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Abstract: This paper investigates the problem of finite-time distributed consensus control for non-
triangular stochastic nonlinear multi-agent systems (SNMASs) with input constraints. Fuzzy logical
systems are used to identify the unknown nonlinear dynamics of non-triangular SNMASs. A finite-
time command filter is utilized to eliminate the issue of “explosion of complexity” in the conventional
backstepping-based distributed control algorithm, and a fractional power error compensation mecha-
nism is constructed to improve the distributed control performance of SNMASs. It is proved that the
proposed distributed controller enables all of the closed-loop system’s signals to be semi-globally
finite-time bounded in probability, and the consensus tracking errors will converge to a sufficiently
small neighborhood of the origin in a finite time. Finally, the effectiveness of the presented finite-time
distributed control scheme is illustrated with a simulated example.

Keywords: finite-time control; distributed control; command filtered backstepping; stochastic
nonlinear multi-agent systems (SNMASs)

1. Introduction

Cooperative control of multi-agent systems has received considerable attention from
many domestic and foreign scholars due to its wide applications in the fields of civil, indus-
try, military, and so on [1–3]. For the leader-following consensus, which is an important
part of cooperative control, the main objective is to enable all of the followers to achieve
a consensus under the topology by designing consensus protocols. In particular, since
stochastic disturbances are inevitable in practical systems and may result in system insta-
bility, it is significant to consider the distributed consensus control problem of stochastic
nonlinear multi-agent systems (SNMASs).

In recent years, many tools and methods for dealing with SNMASs have been de-
veloped, and numerous results for SNMASs have been attained [4–7]. Note that these
distributed control algorithms require that the nonlinear dynamics of SNMASs are known
or can be linearly parameterized. If the prior information is not available, these distributed
control strategies will be invalid. Fuzzy/neural network control methods have become
promising ways to handle unknown nonlinear dynamics [8,9]. For first-order or second-
order SNMASs with unknown nonlinear dynamics, approximation-based distributed adap-
tive control algorithms were developed via the fuzzy logical system approximator [10,11].
High-order distributed control algorithms are more precious in practice, and many dis-
tributed adaptive intelligent control approaches have been proposed for SNMASs with
structured uncertainties [12–15]. Nevertheless, the aforementioned distributed control
strategies are feasible under the assumption that the SNMASs have a strict-feedback struc-
ture, and they cannot be applied to the non-triangular case due to the complexity of their
system dynamics.

Recently, non-triangular nonlinear multi-agent systems have received extensive atten-
tion, and a variety of effective distributed design methods have been reported. In [16], a
backstepping-based distributed control algorithm was given for non-triangular multi-agent
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systems with unmodeled dynamics and quantized input. For non-triangular SNMASs, the
distributed state-feedback and output-feedback control schemes were put forward [17,18],
respectively. However, the problem of an “explosion of complexity” exists in the classical
backstepping-based distributed control methods. With the aid of the dynamic surface
control technique, an observer-based distributed fault-tolerant controller for non-triangular
SNMASs was designed [19]; a distributed event-trigger control algorithm was presented for
non-triangular multi-agent systems [20], which avoided the issue of the “explosion of com-
plexity” but ignores the influence of filtered error. Fortunately, the command-filter-based
backstepping design method can simultaneously eliminate the problem of the “explosion of
complexity” and remove the influence of filtered error [21]. Soon afterward, by means of the
command filter technique, in [22,23], respectively, the distributed prescribed performance
control and output-feedback containment control schemes for non-triangular nonlinear
multi-agent systems were developed.

It should be pointed out that the aforementioned distributed control strategies merely
guarantee asymptotical convergence, i.e., the consensus errors are driven into the origin as
the time approaches infinity. Unlike these asymptotic convergence algorithms, finite-time
control has obvious merits, faster convergence speed, better tracking accuracy, strong
anti-interference performance, etc. In [24], a finite-time bipartite quantized tracking control
scheme for high-order pure-feedback SNMASs was proposed via the dynamic surface
control technique. The problem of command-filter-based finite-time distributed adaptive
control for nonlinear multi-agent systems was considered, where a Levant differentiator
was employed to approximate the derivative of a distributed virtual control signal [25–27],
and a sign function error compensation mechanism was designed to remove the effect of
filtered error [25,26]. In spite of great efforts on command-filter-based finite-time distributed
control strategies, prior information on the upper bound for the derivative of a distributed
virtual control signal is necessary, and the chattering issue may arise.

On the other hand, input constraints are unavoidable for each agent due to the lim-
itations of physical structures, which may destroy system performance or even lead to
instability if not disposed of properly. Many researchers have explored various effective
methods for dealing with input constraints [28–30]. By constructing an auxiliary system to
compensate for the effect of input constraints, a command-filter-based distributed control
scheme for strict-feedback nonlinear multi-agent systems was proposed in [31]. Consid-
ering nonlinear multi-agent systems with sensor faults and input constraints, in [32], a
smooth function was introduced to counteract the input constraints. Nevertheless, the dis-
tributed consensus control strategies in [31,32] could not guarantee the finite-time stability,
and they were invalid for non-triangular SNMASs.

Inspired by the above discussion, we will investigate the problem of finite-time dis-
tributed adaptive consensus control for non-triangular SNMASs with input constraints
under a directed graph. The main contributions of this paper are summarized in the
following three aspects.

