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Abstract: Pneumatic actuators demonstrate various nonlinear and uncertain behavior, and as a result,
precise control of such actuators with model-based control schemes is challenging. The Iterative
Learning Control (ILC) algorithm is a model-free control method usually used for repetitive processes.
The ILC uses information from previous repetitions to learn about a system’s dynamics for generating
a more suitable control signal. In this paper, an ILC method to overcome the nonlinearities and
uncertainties in a pneumatic cylinder-piston actuator is suggested. The actuator is modeled using
MATLAB SimScape blocks, and the ILC scheme has been expanded for controlling nonlinear, non-
repetitive systems so that it can be used to control the considered pneumatic system. The simulation
results show that the designed ILC controller is capable of tracking a non-repetitive reference signal
and can overcome the internal and payload uncertainties with the precision of 0.002 m. Therefore, the
ILC can be considered as an approach for controlling the pneumatic actuators, which is challenging
to obtain their mathematical modeling.

Keywords: pneumatic actuators; iterative learning control; non-repetitive ILC; model-free control
method; MATLAB; SimScape

1. Introduction

Pneumatic actuators have a wide range of applications in industrial automation and
robotics, such as in load positioning [1], vehicles’ active suspension [2], air-brake systems [3],
conveyor belt systems [4], pneumatic muscle actuators (PMA) [5,6] and soft robotics [7,8].
Nevertheless, the precise control of pneumatic systems requires further consideration as
it cannot be satisfactorily achieved through many model-based control schemes. This
emanates from the nonlinear and uncertain characteristics of pneumatic systems, which are
caused by various factors such as dead-zone, air compressibility, frictional forces effects,
and changes in airflow rate parameters, making obtaining an accurate model for such
systems challenging [9–12].

Among the early attempts to control pneumatic systems, proportional-integral-derivative
(PID) controllers [13,14] and their combination with acceleration feedback and nonlinear
compensators [15,16] received more attention. Despite PID controllers’ popularity in
industrial applications, they could not obtain the desired level of robustness, accuracy, and
speed in controlling pneumatic systems. To improve robustness and overcome uncertainties,
different robust control methods, including the H∞ [17–19], quantitative feedback theory
(QFT) [20,21] and sliding mode control (SMC) theory [22–24], have been proposed. The
SMC controllers have demonstrated satisfactory performance in overcoming uncertainties
in pneumatic systems, provided that the uncertainties’ boundaries are available to the
controller. Adaptive controllers have also shown promising performance in controlling
pneumatic actuators [25–28], and although they do not need any prior information on the
uncertainties’ boundaries, an accurate model of each plant variation must be available
to the controller for adaptation. However, obtaining accurate uncertainty boundaries or
system models for most pneumatic actuators is challenging, and therefore, model-free
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control approaches, such as intelligent control methods, have attracted much interest.
This includes fuzzy logic [6,29–32] and neural network-based controllers [33,34]. The
intelligent control methods have also been combined with other controllers, such as the
adaptive method, to achieve better performance in controlling pneumatic systems [35,36].
Nevertheless, employing a fuzzy logic controller requires expert knowledge or field test
results, and using neural network controllers needs a training phase.

The iterative learning control (ILC) algorithm is an alternative intelligent method
usually used for repetitive processes [37]. In this method, information from previous
repetitions is used to learn about a system’s dynamics for generating a more suitable control
signal. This learning process is performed in an iterative manner to improve the controller’s
performance from one iteration to the other for achieving a zero-error convergence. ILC
algorithms are particularly useful in real-time control systems, given their relatively quick
response to the changes of the input signal. Many industrial processes are repetitive, which
means the same control action should be performed repeatedly. Therefore, it is reasonable
to make use of previously acquired data for improving a controller’s convergence and
robustness in such processes. The difference between ILC and other learning-type control
methods, such as the neural network and adaptive control, is that the ILC only modifies
the control signal according to predefined control law. In contrast, other learning-type
controllers monitor the system’s performance and update their control law during the
process, accordingly [37]. Unlike an adaptive controller, ILC methods do not need any
information on the system’s model and only operate based on the historical input and
output. Moreover, contrasting to other intelligent controllers, no training is required,
and a well-selected ILC method should be able to converge to the expected state within
a few iterations [38]. The ILC has been used for controlling a pneumatic actuated X-Y
table [39] and was combined with PID to control a simplified model of a pneumatic servo
system [40]. Recently, the ILC method was proposed for accurate tracking of PMA [41,42]
and controlling pneumatic valves [43].

This paper suggests an ILC method to overcome the nonlinearities and uncertainties
resulting from air characteristics, pressure loss, leakage and load variations in a pneumatic
system consisting of a valve, a mechanical actuator and the connecting pipes. The con-
sidered pneumatic system for this study is a cylinder-piston actuator, which is the most
commonly used type of pneumatic system in the industry. Although ILC is a model-free
control method, in Section 2, the mathematical model and physical properties of the consid-
ered pneumatic actuator have been discussed to demonstrate the system’s nonlinearities
and uncertainties. MATLAB SimScape blocks have been used for simulating the system to
provide a more detailed model than those used in previous studies on the ILC-controlled
pneumatic systems. The asymptotic stability, monotonic convergent and zero steady-state
error are the three aspects that should be considered in designing an ILC algorithm, which
originally limits the ILC application to linear, repetitive systems. In this paper, the ap-
plication of ILC has been further expanded to control the considered pneumatic system
containing nonlinear behavior and responding to non-repetitive signals. The design of
the proposed ILC method is done through a detailed mathematical analysis based on the
physical properties of the considered actuator that is provided in Section 3. The simulation
results, provided in Section 4, show that the designed ILC controller is capable of tracking
a non-repetitive reference signal and can overcome the internal and payload uncertainties.

2. Mathematical Modeling and Simulation of the System

The considered pneumatic actuator in this paper follows the system given in [44],
which is a double-acting pneumatic cylinder controlled by a 4-port-3-position (4/3) electro-
pneumatic valve, as is depicted in Figure 1. According to the ideal gas law

P = zρRT (1)
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P, ρ, z, and T are the gas’s pressure, density, compressibility factor, and temperature,
respectively, and R is the gas constant. The ideal gas model is sufficiently accurate for
modeling dry air under standard conditions.

