. 
The motor used in the test stand is a Siemens 1FL6042 motor, and the ball-screw pair is a 
TBI sfv2505 ball-screw pair. The six accelerometers used in the test stand are Yangzhou 
ymc-162A10T single-axial low-impedance voltage-output micro accelerometers with a 
range of ±500 g (g refers to the gravitational acceleration) and a sensitivity of 10 mV/g. The 
accelerometers are installed to measure the acceleration signals of the screw shaft and the 
nut in the x, y and z directions. Because it is difficult to directly measure the vibration in 
the torsional direction, the angular parameters in the simulation model are not verified in 
this paper. In addition to acquiring the vibration signals of the ball-screw pair, a photoe-
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5. Experimental Verification

In order to further verify the accuracy and effectiveness of the models established
in this paper, we use an EMA test stand built in a laboratory environment to verify the
proposed dynamic models. The main components of the test stand are shown in Figure 15.
The motor used in the test stand is a Siemens 1FL6042 motor, and the ball-screw pair is a
TBI sfv2505 ball-screw pair. The six accelerometers used in the test stand are Yangzhou
ymc-162A10T single-axial low-impedance voltage-output micro accelerometers with a
range of±500 g (g refers to the gravitational acceleration) and a sensitivity of 10 mV/g. The
accelerometers are installed to measure the acceleration signals of the screw shaft and the
nut in the x, y and z directions. Because it is difficult to directly measure the vibration in the
torsional direction, the angular parameters in the simulation model are not verified in this
paper. In addition to acquiring the vibration signals of the ball-screw pair, a photoelectric
sensor is adopted in the test stand to monitor the angular velocity of the screw shaft. The
acquisition equipment used in the data acquisition system comprises three NI9234 sound
and vibration input modules and an NI cDAQ-9174 chassis. The sampling frequency is set
to be 25.6 kHz, and the duration of measurement is 5 s.

Owing to the rotation of the screw shaft during test stand operation, it is difficult to
directly obtain the vibration signal of the screw shaft. Moreover, owing to the raceway
groove with a lead angle, the contour of the screw shaft changes continuously during
the rotation, so it is also difficult to directly acquire the displacement signal of the screw
shaft. Therefore, as an alternative, the accelerometers are installed on the base of the
supporting bearings to obtain the vibration signals of the screw shaft. In order to eliminate
the interference caused by motor vibration, the positions of the screw accelerometers are set
on the bearing base far away from the motor output shaft, namely the base of bearing #2.

The faulty nut used in the test stand is machined from a normal sfv2505 nut. A 1 mm
gap is cut in the y direction of the nut by the wire cutting method to simulate the spall
generated during EMA operation. The faulty nut is shown in Figure 16.
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After obtaining the acceleration signals acquired by all six accelerometers, it is neces-
sary to denoise the original signals and highlight the fault characteristics. In this paper, we
adopt the wavelet domain denoising as the denoising method, with the aim of reducing
the high-frequency components in the acceleration signals and focusing on the frequency
components around f b and its harmonics. After wavelet domain denoising, the FFT is used
to obtain the frequency spectrum of each acceleration signal, as shown in Figures 17 and 18.
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Figure 18. Experimental acceleration spectra of the nut-related parameters under normal and faulty 
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6. Discussion

Figure 17 shows the experimental acceleration spectra of the screw-shaft-related
parameters (xs, ys and zs) under normal and faulty conditions. It is difficult to determine
the ball-passing frequency (40.29 Hz) in the frequency spectrum in the x direction of the
screw shaft. Although there are similar frequency spikes, their amplitudes are far smaller
than that of the main frequency component and are almost covered up by other components.
This may be caused by the lack of external load in the x direction. The screw shaft needs
to drive the nut assembly in the z direction and bear the gravity of the nut assembly in
the y direction. However, the screw shaft hardly bears any load in the x direction. As a
result, the vibration amplitude of the screw shaft excited by the impact of the balls in the
x direction is relatively small and is easily covered up by other noises. In contrast, in the
normal acceleration spectra of the y and z directions, amplitude peaks can be found at
42.9 Hz, as well as near the second (85.9 Hz) and third (128.8 Hz) harmonics. Although
frequency peaks at three harmonics can be observed in the experimental frequency spectra,
there is still a difference between the experimental ball-passage frequency (42.9 Hz) and
the simulated frequency (40.29 Hz), possibly because the output speed of the motor is not
stable during EMA test stand operation.

In addition, in the faulty acceleration spectra in the y and z directions, obvious
frequency spikes can be found at these three frequencies. Compared with normal conditions,
the amplitudes at the first and second harmonics decrease, whereas the that at the third
harmonic increases, which is also consistent with the phenomenon reported in the analysis
of simulation results in this paper.