(1) In comparison with command-filter-based finite-time distributed control algorithms
for SNMASs [26,27], an improved finite-time distributed consensus control scheme
is proposed for SNMASs with input constraints, which effectively attenuates the
chattering phenomenon, and the consensus tracking errors converge to a sufficiently
small neighborhood of the origin in a finite time.

(2) Unlike the existing backstepping [16–18] and dynamic surface [19,20] distributed con-
trol strategies for non-triangular SNMASs, a finite-time command filter and fractional
power error compensation mechanism are constructed to eliminate the problem of the
“explosion of complexity” and remove the effect of filtered error in a finite time.

(3) Differently from an error compensation mechanism with asymptotic or finite-time
convergence [22,23,25,26], a fractional power error compensation mechanism with
finite-time convergence is designed, which further improves the distributed con-
trol performance.
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The remainder of this paper is organized as follows. The preliminaries and problem
formulation are presented in Section 2. The main results, including the finite-time dis-
tributed controller design and stability analysis, are described in Section 3. The simulation
results in Section 4 illustrate the effectiveness of the proposed finite-time distributed control
algorithm. Section 5 draws the conclusions.

2. Preliminaries and Problem Formulation
2.1. Graph Theory

In this paper, a directed graph G = (V , E) is used to denote the communication
topology for N followers of SNMASs, where E ⊆ V × V stands for a set of directed
edges, and V = {1, 2, . . . , N} represents a non-empty set of nodes. The ordered pair of
node (j, i) is a directed edge, and it implies that node i can access information from node
j. Ni = {j | (j, i) ∈ E} is the neighbor set of node i. A = [ai,j] ∈ RN×N is a weighted
adjacency matrix, where ai,i = 0; ai,j > 0 if (j, i) ∈ E , ai,j = 0 if (j, i) /∈ E . L = D− A is the
Laplacian matrix, in which D = diag{d1, d2, . . . , dN}, di = ∑N

j=1 aij. If there is at least one
node called a root node that has a directed path to all other nodes, we call this a directed
graph, which includes a directed spanning tree. In addition, an extended directed graph
Ḡ = (V̄ , Ē) is employed to depict the communication topology for the leader 0 and N
followers. B = diag{b1, b2, . . . , bN}, where bi = 1, if i ∈ N0, i = 1, 2, . . . , N, or else, bi = 0.

2.2. Stochastic Theory

Consider the following stochastic nonlinear system:

dx = f (x)dt + g(x)dω (1)

where x is the state vector, and f (x) and g(x) are nonlinear Lipschitz functions satisfying
f (0) = 0 and g(0) = 0. ω is an s-dimensional independent standard Wiener process
defined in a complete probability space (℘,=,=tt≥0, P), ℘ is a sample space, = is a σ-field,
=tt≥0 is a filtration, and P is a probability measure.

Definition 1 ([33]). For any given positive definite function V(x) ∈ C2, the differential operator
L of V(x) along with (1) is defined as

LV(x) =
∂V(x)

∂x
f (x) +

1
2

Tr
{

g>(x)
∂2V(x)

∂x2 g(x)
}

.

2.3. Problem Formulation

Consider the following SNMASs consisting of a leader marked 0 and N followers
marked 1, 2, . . . , N, where the i-th follower’s dynamics in a non-triangular structure are
given as 

dxi,k = (gi,k(x̄i,k)xi,k+1 + fi,k(xi))dt + h>i,k(xi)dω

dxi,ni =
(

gi,ni (xi)ui + fi,ni (xi)
)
dt + h>i,ni

(xi)dω

yi = xi,1

(2)

in which i = 1, 2, . . . , N and k = 1, 2, . . . , ni − 1; x̄i,k = [xi,1, xi,2, . . . , xi,k]
> ∈ Rk, xi =

x̄i,ni = [xi,1, xi,2, . . . , xi,ni ]
> ∈ Rni is the state vector; ui ∈ R is the control input signal, and

yi ∈ R is the output signal of the i-th follower. fi,k(·) : Rni 7→ R and hi,k(·) : Rni 7→ Rs

are unknown smooth nonlinear functions; gi,k(·) : Rk 7→ R is a known smooth function
satisfying g

i
≤ |gi,k(·)| ≤ ḡi, where g

i
and ḡi are known positive constants. ω has a similar

definition to that in (1). In addition, suppose that the leader 0 is expressed by a time-varying
signal r(t).
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Assume that the control input ui ∈ R with constraint characteristics is in the following
form

ui = sati(℘i) =


uimax , ℘i ≥ uimax

℘i, uimin < ℘i < uimax

uimin , ℘i ≤ uimin

where uimax > 0 and uimin < 0 are known constants. We define

hi(℘i) =


uimax ∗ tanh

(
℘i

uimax

)
, ℘i ≥ 0

uimin ∗ tanh
(

℘i
uimin

)
, ℘i < 0

Then, ui can be rewritten as ui = hi(℘i) + h̄i(℘i), where |h̄i(℘i)| = |sati(℘i) −
hi(℘i)| ≤ max{uimax(1− tanh(1)), uimin(1− tanh(1))} = Di.