In the control volume approach, each pneumatic component is considered as an
internal node enclosed by a control surface. The mass flow rate in the control surface can
be expressed as

.
min −

.
mout =

∂M
∂P

dPl
dt

+
∂M
∂T

dTl
dt

(2)

.
min and

.
mout are the mass flow rates of gas entering and leaving the control surface.

The gas volume properties are denoted by subscript l, such as in Pl and Tl, representing the
pressure and temperature of the gas volume in the internal node, respectively. ∂M/∂P is
the mass flow rate of the gas volume with respect to pressure at constant temperature and
volume; and ∂M/∂T is the mass flow rate of the gas volume with respect to temperature at
constant pressure and volume. For an ideal gas,

∂M
∂P = Vρl

Pl
∂M
∂T = −Vρl

Tl

(3)

Similarly, the control surface heat flow rate can be expressed as

Φin − Φout + Q =
∂U
∂P

dPl
dt

+
∂U
∂T

dTl
dt

(4)

where Φin and Φout are the energy flow rates due to the gas entering and leaving the control
surface. Q is the heat flow rate as a result of heat transferring between the control system
and its surrounding, and U is the internal energy of the gas volume in the internal node.
For an ideal gas,

∂U
∂P = V

(
hl

zRTl
− 1
)

∂U
∂T = Vρl

(
Cpl
− hl

Tl

) (5)

where hl and Cpl
are the specific enthalpy and specific heat capacity of the gas volume in

the internal node, respectively.
For simulating the gas behavior in SimScape, a supply unit, as shown in Figure 2, has

been set up. The gas properties, together with the thermal conductivity and dynamic vis-
cosity, which are used in modeling the gas transport behavior, are defined in the SimScape
Gas properties block. The system’s reference temperature and pressure, which are taken as
atmospheric temperature and pressure in this model, are defined by the SimScape Reser-
voir block, and the air compressor is modeled by a Pressure source block. The SimScape
Pressure source block has two ports and is capable of maintaining a constant pressure
difference between its ports. Therefore, by connecting the input port to the reservoir, a set
pressure gas can be injected into the system.
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Figure 2. The SimScape model of the supply unit.

The pipes in the system can be modeled using SimScape’s Pipe (G), thermal mass,
convective heat transfer and temperature source blocks, as shown in Figure 3.
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The parameters used in calculating the gas pressure drop and convective heat transfer
between the gas flowing in the pipe and the pipe’s wall are set in the Pipe (G) block. The
pressure drop at each end of the pipe is given as

Pin − Pl =
( .

min
At

)2
×
(

1
ρl
− 1
ρin

)
+ ∆Pinl

Pout − Pl =
( .

mout
At

)2
×
(

1
ρl
− 1
ρout

)
+ ∆Poutl

(6)

where At is the pipe’s cross-sectional area, and ∆P{·}l is the pressure losses due to viscous
friction, µ. The {·} notation is used to abbreviate the equations and can be replaced by
“in” or “out”. This notation will be followed in the rest of this section. The pressure loss
in a pipe depends on Reynolds numbers. The Reynolds number at each end of the pipe is
equal to

Re{·} =

∣∣∣ .
m{·}

∣∣∣D
Atµl

(7)

where D denotes the pipe’s diameter. If the calculated Reynolds number is less than 2000,
the gas flow follows the laminar regime, and the pressure drop is equal to

∆P{·}l = fshape

.
m{·} µl

2ρlD
2At
×

Lt + Leqv

2
(8)

For Reynolds numbers greater than 4000, the gas flow follows the turbulent flow
regime, with a pressure drop of

∆P{·}l = fDarcy{·}

.
m{·} µl

2ρlDA2
t
×

Lt + Leqv

2
(9)
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Lt denotes the pipe’s length and Leqv is the aggregate equivalent length of local
resistances, which has been taken as 10% of the pipe’s length. The shape factor, fshape, is
considered as a constant number equal to 2.59, but the Darcy friction factor, fDarcy, is a
function of the Reynolds number and is equal to

fDarcy{·} =

[
−1.8 log

(
6.9

Re{·}
+

(
εrough

3.7D

)1.11
)]−2

(10)

where εrough is the internal surface absolute roughness. For the Reynolds numbers between
2000 and 4000, a transition between laminar and turbulence regimes has been assumed.

The convective heat transfer between the gas flowing in the pipe and the pipe’s wall
are modeled as

Q =
∣∣∣ .

min−
.

mout
2

∣∣∣ Cpavg(TH − Tin)(1− exp(− NuκavgπLt∣∣∣∣ .
min−

.
mout

2

∣∣∣∣Cpavg

))

+ κlπLt(TH − Tl)

(11)

where Cpavg and κavg are the specific heat capacity and thermal conductivity calculated
at the average temperature. Nu is the Nusselt number, κl is the gas volume thermal
conductivity, and Tin and TH are the inlet and pipe internal wall temperatures, respectively.
The value of the Nusselt number depends on the flow regime. For the laminar flow, the
Nusselt number is taken as a constant, 3.66, and for turbulence flow is equal to

Nu_tur =

fDarcy
8
(
Reavg − 1000

)
Pravg

1 + 12.7
√

fDarcy
8 + Pr2/3

avg − 1
(12)

Reavg and Pravg are the Reynolds and Prandtl numbers, which are obtained at the
average temperature.