However, as shown in Figure 17, the frequency spectra of screw-shaft-related param-
eters also contain many frequency components that are not related to the f b, especially
around 100.2 Hz and 114.5 Hz. In some spectra, the amplitudes of these two frequencies
even exceed the amplitudes of f b and its harmonics. Owing to these interference com-
ponents, it is difficult to directly use the same peak-detection algorithm as that used in
the simulation analysis to extract fault features from the acquired signal of each screw-
shaft-related parameter. Therefore, the proposed method should be supplemented by more
advanced signal processing methods.

Figure 18 shows the acceleration spectra of the nut-related parameters (xn, yn and zn)
under normal and faulty conditions. Similar to the screw shaft acceleration spectrum, it
is difficult to determine the frequency components similar to the ball passage frequency
(40.29 Hz) in the spectra of xn, which are basically covered by the interference components
of approximately 100.1 Hz and 114 Hz. Although the corresponding amplitude peaks at
approximately 42.9 Hz and its harmonics can be found in the frequency spectra of zn, there
are also many components that are independent of the ball-passage frequency, causing
serious interference.

However, in the frequency spectra of yn, especially in the faulty spectrum, three am-
plitude peaks occur at 42.9 Hz, 85.8 Hz and 130 Hz, and the peaks at 42.9 Hz and 130 Hz
considerably exceed other interference components. A comparison of the faulty spectrum
with the normal spectrum shows that the amplitude at the third harmonic increases obvi-
ously, whereas those at the first and second harmonics decrease. Therefore, the signals of
yn are the most suitable for extraction of fault features among all six parameters.

Then, the corresponding amplitude values are determined around f b (42.9 Hz), 2f b
(85.9 Hz) and 3f b (128.8 Hz or 130 Hz) in the frequency spectra of ys, zs, yn and zn, as shown
in Table 2.

When the obtained amplitude values are input into Equation (34), the fault characteris-
tic FC values of the four parameters can be obtained, as shown in Figure 19. The FC values
in the y direction are higher than those in the z direction, which indicates that the nut
spalling fault has a stronger influence on the y direction than the z direction. This verifies
the amplitude-increasing phenomenon observed in the simulation analysis to a certain
extent. However, there are still some differences between the experimental values of FC
and the simulated values of FC, especially the FC values of ys. This is because the vibration
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of the screw shaft is not directly acquired by the accelerometers, and the influence of the
nut spalling fault is reduced by the supporting bearings. Therefore, in order to ensure more
accurate and stable fault features for the subsequent fault diagnosis or prognosis work,
further exploration is necessary with respect to a numerical calculation method for nut
spalling fault characteristics.

Table 2. Amplitude values around f b, 2f b and 3f b.

Spectrum
Amplitude Increase Rate (%)

f b 2f b 3f b

ys 46.9832 −11.2515 111.486
zs 59.3389 −15.1929 88.1544
yn 10.7598 −58.4076 58.8222
zn 22.3039 −40.7564 71.6203
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7. Conclusions

With the help of the Lagrangian energy method, an eight-DOF dynamic model contain-
ing typical mechanical components of an EMAs is established in this paper. By obtaining the
impact force and the relationship between the total elastic restoring forces and the change
in ball deformation when a spall occurs in the raceway of the nut, a faulty dynamic model
of an EMA mechanical transmission is established. In the analysis of the simulation results
of the established models, the dynamic behaviors of the ball-screw pair in the EMA system
are described in detail, and the coupling effect of the displacements and accelerations in the
axial and torsional direction is reflected. After further exploration under different working
conditions, the established dynamic models of an EMA mechanical transmission can serve
as a reference for establishing physical models of EMA systems or generating available
data for the data-driven fault diagnosis of EMA systems.

According to a comparison of the amplitudes of the simulated accelerations of the
normal and faulty models, the acceleration amplitude at the third harmonic of the ball
passage frequency increases, whereas the amplitudes at the first and second harmonics
decrease in the faulty model. A fault indicator of nut spalling is proposed based on this
phenomenon. Then, the FC values of all eight parameters are calculated, and it is concluded
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that the parameters in the radial direction have the highest FC values and are suitable
for extracting fault features. Although restricted by numerous assumptions adopted for
dynamic modeling, the analysis of the simulation results in this paper can still provide a
new feature extraction method for EMA fault diagnosis and inform the installation of the
accelerometers in EMA systems.

The effectiveness of the established eight-DOF dynamic models and the identified
phenomenon is verified by experiments conducted on an EMA test stand in a laboratory
environment. However, there is still considerable noise interference in the acquired signals,
as well as certain errors between the simulation and experiment results of the ball passage
frequency and FC values. Therefore, in subsequent research, the influence of the motor will
be considered to further improve the accuracy of the established model and the proposed
FC calculation method. Furthermore, additional signal processing methods are needed
to realize engineering applications in actual EMA systems. Moreover, a test stand using
actual aircraft EMAs will be built to ensure experimental results that are closer to practical
aviation applications.
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