Control Objective: This paper aims to design finite-time distributed consensus con-
trollers such that all signals of a closed-loop system are semi-globally finite-time bounded
in probability, and all of the followers’ outputs yi synchronize with the leader r(t), that is,
the consensus tracking errors yi − r(t) converge to a small neighborhood of the origin in a
finite time.

To facilitate the control design, the following assumptions and lemmas are required.

Assumption 1. The leader signal r(t) and its first derivative ṙ(t) are continuous and bounded,
and they are available for the i-th follower satisfying 0 ∈ Ni, i = 1, 2, . . . , N.

Assumption 2. The directed graph Ḡ incorporates a spanning tree whose root node is the leader;
then, L + B is invertible.

Lemma 1 ([34]). For a continuous function F(x) defined on a compact set Ω and any given
constant ε > 0, there exists a fuzzy logical system (FLS) φ>(x)S(x) such that the following
equation holds:

F(x) = φ>(x)S(x) + δ(x), |δ(x)| ≤ ε

where φ(x) = [φ1(x), φ2(x), . . . , φm(x)]> is the ideal weight vector; S(x) = [S1(x),S2(x),...,Sm(x)]>

∑m
i=1 Si(x)

is the basis function vector, Si(x) = exp
[
− (x−γi)

>(x−γi)

τ2
i

]
, with γi being the center vector and τi

being the width of the Gaussian function.

Lemma 2 ([35]). For ς > 0, $ > 0, and υ(x, y) > 0, which are real-valued functions, one has

|x|ς|y|$ ≤ ςυ(x, y)|x|ς+$

ς + $
+

$υ(x, y)−
ς
$ |y|ς+$

ς + $
.

Lemma 3 ([36]). For µi ∈ R, i = 1, 2, . . . , n, and 0 < λ 6 1, the following inequality holds:(
n

∑
i=1
|µi|
)λ

6
n

∑
i=1
|µi|λ 6 n1−λ

(
n

∑
i=1
|µi|
)λ

.
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Lemma 4 ([37]). For the stochastic nonlinear system (1), if for any x0 ∈ Rn, there exists a positive
definite function V(x) ∈ C2 and b1, b2 ∈ K∞ such that{

b1(‖x‖) ≤ V(x) ≤ b2(‖x‖)
LV(x) ≤ −λ1V(x)− λ2V(x)γ + ∆

where λ1, λ2, γ, and ∆ are all positive constants, and 0 < γ < 1, 0 < ∆ < ∞, then the system (1)
is semi-globally finite-time stable in probability, and the setting time T satisfies

E(T) ≤ 1
(1− γ)λ1

ln

 λ1V(x0)
1−γ + λ2β

λ1

(
∆

(1−β)λ2

) 1−γ
γ

+ λ2β


where β is a constant satisfying 0 < β < 1.

3. Main Results

In this section, the finite-time distributed consensus control algorithm is proposed via
the command filter technique and backstepping design method. In each step, a distributed
virtual control signal αi,k will be structured, and the actual distributed controller ℘i will,
finally, be designed.

Before starting the command-filtered backstepping design procedure, we define a
constant as follows:

θi = max
{
‖φi,1‖2, ‖φi,2‖2, . . . ,

∥∥φi,ni

∥∥2
}

where φi,q, i = 1, 2, . . . , N, q = 1, 2, . . . , ni, is the weight vector of the FLS. Let θ̂i denote the
estimation of θi, and θ̃i = θi − θ̂i is the estimation error.

3.1. Finite-Time Distributed Controller Design

For the i-th follower, the following coordinate transformations are introduced:

si,1 =
N

∑
j=1

aij
(
yi − yj

)
+ bi(yi − r) (3)

si,k = xi,k − πi,k, k = 2, 3, . . . , ni (4)

where πi,k is the output of a finite-time command filter (5) with the distributed virtual
signal αi,k−1 as the input signal:

µ̇i,k,1 =µi,k,2

µ̇i,k,2 =
1

ζ2
i,k
(−ai,1 arctan(µi,k,1 − αi,k−1)− ai,2 arctan(ζi,kµi,k,2))

(5)

with ζi,k > 0, ai,1 > 0, and ai,2 > 0 being filter constants, and πi,k(t) = µi,k,1(t), π̇i,k(t) =
µi,k,2(t).

Remark 1. Although the finite-time command filter in [25–27] was used to approximate the
derivative of a distributed virtual control signal, the Lipschitz condition of a distributed virtual
control signal is required and the chattering phenomenon may arise. The demand of the distributed
virtual control signal in [25–27] can be weakened via the adopted finite-time command filter (5),
where the distributed virtual control signal is merely continuous and piecewise two-order derivable;
meanwhile, the chattering phenomenon is skillfully attenuated.
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The compensated tracking errors are defined as

vi,k = si,k − ξi,k, k = 1, 2, . . . , ni − 1, vi,ni = si,ni − ξi,ni − ψi, (6)

where ξi,k is the error compensation signal and ψi is the auxiliary signal; these will be
further specified later.