The pipe properties for modeling the conduction heat transfer in the pipe’s wall can
be adjusted in the thermal mass block, and the parameters for modeling the convective
heat transfer between the pipe’s wall and the surrounding environment can be set in
the convective heat transfer and temperature source blocks. The temperature source can
maintain the atmospheric temperature regardless of the amount of heat flow into the system.
The conduction heat transfer in the pipe’s wall can be mathematically modeled by

Q = ρtπDLtCt(Tt − TH) (13)

where ρt, Ct, and Tt are the pipe’s wall density, specific heat capacity, and temperature.
Finally, the convective heat transfer between the pipe’s wall and the surrounding environ-
ment can be expressed as

Q = κairπDLt(Tatm − Tt) (14)

where κair and Tatm are the surrounding air thermal conductivity and temperature.
The next component of the pneumatic actuator is the valve, which can be modeled

as a set of restrictions capable of controlling the gas flow according to an input control
signal. The restriction causes contraction of the gas at its input port, followed by the gas
expansion at its output port, which results in a pressure drop across the ports. Considering
the process as adiabatic, this pressure difference can be modeled as

∆P =

.
min

CdAR
.
∣∣∣∣ .

min

ρRCdAR

∣∣∣∣(1 + r
2

(
1− r

ρR
ρin

)
− r

(
1− r

ρR
ρout

))
(15)

where AR is the restriction’s cross-sectional area, and ρR is the gas volume density at it.
Cd denotes the discharge coefficient, and r = AR/Aport is the ratio of the restriction cross-
sectional area to the ports cross-sectional area. It is assumed that both ports have the same
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dimensions. As is seen from Equation (15), the pressure difference is proportional to the
square of the gas flow rate,

.
min, which is typical in the turbulence regime. However, in the

laminar regime, the pressure difference is linearly proportional to the gas flow rate, and
thus ∆P can be approximated as

∆plam =

√
ρR. pin+ pout

2 (1− Blam)

2
(1− r) (16)

where pin and pout are the pressures of the inflow and outflow gases into the restriction,
and Blam is the laminar flow pressure ratio, which is taken as a constant, 0.999. The amount
of pressure at the restriction is equal to

PR = pin −
.

min

CdAR
.
∣∣∣∣ .

min

ρRCdAR

∣∣∣∣(1 + r
2

(
1− r

ρR
ρin

))
(17)

For the laminar regime, this can be approximated as

PR =
pin + pout

2
− 1
ρR

( .
min

CdAR

)2 1− r2

2
(18)

The local restriction (G) block has been used for modeling the valve in the SimScape
environment. Each active state of the valve can be modeled by two local restriction blocks
connecting ports P and T to ports A and B in Figure 1. The block allows modeling the valve
leakage by defining a non-zero minimum restriction area, Aleakage. Moreover, the valve
spool displacement, x, has been used to adjust the orifice area. The orifice cross-sectional
area is linearly proportional to the spool displacement as

AR =
Amax −Aleakage

xmax − xleakage

(
x− xleakage

)
+ Aleakage (19)

where xmax is the maximum spool displacement causing the maximum cross-sectional
area in the restriction, Amax, and xleakage is the minimum value for the spool displacement.
Figure 4 shows the model of the valve using SimScape components.
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The complete model for the cylinder using SimScape blocks is depicted in Figure 5.
The cylinder consists of two chambers, where each can be modeled using the translational
mechanical converter (G) block in the SimScape to model the relation between the gas
pressure inside a chamber and the applied mechanical force to the interface. Each cylinder
chamber can be considered as an internal node, with a mass flow rate of

.
m =

∂M
∂p

.
dpl
dt

+
∂M
∂T

.
dTl
dt

+ ρl
dV
dt

(20)
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A heat flow rate of

∅+ Q =
∂U
∂p

.
dpl
dt

+
∂U
∂T

.
dTl
dt

+ ρlhl
dV
dt

(21)

where ∅ is the energy flow rate as a result of the gas transportation into/out of the
chamber, and Q is due to the convective heat transfer between the gas in the chamber and
the cylinder’s body. The partial derivative terms in Equations (20) and (21) can be obtained
from Equations (3) and (5), respectively. Equations (11)–(14) are also applicable here to
model the heat transfer between the gas in the chamber and the surrounding environment.

The gas volume in the chamber depends on the displacement of the moving interface,
and is equal to

V = Vd ± Apxc (22)

where Vd denotes the dead volume, and Ap and xc represent the interface cross-sectional
area and displacement. The sign of the displacement value depends on the movement
direction of the interface. The applied force to the interface can be expressed as

F = (patm − pl)Ap (23)

where patm is the atmospheric pressure. Therefore, the total force caused by the gas pressure
in chambers 1 and 2, considering the forces’ directions, is equal to

Fp = (pl1 − pl2)Ap (24)

Moreover, a translational hard stop block is used to restrict the cylinder interface
movement within the length of the cylinder. The viscous friction coefficient for the piston
movement can be modelled by a translational damper block. Two mass blocks are used
for modelling the load and piston masses. The convective heat transfer, thermal mass, and
temperature source blocks can model the heat transfer between the chamber gases and the
surrounding environment. The motion equation for the load connected to the piston rod is
equal to

(ML + MP)
.
xc = Fp − β

dxc

dt
(25)

where xc denotes the rod’s displacement, MP is the piston mass, and ML is the load mass,
which causes the payload force of FL = ML

.
xc on the actuator. β represents the viscous

friction coefficient for the piston movement.
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3. Controller Design

This section covers the procedure for designing an ILC controller for the considered
pneumatic actuator covered in Section 2. The ILC method can generally be applied to
repetitive processes. In such processes, every iteration starts and ends at the same condi-
tions and lasts for a fixed period of time, T. The state-space equation for a repetitive linear
time-invariant system (with no feedthrough) can be represented as

.
xk(t) = Acxk(t) + Bcuk(t)
yk(t) = Ccxk(t)

; t ∈ [0, T] xk(0) = x0 ∀k (26)

k > 0 denotes the trial number, and xk(t) ∈ Rn, yk(t) ∈ R, and uk(t) ∈ R respectively
represent the state variable vector, output, and input of the system at the kth iteration.
Ac ∈ Rn×n, Bc ∈ Rn×1, Cc ∈ R1×n are the state space system matrices. Suppose the
system’s desired output for every iteration is yd(t), which makes the error at the kth

iteration equal to
ek(t) = yd(t)− yk(t) (27)

The idea of the ILC is to define a control law using previous trials’ information
such that the error monotonically decreases in every new iteration until it reaches zero
( lim
k→∞

ek(t) = 0). The control signal is calculated according to a recursive law as

uk+1(t) = F
(
u0
(
t′
)
, . . . , uk

(
t′
)
, y0
(
t′
)
, . . . , yk

(
t′
)
, yd
(
t′
))

; 0 ≤ t′ ≤ T (28)

If F is designed in a way that t′ > t, then the learning law is known as noncausal.
Moreover, the control signal generated at the (k + 1)th iteration can be calculated based on
the information collected from all previous iterations. This method is called the high-order
ILC (HOILC). However, a simplified law is preferred as long as it can attain the convergence
with satisfactory speed.

The ILC algorithm can be presented in discrete-time, which is more suitable for being
implemented by a microcontroller. For a sampling time of Ts, where T = NTs, the system
can be considered as

xk[i + 1] = Axk[i] + Buk[i]
yk[i] = Cxk[i]

; i ∈ [0, N] xk[0] = x0 ∀k (29)

A = eAcTs , B =
∫ Ts

0 eAcαdαBc and C = Cc. The system’s output can then be calcu-
lated as

yk[i] = C(qI−A)−1 B uk[i] + CAk x0 = P(q)uk[i] + dk (30)

where q denotes the forward time-shift operator as qx[i] ≡ x[i + 1]. For a rational LTI
system, P(q) can be expanded into

P(q) = CBq−1 + CABq−2 + CA2Bq−3 + . . . (31)

The error at the kth iteration is equal to

ek[i] = yd[i]− yk[i] (32)

The ILC control law in the discrete-time domain can then be presented as

uk+1[i] = F
(
uk[·], . . . , u0[·], yk[·], . . . , y0[·], yd[·]

)
(33)

where [·] represents any sample in the range of [0, N]. In such cases, it is common to
implement the ILC method in the form of digital filters.
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We begin our design by considering a general form for the ILC law as

uk+1[i] = Q(q)uk[i] + L(q)yk[i] + M(q)yd[i] (34)

To represent (34) in matrix format, let us consider N sample sequences for the input,
output and desired signals as

uk =
[
uk[1] uk[2] · · · uk[N]

]TT

yk =
[
yk[1] yk[2] · · · yk[N]

]T
yd =

[
yd[1] yd[2] · · · yd[N]

]T
dk =

[
dk dk · · · dk

]T
(35)

And M, L, Q, and P as matrices equal to

M =


m0
m1

...
mN−1

m−1
m0

...
mN−2

. . .

. . .
. . .
. . .

m−(N−1)
m−(N−2)

...
m0

 L =


l0
l1
...

lN−1

l−1
l0
...

lN−2

. . .

. . .
. . .
. . .

l−(N−1)
l−(N−2)

...
l0



Q =


q0
q1
...

qN−1

q−1
q0
...

qN−2

. . .

. . .
. . .
. . .

q−(N−1)
q−(N−2)

...
q0

 P =


P1
P2
...

PN

0
P1
...

PN−1

. . .

. . .
. . .
. . .

0
0
...

P1


(36)

Therefore, (34) can be represented as

uk+1 = Quk + Lyk + Myd
= (Q + LP)uk + (Myd + Ldk)

(37)

An ILC method is regarded to be asymptotically stable (AS) if

∃u ∈ R : |uk+1[i]| ≤ u ∀k > 0, ∀i ∈ [1, N − 1] (38)

The converged control signal can be defined as u∞[i] = lim
k→∞

uk[i], and in order for (37)

to be AS,
ρ(Q + LP) < 1 (39)

where ρ(A) = max
j

∣∣λj(A)
∣∣ and λj(A) is the jth eigenvalue of matrix A.

Theorem 1. The asymptotic error of the controlled system is equal to

e∞ =
(

I− P(I−Q− LP)−1M
)

yd −
(

P(I−Q− LP)−1L + I
)

d∞ (40)

where I is an N × N identity matrix.

Proof of Theorem 1. Based on (32), ek = yd − yk and following (30) yk = Puk + dk, which
makes ek = yd − Puk − dk. Therefore, the asymptotic error, k→ ∞, can be obtained as
e∞ = yd − Pu∞ − d∞ and by using (37) when k→ ∞

u∞ = (Q + LP)u∞ + (Myd + Ld∞)

∴ u∞ = (I−Q− LP)−1(Myd + Ld∞)

�
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Theorem 2. In order to have e∞ = 0, M, L, and Q should be selected as

Q = I
M = −L

(41)

Proof of Theorem 2. From (40), for e∞ = 0, we should have

P(I−Q− LP)−1L = −I
I−Q− LP = −LP

∴ Q = I

P(I−Q− LP)−1M = I
I−Q− LP = MP
I− I− LP = MP
∴ −L = M

(1)

�

Although by selecting matrices as (41), a zero asymptotic error can be achieved, and
the transient error also needs to be analyzed to prevent having significant transient errors
in the system response. The controlled system is called monotonically convergent if

‖e∞ − ek+1‖ ≤ γ ‖e∞ − ek‖ ∀k, 0 ≤ γ < 1
(42)

where ‖· ‖ is the Euclidean norm, and γ is the convergence rate.

Theorem 3. For the ILC law given in (34) we have,

γ = σ

(
I + LP

2

)
(43)

where σ(·) denotes the maximum singular value operator.