Step 1: Based on (2), (3), and (6), one has

dvi,1 =
(
(bi + di)(gi,1xi,2 + fi,1)− bi ṙ− ξ̇i,1 − ∑

j∈Ni

ai,j
(

gj,1xj,2 + f j,1
))

dt

+
(
(bi + di)hi,1 − ∑

j∈Ni

aijhj,1

)
dω. (7)

We choose the Lyapunov function as Vi,1 = 1
4 v4

i,1 +
1
4 ξ4

i,1. From Definition 1, LVi,1 is
obtained:

LVi,1 =v3
i,1

(
(bi + di)(gi,1xi,2 + fi,1)− bi ṙ− ξ̇i,1 − ∑

j∈Ni

ai,j(gj,1xj,2 + f j,1)
)

+
3
2

v2
i,1

(
(bi + di)hi,1 − ∑

j∈Ni

ai,jhj,1

)>(
(bi + di)hi,1 − ∑

j∈Ni

ai,jhj,1

)
+ ξ3

i,1ξ̇i,1. (8)

By using Lemma 2, the following inequality holds:

3
2

v2
i,1

(
(bi + di)hi,1 − ∑

j∈Ni

ai,jhj,1

)>(
(bi + di)hi,1 − ∑

j∈Ni

ai,jhj,1

)
≤ 3

4l2
i,1

v4
i,1

∥∥∥(bi + di)hi,1 − ∑
j∈Ni

ai,jhj,1

∥∥∥4
+

3
4

l2
i,1 (9)

where li,1 is a positive constant. We define f̄i,1 = (bi + di) fi,1 −∑j∈Ni
aij f j,1 +

3
4l2

i,1
vi,1‖(bi +

di)hi,1 − ∑j∈Ni
aijhj,1‖4 + 3

4 vi,1. From Lemma 1, one has f̄i,1 = φ>i,1Si(xi, xj) + δi,1(xi, xj),
|δi,1(xi, xj)| ≤ εi,1. According to Lemma 2, the following inequalities hold:

v3
i,1 f̄i,1 ≤

1
2a2

i,1
v6

i,1‖φi,1‖2Si(xi, xj)
>Si(xi, xj) +

1
2

a2
i,1 +

3
4

v4
i,1 +

1
4

ε4
i,1

≤ 1
2a2

i,1
v6

i,1‖φi,1‖2Si,1(xi,1, xj,1)
>Si,1(xi,1, xj,1) +

1
2

a2
i,1 +

3
4

v4
i,1 +

1
4

ε4
i,1 (10)

where ai,1 > 0 is a design parameter. From (8)–(10), one gets

LVi,1 ≤v3
i,1

(
(bi + di)gi,1(si,2 + αi,1 + πi,2 − αi,1)− ∑

j∈Ni

ai,jgj,1xj,2 − bi ṙ− ξ̇i,1

+
1

2a2
i,1

v3
i,1‖φi,1‖2S>i,1Si,1

)
+ ξ3

i,1ξ̇i,1 +
3
4

l2
i,1 +

1
2

a2
i,1 +

1
4

ε4
i,1. (11)
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From Assumption 1, the distributed virtual control signal αi,1 and the error compensa-
tion signal ξi,1 are designed as

αi,1 =
1

(bi + di)gi,1

(
− ki,1si,1 −

1
2a2

i,1
v3

i,1θ̂iS>i,1Si,1 + bi ṙ

− ci,1vγ
i,1 + ∑

j∈Ni

ai,jgj,1xj,2

)
(12)

ξ̇i,1 =− ki,1ξi,1 + (bi + di)gi,1(πi,2 − αi,1)

+ (bi + di)gi,1ξi,2 − ci,1ξ
γ
i,1 (13)

where ki,1, ci,1 are positive design parameters; 0 < γ = γ1/γ2 < 1, and γ1 and γ2 are
positive odd integers. The initial condition of ξi,1 is set to ξi,1(0) = 0.

Substituting (12) and (13) into (11) yields

LVi,1 ≤v3
i,1

(
− ki,1vi,1 + (bi + di)gi,1vi,2 +

1
2a2

i,1
v3

i,1S>i,1Si,1
(
‖φi,1‖2 − θ̂i

)
− ci,1vγ

i,1 + ci,1ξ
γ
i,1

)
+ ξ3

i,1

(
− ki,1ξi,1 + (bi + di)gi,1ξi,2

+ (bi + di)gi,1(πi,2 − αi,1)− ci,1ξ
γ
i,1

)
+

3
4

l2
i,1 +

1
2

a2
i,1 +

1
4

ε4
i,1. (14)

Step 2: By using (2), (4), and (6), one has

dvi,2 = dsi,2 − dξi,2 =
(

gi,2xi,3 + fi,2 − π̇i,2 − ξ̇i,2
)
dt + hi,2dω. (15)

We select the Lyapunov function Vi,2 = Vi,1 +
1
4 v4

i,2 +
1
4 ξ4

i,2. Based on Definition 1, one gets

LVi,2 =LVi,1 + v3
i,2

(
gi,2(si,3 + αi,2 + πi,3 − αi,2) + fi,2 − π̇i,2 − ξ̇i,2

)
+

3
2

v2
i,2h>i,2hi,2 + ξ3

i,2ξ̇i,2. (16)

From Lemma 2, the following inequality holds:

3
2

v2
i,2h>i,2hi,2 ≤

3
4l2

i,2
v4

i,2‖hi,2‖4 +
3
4

l2
i,2 (17)

with li,2 being a positive constant. Let f̄i,2 = fi,2 +
3

4l2
i,2

vi,2‖hi,2‖4 + 3
4 vi,2. According to

Lemma 1, there exists an FLS φ>i,2Si(xi) such that f̄i,2 = φ>i,2Si(xi) + δi,2(xi), |δi,2(xi)| ≤ εi,2.
Similarly, using the inequality technique as in (10) yields

v3
i,2 f̄i,2 ≤

1
2a2

i,2
v6

i,2‖φi,2‖2Si,2(x̄i,2)
>Si,2(x̄i,2) +

1
2

a2
i,2 +

3
4

v4
i,2 +

1
4

ε4
i,2 (18)

where ai,2 > 0 is a design parameter.
We construct the virtual control signal αi,2 and the error compensation signal ξi,2

as follows:

αi,2 =
1

gi,2

(
− ki,2si,2 −

1
2a2

i,2
v3

i,2θ̂iS>i,2Si,2 + π̇i,2 − ci,2vγ
i,2

)
(19)

ξ̇i,2 =− ki,2ξi,2 + gi,2(πi,3 − αi,2) + gi,2ξi,3 − ci,2ξ
γ
i,2 (20)

with ki,2 > 0 and ci,2 > 0 being design parameters, and ξi,2(0) = 0.
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By combining (16)–(20), it is easily obtained that

LVi,2 ≤
2

∑
k=1

(
− ki,kv4

i,k − ci,kv3+γ
i,k + ci,kv3

i,kξ3
i,k − ki,kξ4

i,k − ci,kξ
3+γ
i,k

)
+ gi,2(πi,3 − αi,2)ξ

3
i,2 + (bi + di)gi,1v3

i,1vi,2 + (bi + di)gi,1ξ3
i,1ξi,2

+ (bi + di)gi,1(πi,2 − αi,1)ξ
3
i,1 + gi,2v3

i,2vi,3 + gi,2ξ3
i,2ξi,3

+
2

∑
k=1

( 1
2a2

i,k
v6

i,kS>i,kSi,k

(
‖φi,k‖2 − θ̂i

)
+

3
4

l2
i,k +

1
2

a2
i,k +

1
4

ε4
i,k

)
. (21)

Step k (3 ≤ k ≤ ni − 1): Similarly to (7) and (15), one has

dvi,k =
(

gi,kxi,k+1 + fi,k − π̇i,k − ξ̇i,k
)
dt + hi,kdω. (22)

We choose the Lyapunov function Vi,k = Vi,k−1 +
1
4 v4

i,k +
1
4 ξ4

i,k. From Definition 1,
one gets

LVi,k =LVi,k−1 + v3
i,k

(
fi,k + gi,k(si,k+1 + αi,k + πi,k+1 − αi,k)− π̇i,k − ξ̇i,k

)
+

3
2

v2
i,kh>i,khi,k + ξ3

i,k ξ̇i,k. (23)

By using Lemma 2, one has

3
2

v2
i,kh>i,khi,k ≤

3
4l2

i,k
v4

i,k‖hi,k‖4 +
3
4

l2
i,k (24)

where li,k is a positive constant. Let f̄i,k = fi,k +
3

4l2
i,k

vi,k‖hi,k‖4 + 3
4 vi,k, and this can be

approximated by an FLS, that is, f̄i,k = φ>i,kSi(xi) + δi,k(xi), |δi,k(xi)| ≤ εi,k. Furthermore,
the following inequality can be obtained:

v3
i,k f̄i,k ≤

1
2a2

i,k
v6

i,k‖φi,k‖2Si,k(x̄i,k)
>Si,k(x̄i,k) +

1
2

a2
i,k +

3
4

v4
i,k +

1
4

ε4
i,k (25)

with ai,k > 0 being a design parameter.
The distributed virtual control signal αi,k and the error compensation signal ξi,k are

designed as

αi,k =
1

gi,k

(
− ki,ksi,k −

1
2a2

i,k
v3

i,k θ̂iS>i,kSi,k + π̇i,k − ci,kvγ
i,k

)
(26)

ξ̇i,k =− ki,kξi,k + gi,k(πi,k+1 − αi,k) + gi,kξi,k+1 − ci,kξ
γ
i,k (27)

where ki,k and ci,k are positive design parameters, and ξi,k(0) = 0.
By means of (24)–(27), it follows that

LVi,k ≤
k

∑
q=1

(
− ki,qv4

i,q − ci,qv3+γ
i,q + ci,qv3

i,qξ
γ
i,q − ki,qξ4

i,q − ci,qξ
3+γ
i,q

)
+ (bi + di)gi,1v3

i,1vi,2 + (bi + di)gi,1ξ3
i,1ξi,2 + (bi + di)gi,1(πi,2 − αi,1)ξ

3
i,1

+
k

∑
q=2

(gi,qv3
i,qvi,q+1 + gi,qξ3

i,qξi,q+1) +
k

∑
q=2

gi,q(πi,q+1 − αi,q)ξ
3
i,q

+
k

∑
q=1

( 1
2a2

i,q
v6

i,qS>i,qSi,q

(
‖φi,q‖2 − θ̂i

)
+

3
4

l2
i,q +

1
2

a2
i,q +

1
4

ε4
i,q

)
. (28)
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Step ni: We define the auxiliary system ψ̇i = −ψi + gi,ni (hi(℘i)− ℘i). From (2), (4),
and (6), one has

dvi,ni =
(

gi,ni (hi(℘i) + h̄i(℘i)) + fi,ni − π̇i,ni − ξ̇i,ni − ψ̇i

)
dt + hi,ni dω. (29)