Proof of Theorem 3. From (40), we have

e∞ − ek+1 = (I −P(I−Q− LP)−1M
)

yd −
(

P(I−Q− LP)−1L + I
)

d∞ − yd

+P(Quk + L(Puk + dk) + Myd + dk+1

=
(
−P(I−Q− LP)−1M + PM

)
yd + P(Q+LP)uk

−
(

P(I−Q− LP)−1L + I
)

d∞ + PLdk + dk+1

and

e∞ − ek =
(
−P(I−Q− LP)−1M

)
yd + Puk −

(
P(I−Q− LP)−1L + I

)
d∞ + dk − yd + Puk + dk

=
(
−P(I−Q− LP)−1M− I

)
yd + 2Puk −

(
P(I−Q− LP)−1L + I

)
d∞ + 2dk

Using values obtained in (41)

e∞ − ek+1 = P(I + LP)uk − (I + PL)yd + PLdk + dk+1

and
e∞ − ek = −2Iyd + 2Puk + 2dk

Therefore,

‖e∞ − ek+1‖
‖e∞ − ek‖

=
‖ − (I + PL)yd + P(I + LP)uk + PLdk + dk+1‖

‖ − 2Iyd + 2Puk + 2dk‖



Actuators 2022, 11, 240 11 of 22

Considering that in ILC {xk[0] = x0 ∀k}, we have dk = dk+1 = CAk x0 1T = d where
1 denotes an all one 1× N vector. Therefore,

‖e∞ − ek+1‖
‖e∞ − ek‖

=
‖ − (I + PL)yd + P(I + LP)uk + (I + PL)d‖

‖ − 2Iyd + 2Puk + 2d‖

Since for the matrices P and L given in (36) it can be proved that ‖(I + PL)‖ =
‖(I + LP)‖, we have

‖e∞−ek+1‖
‖e∞−ek‖

≤ ‖(I+LP)‖
2

‖−Iyd+Puk+d‖
‖−Iyd+Puk+d‖

∴ ‖e∞−ek+1‖
‖e∞−ek‖

≤ ‖(I+LP)‖
2 = σ

( I+LP
2
)

�
Using the results obtained from (39), (41), and (43), the ILC law given in (37) can

achieve asymptotic stability as well as monotonic convergent and zero steady-state error
when it is in the form of

uk+1 = uk + M(yd − yk)
ρ(I−MP) < 1

0 ≤ σ
( I−MP

2
)
< 1

(44)

However, further consideration has to be taken into account before using (44) to
design a controller for the pneumatic actuator. First, the considered pneumatic actuator is a
nonlinear system with the state space equation of{ .

xk(t) = f(xk(t), uk(t))
yk(t) = g(xk(t))

; t ∈ [0, T] xk(0) = x0 ∀k (45)

We assume that f : Rn+1→n and g : Rn→1 are global Lipschitz continuous (GLC)
functions. Therefore,

‖f(x1, u1, t)− f(x2, u2, t)‖ ≤ Lf(‖x1 − x2‖+ ‖ u1 − u2‖)
‖g(x1, t)− g(x2, t)‖ ≤ Lg‖x1 − x2‖

(46)

By taking into account that the considered pneumatic system is asymptotically stable
and for a sampling time of Ts, where T = NTs, the system can be considered as

xk[i + 1]= Axk[i] + Buk[i] + ξ(xk[i], uk[i])

yk[i]= Cxk[i] + η(xk[i]) ; xk[0] = x0 ∀k, i ∈ [0, N]
(47)

where lim
‖x‖→0

‖ξ‖
‖x‖ = 0 and lim

‖x‖→0

‖η‖
‖x‖ = 0. This follows the Lyapunov stability analysis, where

it is assumed that for a physically stable system all the linear terms are in Axk[i] + Buk[i]
and Cxk[i] and higher-order terms are in ξ and η, in the sense that when x gets small, ξ
and η get small faster. This means that the nonlinearities’ effects in the system’s dynamic
would eventually vanish, and that the system has a dominating linear characteristic at
its steady-state condition. The remaining nonlinearities is as a result of input effect, uk[i],
which can be denoted as ψ(uk[i]). Using (47), the system’s output can be presented as

yk[i] = C(qI−A)−1 B uk[i] + CAk x0 + ψ(uk[i])
= P(q)uk[i] + dk + ψ(uk[i])

(48)

where ψ(·) term is as a result of the nonlinearities’ residue in the model. By applying the
proposed ILC law given in (37), we have

uk+1 = Quk + Lyk + Myd
= (Q + LP)uk + (Myd + Ldk) + Lψ(uk)

(49)
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In order to make sure that the ILC method is AS, an additional term has been added
to the ILC law as

uk+1 = Quk + Lyk + Myd − αuk (50)

where ‖L ∂ψ
∂uk
‖ ≤ α ∀k. The existence of α is guaranteed as f(·) and g(·) are assumed to be

GLC functions. As the nonlinearities in the system can be controlled (removed) by adding
the proportional control term, −αuk, the rest of the system can be considered linear, and
(39), (41), and (43) will be held.

The ILC, in theory, is effective for repetitive processes. However, we would like to
expand the ILC application to control the pneumatic system responding to non-repetitive
inputs and disturbances. For this purpose, the proof given for Theorem 3 has to be revisited.
As part of this proof, we had

‖e∞ − ek+1‖
‖e∞ − ek‖

=
‖ − (I + PL)yd + P(I + LP)uk + PLdk + dk+1‖

‖ − 2Iyd + 2Puk + 2dk‖
(51)

However, as the process is not repetitive, we cannot consider dk = dk+1. Instead, we
should select the ‖PL‖ value as its maximum, since this choice can help the condition to be
asymptotically held as lim

‖PL‖→∞

‖PLdk+dk+1‖
‖PLdk+dk‖

= 1. Therefore, the ILC law for controlling the

pneumatic actuator can be summarized as:

uk+1 = (1− α)uk + M(yd − yk)
ρ(I−MP) < 1

0 ≤ σ
( I−MP

2
)
< 1

1 � ‖PL‖

(52)

4. Results and Discussion

Table 1 presents the parameters’ values used in simulating the piston-cylinder pneu-
matic actuator.

The effect of applied voltage on the valve’s cross-sectional area, where the valve
supplies port B for the negative voltage values and connects the supply port P to port A for
the positive values, is shown in Figure 6. As is seen, a dead-band behavior appears in the
vicinity of 0 V. This follows the pattern of the same in the physical actuator studied in [44],
shown in Figure 6 of this reference.
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Table 1. Parameters values used in simulation.