The Lyapunov function for (29) is selected as Vi,ni = Vi,ni−1 +
1
4 v4

i,ni
+ 1

4 ξ4
i,ni

. Then, one has

LVi,ni =LVi,ni−1 + v3
i,ni

(
fi,ni + gi,ni (℘i + h̄i(℘i))− π̇i,ni − ξ̇i,ni + ψi

)
+

3
2

v2
i,ni

h>i,ni
hi,ni + ξ3

i,ni
ξ̇i,ni . (30)

Applying Lemma 2 yields

3
2

v2
i,ni

h>i,ni
hi,ni ≤

3
4l2

i,ni

v4
i,ni
‖hi,ni‖

4 +
3
4

l2
i,ni

(31)

where li,ni > is a constant. We define f̄i,ni = fi,ni +
3

4l2
i,ni

vi,ni‖hi,ni‖
4 + 3

4 vi,ni + gi,ni−1vi,ni−1.

Similarly, there exists an FLS φ>i,ni
Si(xi) such that f̄i,ni = φ>i,ni

Si(xi) + δi,ni (xi), |δi,ni (xi)| ≤
εi,ni . Obviously, the following inequality holds:

v3
i,ni

f̄i,ni ≤
1

2a2
i,ni

v6
i,ni
‖φi,ni‖

2S>i,ni
Si,ni +

1
2

a2
i,ni

+
3
4

v4
i,ni

+
1
4

ε4
i,ni

(32)

where ai,ni is a positive design parameter.
The actual distributed controller ℘i and the error compensation signal ξi,ni are designed as

℘i =
1

gi,ni

(
− ki,ni si,ni −

1
2a2

i,ni

v3
i,ni

θ̂iS>i,ni
Si,ni + π̇i,ni − ci,ni v

γ
i,ni
− ψi

)
(33)

ξ̇i,ni =− ki,ni ξi,ni − ci,ni ξ
γ
i,ni

(34)

with ki,ni , ci,ni being positive design parameters, and ξi,ni (0) = 0.
According to Lemma 2, the following inequality holds:

v3
i,ni

gi,ni h̄i(℘i) ≤
3
4

v4
i,ni

+
1
4

ḡ4
i D4

i (35)

Substituting (31)–(35) into (30) yields

LVi,ni ≤−
ni−1

∑
k=1

(
ki,kv4

i,k + ci,kv3+γ
i,k

)
−

ni

∑
k=1

(
ki,kξ4

i,k − ci,kv3
i,kξ

γ
i,k + ci,kξ

3+γ
i,k

)
−
(

ki,ni −
3
4

)
v4

i,ni
− ci,ni v

3+γ
i,ni

+ (bi + di)gi,1v3
i,1vi,2

+ (bi + di)gi,1ξ3
i,1ξi,2 + (bi + di)gi,1(πi,2 − αi,1)ξ

3
i,1 +

1
4

ḡ4
i D4

i

+
ni−1

∑
k=2

(
gi,kv3

i,kvi,k+1 + gi,kξ3
i,kξi,k+1 + gi,k(πi,k+1 − αi,k)ξ

3
i,k

)
+

ni

∑
k=1

( 1
2a2

i,k
v6

i,kS>i,kSi,k

(
‖φi,k‖2 − θ̂i

)
+

3
4

l2
i,k +

1
2

a2
i,k +

1
4

ε4
i,k

)
. (36)
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Based on [[38] and Lemma 4], |πi,k+1 − αi,k| = vi,k, together with Lemma 2, the
following inequalities can be obtained:

ci,kv3
i,kξ

γ
i,k ≤

3ci,k

3 + γ
v3+γ

i,k +
γci,k

3 + γ
ξ

3+γ
i,k (37)

gi,kv3
i,kvi,k+1 + gi,kξ3

i,kξi,k+1 ≤
3
4

ḡiv4
i,k +

1
4

ḡiv4
i,k+1 +

3
4

ḡiξ
4
i,k +

1
4

ḡiξ
4
i,k+1 (38)

(bi + di)gi,1ξ3
i,1(πi,2 − αi,1) ≤

3
4

ξ4
i,1 +

1
4
(bi + di)

4 ḡ4
i v4

i,1 (39)

gi,kξ3
i,k(πi,k+1 − αi,k) ≤

3
4

ξ4
i,k +

1
4

ḡ4
i v4

i,k. (40)

By substituting (37)–(40) into (36), it follows that

LVi,ni ≤−
ni−1

∑
k=1

(
ki,k − (bi + di)ḡi

)
v4

i,k −
(

ki,ni −
3
4
− 1

4
ḡi

)
v4

i,ni
+

1
4

ḡ4
i D4

i

−
ni

∑
k=1

(
ki,k −

3
2
− (bi + di)ḡi

)
ξ4

i,k −
ni

∑
k=1

γci,k

3 + γ
v3+γ

i,k

−
ni

∑
k=1

3ci,k

3 + γ
ξ

3+γ
i,k +

ni

∑
k=1

( 1
2a2

i,k
v6

i,kS>i,kSi,k

(
‖φi,k‖2 − θ̂i

)
+

3
4

l2
i,k +

1
2

a2
i,k +

1
4

ε4
i,k

)
+

1
4
(bi + di)