Parameter Name Parameter Value

Gas Properties

Supply pressure (Ps) 7 × 105 (Pa)
Supply temperature (Ts) 293.15 (K)

Gas constant (R) 287 (J/(kg·K))
Specific enthalpy (h) 293.6 (kJ/kg)

Compressibility factor (z) 0.999
Specific heat capacity (Cp) 1.01 (kJ/(kg·K))
Thermal conductivity (κ) 25.7 (mW/(K.m))

Dynamic viscosity (µ) 18.2 (µPa·s)
Specific heat ratio (γ) 1.4

Reference temperature (T0) 293.15 (K)
Atmosphere pressure (Patm) 1 × 105 (Pa)

Valve Properties

Discharge coefficient (Cd) 0.82
Max orifice area (Amax) 4 × 10−6 (m2)
Leakage area (Aleakage) 1 × 10−10 (m2)

Displacement for leakage area (xleakage) 2 × 10−4 (m)
Displacement limit (xmax) 5 × 10−3 (m)

Input voltage range [–12, 12] (V)

Pipe Properties

Length (Lt) 1 (m)
Pipe cross-sectional area (At) 5 × 10−6 (m)

Internal surface absolute roughness (εrough) 15 × 10−6 (m)
Pipe wall density (ρt) 1500 (kg/m3)

Pipe wall specific heat capacity (Ct) 1250 (J/(kg·K))
Wall-air heat transfer coefficient (κair) 20 (W/(m2·K))

Cylinder Properties Initial interface displacement (Linit) 0 (m)
Max piston stroke (Lp) 0.2 (m)

Interface cross-sectional area (Ap) 0.002 (m2)
Dead volume (Vd) 4 × 10−5 (m3)

Gas-wall heat transfer coefficient (κp) 100 (W/(m2·K))
Actuator wall specific heat (CCylinder) 870 (J/(kg·K))

Actuator mass (MC) 3 (kg)
Piston mass (MP) 1 (kg)

Hard stop stiffness (khs) 1 × 107 (N/m)
Hard stop damping (βhs) 1500 (N/(m·s))

Mechanical damping (βMech) 200 (N/(m·s))

The gas flow rate,
.

min, in the valve with respect to the applied voltage values is
presented in Figure 7. As a result of leakage, the gas flow rate for the applied voltage
less than ~0.5 V remains at zero. By applying more voltage, the gas flow rate increases by
following a laminar regime until it reaches a point that the flow rate enters into a turbulence
regime, in which a decrease in the flow rate slope can be observed. This follows the pattern
of the same in the physical actuator studied in [44] shown in the Figure 7 of this reference.
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We then apply an input voltage to the valve and measure the rod’s displacement. This
is depicted in Figure 8. The input signal is selected in such a way as to take the valve’s spool
to its extreme positions. An applied 12 V signal charges chamber 1 and allows gas to be
exhausted from chamber 2, which causes the rod to extend to its maximum displacement,
0.2 m. The signal has been applied long enough so that the system can be settled. The valve
is then moved to its neutral state by applying 0 V, and as is shown, the rod’s displacement
remains unchanged. By applying −12 V to the valve, the gas in chamber 1 exhausts, and
chamber 2 fills with gas, moving the piston inward until it reaches zero. Again, a 0 V signal
has been applied to move the valve to its neutral state, where holding the rod’s position
unchanged. The response transition time is around 2 s.
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The frequency response of the system has also been studied. As was discussed,
the air is compressible and has a low damping characteristic, which causes a nonlinear
response and increases the pneumatic system’s dynamic order. Moreover, before the
system can apply any force to a load, the pipes and cylinders have to be filled with air. This
results in further nonlinearities in the form of dead-band and transmission attenuations.
Moreover, a pneumatic system is affected by frictional forces caused by the mechanical parts’
movements. All these uncertainties and nonlinearities make linearizing a pneumatic system
a complicated practice that generates inaccurate results. Therefore, a system identification
approach has been implemented to estimate the frequency response of the pneumatic
actuator. In this approach, a set of sinusoidal signals with different frequencies are applied
to the system and the piston’s rod displacement is measured. The collected results are
then used to draw the system’s bode plot. The estimated bode plot for the pneumatic
actuator obtained by applying sinusoidal voltage signals in the range of 0.5 to 100 Hz
is given in Figure 9, showing around 1.6 rad/s frequency bandwidth for the considered
pneumatic actuator.
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퐏 =  9.95 × 10 ×

1
(0.99)

⋮
(0.99)

0
1
⋮
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According to [45], servo pneumatic actuators in approximately 70% of industrial
applications should move 1–10 kg payloads with ±2 to ±0.02 mm precision. Therefore,
in this paper, we consider the same criteria in studying the performance of the designed
controllers. One major advantage of ILC is that it does not need accurate knowledge
of the system model, and instead, it can learn from the system’s historical input and
output. However, some degree of estimation can help to obtain a better design with a faster
convergence. For this purpose, the estimated bode plot, given in Figure 9, will be used. As
is seen, the system is a lowpass with the bandwidth of 1.6 rad/s. Therefore, we use

P(s) =
0.01
s + 1

(53)

to estimate the linear part of the system. Since the system’s bandwidth is 1.6 rad/s, it
can be assumed that the system does not have much of fluctuations over a period of one
second. Therefore, by taking T = 0.01 s, we can consider that the system would be seen as
a repetitive process from the controller’s perspective. The P(q) for the system given by
(53) based on T = 0.01 s is equal to

P(q) = 9.95× 10−5 ×
(

q−1 + (0.99)q−2 + (0.99)2q−3 + . . .
)

(54)

and

P = 9.95× 10−5 ×


1

(0.99)
...

(0.99)N−1

0
1
...

(0.99)N−2

. . .

. . .
. . .
. . .

0
0
...
1

 (55)

M should be selected such that ρ(I−MP) < 1 and 0 ≤ σ
( I−MP

2
)
< 1. Theoretically,

M = P−1 will perfectly satisfy both conditions. However, as

P−1 =
1

9.95× 10−5 ×


1
−0.99

0
...
0

0
1

−0.99
...
0

. . .