4 ḡ4
i v4

i,1 +
ni−1

∑
k=2

1
4

ḡ4
i v4

i,k. (41)

In addition, the adaptive law θ̂i for the i-th follower is designed as

˙̂θi =
ni

∑
k=1

ri

2a2
i,k

v6
i,kS>i,kSi,k − ηi θ̂i (42)

where ri and ηi are positive design parameters. From Lemma 2, it can be derived that

1
ri

θ̃i θ̂i ≤−
1

2ri
θ̃2

i +
1

2ri
θ2

i

≤− 1
2ri

θ̃2
i −

( 1
2ri

θ̃2
i

) 3+γ
4

+
( 1

2ri
θ̃2

i

) 3+γ
4

+
1

2ri
θ2

i

≤− 1
4ri

θ̃2
i −

( 1
2ri

θ̃2
i

) 3+γ
4

+
1− γ

4ri

(3 + γ

2

) 3+γ
1−γ

+
1

2ri
θ2

i . (43)

Remark 2. Note that the fractional power error compensation mechanism consisting of (13), (20),
(27), and (34) is different from the traditional error compensation mechanism [22,23] and the
symbolic function error compensation mechanism [25,26]. An extra fractional power term ci,kξ

γ
i,k is

added, and the effect of the filtered error (πi,k+1 − αi,k) is removed in a finite time, which further
improves the distributed control performance.

In summary, the finite-time distributed consensus control design procedures are
presented in Figure 1.
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Non-triangular SNMASs (2)

Virtual control signal (19)

Error compensation signal (20)

Step 1

Virtual control signal (26)

Error compensation signal (27)

Step k

Actual distributed 
controller (33)

Error compensation signal (34)

Step

Adaptive 
law (42)

Finite-time 
command 
filter (5)

Finite-time 
command 
filter (5)

Finite-time 
command 
filter (5)

Figure 1. A block diagram of the finite-time distributed consensus control design procedures.

3.2. Stability Analysis

Theorem 1. For SNMASs (2) with input constraints under Assumptions 1 and 2, if the distributed
virtual control signals (12), (19), and (26), the actual distributed controller (33), the error compen-
sation signals (13), (20), (27), and (34), and the adaptive law (42) are adopted, then the following
results can be obtained.

• All signals of the closed-loop system are semi-globally finite-time bounded in probability.
• The consensus tracking errors for the followers and the leader converge to a sufficiently small

neighborhood of the origin in a finite time.

Proof. Consider the Lyapunov function for the SNMASs V = ∑N
i=1 Vi,ni + ∑N

i=1
1

2ri
θ̃i. From

(41)–(43), one has

LV ≤−
N

∑
i=1

ni−1

∑
k=1

(
ki,k − (bi + di)ḡi

)
v4

i,k −
N

∑
i=1

(
ki,ni −

3
4
− 1

4
ḡi

)
v4

i,ni

−
N

∑
i=1

ni

∑
k=1

(
ki,k −

3
2
− (bi + di)ḡi

)
ξ4

i,k −
N

∑
i=1

ηi
4ri

θ̃2
i

−
N

∑
i=1

ni

∑
k=1

γci,k

3 + γ
v3+γ

i,k −
N

∑
i=1

ni

∑
k=1

3ci,k

3 + γ
ξ

3+γ
i,k −

N

∑
i=1

ηi

( 1
2ri

θ̃2
i

) 3+γ
4

+
N

∑
i=1

( ni

∑
k=1

(3
4

l2
i,k +

1
2

a2
i,k +

1
4

ε4
i,k

)
+

1
4

ḡ4
i D4

i +
1
4
(bi + di)

4 ḡ4
i v4

i,1

+
ni−1

∑
k=2

1
4

ḡ4
i v4

i,k + ηi
1− γ

4ri

(3 + γ

2

) 3+γ
1−γ

+
ηi
2ri

θ2
i

)
. (44)

By using Lemma 3, it follows that

LV ≤ −λ1V − λ2V
3+γ

4
2 + ∆ (45)
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where λ1 = min
{

4ki,k − 4(bi + di)ḡi, 4ki,ni − 3 − ḡi, 4ki,k − 6 − 4(bi + di)ḡi, 1
2 ηi

}
, λ2 =

min
{

4
3+γ

4
γci,k
3+γ , 4

3+γ
4

3ci,k
3+γ , ηi

}
, ∆ = ∑N

i=1

(
∑ni

k=1

( 3
4 l2

i,k +
1
2 a2

i,k +
1
4 ε4

i,k
)
+ 1

4 ḡ4
i D4

i +
1
4 (bi + di)

ḡ4
i v4

i,1 + ∑ni−1
k=2

1
4 ḡ4

i v4
i,k + ηi

1−γ
4ri

(
3+γ

2

) 3+γ
1−γ

+ ηi
2ri

θ2
i

)
.

Based on Lemma 4, for any 0 < β < 1, there exists a setting time E(T) ≤ 1
(1−γ)λ1

×

ln
((

λ1V(x0)
1−γ + λ2β

)
/
(

λ1

(
∆

(1−β)λ2

) 1−γ
γ

+ λ2β
))

such that all signals of the closed-
loop systems are semi-global finite-time bounded in probability.