. . .
. . .
. . .

0
0
...
0
1

 (56)

this design would take the system into saturation due to its high gain value of 1/9.95× 10−5.
Considering the maximum rod’s displacement as 0.2 m and the maximum input voltage
as 12 V, the maximum gain value should be limited to 12/0.2 = 60. Another observation
from (56) is that the maximum number of non-zero elements in each column is two, which
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means that regardless of the selected value for N, only two consecutive samples are used in
the control law. As a result, N = 2 would be sufficient for implementing the ILC to control
this pneumatic actuator. Therefore, we consider M as a 2× 2 lower triangular matrix and
calculate its arrays’ values.

M =

[
m0
m1

0
m0

]
P =

[
P1
P2

0
P1

]
det(λI− (I−MP)) = det

(
λ− 1 + m0P1 0
m0P2 + m1P1 λ− 1 + m0P1

)
= 0

λ = 1− m0P1; ρ(I−MP) = 1− m0P1
∴ 0 ≤ m0 ≤ 1

P1
= 10050

σ
( I−MP

2
)
= I−MP

2 =

√
2(1−m0P1)

2+(m0P2+m1P1)
2

2

∴ −m0P2−
√

4−2(1−m0P1)
2

P1
≤ m1 ≤

√
4−2(1−m0P1)

2−m0P2
P1

(57)

Although from the theoretical perspective, a larger value of m0 improves the AS
condition of the ILC method, from the practical aspect, it should be limited to 60 to
prevent the system from saturation. Figure 10 shows the relation between σ

( I−MP
2
)

and
m1 ∈ [−60, 60] to avoid saturation. From a repetitive process perspective, the best value
would be m1 = −60 to minimize the transient error as is given by (43). However, the
inputs to the considered pneumatic system are not repetitive, and following (52), the values
in (57) are selected as m0 = m1 = 60, which makes ρ = 0.994 and σ = 0.5, satisfying
the conditions in (52). The value for α should be in the range of [0, 1) to satisfy the AS
condition of the ILC method, which we adjusted to 0.25 in this design. However, choosing
the optimal value for α requires the system’s knowledge, which is not available.
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Based on the above discussions, the designed ILC method for the pneumatic actuator
system is implemented as

uk+1[n] = 0.75uk[n] +
(

60 + 60q−1
)
(yd[n]− yk[n]) (58)

We further used the obtained frequency response of the system, given in Figure 9,
to design a PID controller in order to compare its performance to that of the proposed
ILC method. The frequency domain techniques, namely the Nichols chart and Inverse
Nichols chart, have been used to achieve the required performance in reference tracking
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and disturbance rejection. To obtain the precision of ±0.002 m, the tracking boundaries are
designed to be in the range of

20 log
( 0.2−0.002

0.2
)
≤ TBdB ≤ 20 log

( 0.2+0.002
0.2

)
−0.09 dB ≤ TBdB ≤ 0.08 dB

(59)

and the sensitivity bound is designed to be less than 3 dB for the lower frequencies
(ω < 8 rad/s) and less than 6 dB for all frequencies. The obtained PID controller is
calculated as

C(s) = 100 +
10
s
+

8
1 + 8 1

s
(60)

Moreover, two recently proposed intelligent model-free control approaches have
been selected to compare the performance of the designed ILC method with theirs. The
first approach, proposed in [46], uses type-2 Takagi–Sugeno (T-S) fuzzy systems with the
memory state feedback control. The controller is expressed using the state variable x[n] as

u[n] =
q
∑
µ=1

ηµ(x[n]){Kµx[n] + Gµx[n − 1]}

Controller rule µ : IFW1(x[n]) is Wµ
1 andW2(x[n]) is Wµ

2
and . . . andWυ(x[n]) is Wµ

υ THEN
u[n] = Kµx[n] + Gµx[n− 1]

(61)

where Wµ
υ denotes the interval type-2 (IT2) fuzzy set of the premise variable,Wυ(x[n]), and

µ and υ are the number of fuzzy IF-THEN rules and fuzzy sets of controller, respectively.
ηµ(x[n]) are nonlinear weight coefficient functions that are calculated based on upper and
lower membership functions. The footprint of uncertainty (FOU) for the employed T-S
fuzzy system is given in Figure 11. Two fuzzy rules are defined taking the system error as
the state variable and the coefficients are selected according to a procedure explained in the
reference as η1(x[n]) = cos2(x[n]) and η2(x[n]) = 1− η1(x[n]). The feedback control gains
are then calculated as [K1,K2] = [5.8123, −5.8122] and [G1,G2] = [9.1279, −9.1278].
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In the other approach proposed in [47], a type-1 T–S fuzzy observer is used to develop
a piecewise control strategy for dealing with the nonlinear terms in the system. The
membership functions employed for constructing the observer is depicted in Figure 12.
The controller gain is calculated as [5.37, −5.37].

The performance of the controllers in tracking a reference signal under a constant load
of 10 kg is shown in Figure 13. As is seen, the designed ILC is capable of tracking a non-
repetitive signal. Next, we compare the performance of the ILC with the other controllers,
which is given in Table 2. It can be seen that the ILC demonstrates a faster response,
however, it demonstrates overshoots in the transient response. The maximum overshoot
percentage happens during the forward motion when the actuator moves from the resting
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to reach 0.1 m, which equals 13.5%. This can be considered as the major drawback of
the ILC, which is caused by the way that ILC calculates the control signal. The ILC only
modifies the control signal according to predefined control law and based on the historical
input and output. Therefore, a sudden change in the input signal will cause overshoot
in the control signal. However, in a well-designed ILC that holds monotonic convergent,
the gap between the input and output is reduced after sufficient iterations. The ILC can
obtain ±0.002 m precision (2% settling time) in 0.52 s compared to 0.46 s for the PID and
0.35 s for the IT2 T_S fuzzy controller. The controller based on T-S fuzzy observer could
not achieve the required precision. The difference between the reference and output of the
system controlled by each of these controllers is shown in Figure 14, and the summation
of the square of the error (

∫
e2(t)dt) is given in Table 2. The ILC demonstrates superior

performance than other controllers in terms of both speed (rise time) and tracking accuracy.

Actuators 2022, 11, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 12. Membership functions. 

The performance of the controllers in tracking a reference signal under a constant 
load of 10 kg is shown in Figure 13. As is seen, the designed ILC is capable of tracking a 
non-repetitive signal. Next, we compare the performance of the ILC with the other con-
trollers, which is given in Table 2. It can be seen that the ILC demonstrates a faster re-
sponse, however, it demonstrates overshoots in the transient response. The maximum 
overshoot percentage happens during the forward motion when the actuator moves from 
the resting to reach 0.1 m, which equals 13.5%. This can be considered as the major draw-
back of the ILC, which is caused by the way that ILC calculates the control signal. The ILC 
only modifies the control signal according to predefined control law and based on the 
historical input and output. Therefore, a sudden change in the input signal will cause 
overshoot in the control signal. However, in a well-designed ILC that holds monotonic 
convergent, the gap between the input and output is reduced after sufficient iterations. 
The ILC can obtain ±0.002 m precision (2% settling time) in 0.52 s compared to 0.46 s for 
the PID and 0.35 s for the IT2 T_S fuzzy controller. The controller based on T-S fuzzy 
observer could not achieve the required precision. The difference between the reference 
and output of the system controlled by each of these controllers is shown in Figure 14, and 
the summation of the square of the error (∫ e (t)dt) is given in Table 2. The ILC demon-
strates superior performance than other controllers in terms of both speed (rise time) and 
tracking accuracy. 

Table 2. Comparison between the controllers’ performance in tracking a signal. 

Controller Rise Time (s) Overshoot Settling Time Error 
ILC 0.2 13.5% 0.52 0.0044 
PID 0.26 0 0.46 0.0049 

IT2 T-S fuzzy 0.24 0 0.35 0.0048 
T-S fuzzy obs. 0.38 0 -- 0.0081 

Figure 12. Membership functions.

Actuators 2022, 11, x FOR PEER REVIEW 19 of 23 
 

 

 
Figure 13. The comparison of the controllers’ performance in tracking a reference signal. 

 
Figure 14. The comparison of controllers’ performance with respect to the tracking error. 

Next, we compare the performance of the controllers in overcoming the payload un-
certainty, as is shown in Figure 15. The top plot in this figure shows the payload variation 
applied to the piston while the reference signal remains constant at 0.1 m. As is seen, the 
ILC-controlled system can maintain the required precession (±0.002 m) regardless of 
changes in the load. However, this cannot be adequately achieved with the other control-
lers. The plot of the disturbance rejection error is given in Figure 16. The summation of 
the square of the error for the controllers is given in Table 3. Again, the ILC shows a better 
performance than the other controllers in overcoming the uncertainties. 

Table 3. Comparison between the controllers’ performance in disturbance rejection. 

Controller Error 
ILC 2.6 ×  10  
PID 3.3 ×  10  

IT2 T-S fuzzy 3.8 ×  10  
T-S fuzzy obs. 9.2 ×  10  

Figure 13. The comparison of the controllers’ performance in tracking a reference signal.

Table 2. Comparison between the controllers’ performance in tracking a signal.

Controller Rise Time (s) Overshoot Settling Time Error

ILC 0.2 13.5% 0.52 0.0044

PID 0.26 0 0.46 0.0049

IT2 T-S fuzzy 0.24 0 0.35 0.0048

T-S fuzzy obs. 0.38 0 – 0.0081
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Next, we compare the performance of the controllers in overcoming the payload
uncertainty, as is shown in Figure 15. The top plot in this figure shows the payload
variation applied to the piston while the reference signal remains constant at 0.1 m. As is
seen, the ILC-controlled system can maintain the required precession (±0.002 m) regardless
of changes in the load. However, this cannot be adequately achieved with the other
controllers. The plot of the disturbance rejection error is given in Figure 16. The summation
of the square of the error for the controllers is given in Table 3. Again, the ILC shows a
better performance than the other controllers in overcoming the uncertainties.
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Table 3. Comparison between the controllers’ performance in disturbance rejection.

Controller Error

ILC 2.6× 10−5

PID 3.3× 10−4

IT2 T-S fuzzy 3.8× 10−4

T-S fuzzy obs. 9.2× 10−4

5. Conclusions

This paper suggested an effective model-free control scheme to overcome the non-
linearities and uncertainties resulting from air characteristics, pressure loss, leakage, and
load variations in a pneumatic system. In the majority of the control algorithms used in
controlling the position of a pneumatic actuator, the model of the system has to be achieved
prior to the design of the controller. However, due to the physical behavior of the gases,
modelling a pneumatic system is usually done based on many assumptions that might
result in an inaccurate model during system operation. As a result, such controllers may
not achieve the required performance. Moreover, intelligence-based control algorithms
cannot easily be implemented in real-time applications due to their extensive calculation
requirements. This leads to a need for developing real-time control systems capable of
controlling pneumatic systems without needing to obtain the mathematical model of the
system. An ILC algorithm uses information from previous repetitions to learn about the
system’s dynamics for generating a more suitable control signal. ILC algorithms are partic-
ularly useful in real-time control systems, given their relatively quick response to changes
in the input signal. However, their application is only limited to repetitive processes, where
the same control action should be performed repeatedly. In this paper, the application of the
ILC algorithm has been expanded for controlling nonlinear, non-repetitive systems. More-
over, a pneumatic cylinder-piston actuator has been simulated using MATLAB SimScape
blocks and the simulation results showed that the model can successfully demonstrate the
behavior of a pneumatic system. The procedure for designing an ILC controller without
needing any information on the system model and by only using the system’s input and
output measurements has been covered. The simulation results showed that the designed
ILC controller is capable of tracking a non-repetitive reference signal and can overcome the
internal and payload uncertainties with the precision of 0.002 m. Therefore, the ILC can be
considered as an approach for controlling the pneumatic actuators, which is challenging to
obtain their mathematical modeling.
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