We define s1 = [s1,1, . . . , sN,1]
>, and it is easy to prove that

E|s1|4 = E|s2
1,1 + . . . + s2

N,1|2

≤ 2E(s4
1,1 + . . . + s4

N,1)

≤ 2E(v4
1,1 + ξ4

1,1 + . . . + v4
N,1 + ξ4

N,1)

≤ 8EV(t) ≤ 8Ξ. (46)

According to (3) and Assumption 2, the consensus tracking error is denoted as [y1 −
r, y2 − r, . . . , yN − r] = y− (1N ⊗ r) = (L + B)−1s1. Then, it follows from (46) that

E|y− 1N ⊗ r|4 ≤
(
|L + B|−1

)4
E|s1|4

≤ 8(|L + B|−1)4Ξ.

Therefore, for any ε̆i > 0, one has

E|yi(t)− r(t)|4 < ε̆i, ∀t > T, i = 1, 2, . . . , N.

Obviously, the consensus tracking errors converge to a sufficiently small neighborhood
of the origin in a finite time by appropriately choosing the control design parameters.

4. Simulation Results

In order to verify the effectiveness and superiority of the proposed finite-time distributed
consensus control algorithm, a numerical comparison example is provided. Figure 2 shows
the communication topology of the second-order non-triangular SNMASs with one leader

and four followers. The follower adjacency matrix A is given as A =


0 0 0 0
1 0 0 0
1 0 0 0
0 0 1 0

.

Consider non-triangular SNMASs as follows:
dxi,1 = (gi,1(xi,1)xi,2 + fi,1(xi))dt + h>i,1(xi)dω

dxi,2 = (gi,2(xi)ui + fi,2(xi))dt + h>i,2(xi)dω

yi = xi,1

where i = 1, . . . , 4, xi = [xi,1, xi,2]
>, g1,1 = −5+ sin(x1,1), f1,1 = x2

1,1x1,2, h1,1 = sin(x1,1x1,2),
g1,2 = −5 + cos(x1,1x1,2), f1,2 = x1,1x4

1,2, h1,2 = x1,1x1,2, g2,1 = −5 + cos(x2,1), f2,1 =

x3
2,1x2,2, h2,1 = cos(x2,1x2,2), g2,2 = −5 + sin(x2,1x2,2), f2,2 = x2,1x3

2,2, h2,2 = x2
2,1x2,2,

g3,1 = −5 + cos(x3,1), f3,1 = x4
3,1x3,2, h3,1 = sin(x3,1x3,2), g3,2 = −5 + sin(x3,1x3,2),

f3,2 = x3,1x2
3,2, h3,2 = x3,1x2

3,2, g4,1 = −5 + sin(x4,1), f4,1 = x5
4,1x4,2, h4,1 = cos(x4,1x4,2),
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g4,2 = −5 + cos(x4,1x4,2), f4,2 = x4,1x4,2, h4,2 = x4
4,1x4,2. The input constraint for ui is

chosen as ui = sati(℘i) =


5, ℘i ≥ 5

℘i, − 5 < ℘i < 5.

− 5, ℘i ≤ −5
The leader signal is set to r = sin

(
π
3 t
)
. The initial conditions for followers are taken as

[x1,1, x1,2]
> = [0.7, 0]>, [x2,1, x2,2]

> = [0.3, 0]>, [x3,1, x3,2]
> = [−0.1, 0]>, and [x4,1, x4,2]

> =
[−0.2, 0]>. We choose the FLSs containing seven fuzzy rules, and the Gaussian function
with centers evenly spaced in [−3, 3], with the width being 4. The filter constants for
finite-time command filters are ai,1 = 8, ai,2 = 5, ζi,2 = 0.08, and i = 1, . . . , 4. The control
design parameters are selected as ki,k = 8, ci,k = 8, ai,k = 0.5, ri = 1, ηi = 0.5, γ = 7/9,
i = 1, . . . , 4, and k = 1, 2.

The simulation results with the proposed finite-time distributed consensus control
algorithm are displayed in Figures 3–6. Figure 3 shows the trajectories of the follower
output signals yi and leader signal r. The trajectories of the consensus tracking errors yi − r
are given in Figure 4. The trajectories of the adaptive laws θ̂i are demonstrated in Figure 5.
Figure 6 depicts the trajectories of the control inputs ui. It can be seen from the simulation
results that the proposed finite-time distributed control strategy achieves good consensus
tracking performance even though unknown nonlinear dynamics and input constraints
are included.

To show the superiority of the proposed finite-time distributed consensus control
algorithm for non-triangular SNMASs, the command-filtered backstepping (CFB) control
scheme in [23] was used to compare the consensus performance with it. The control
design parameters for the CFB control scheme were chosen as ki,k = 8, ci,k = 8, ai,k =
0.5, ri = 1, ηi = 0.5, i = 1, . . . , 4, and k = 1, 2. The simulations were implemented in
MATLAB R2016a/Simulink on a 1.80 GHz Intel(R) Core(TM) i7-8565U computer operating
on Windows 11, where the solver was selected as the ode 4 (Runge–Kutta) and the fixed-

step size was set to 0.01 s. We defined the overall tracking error OTE =
√

∑4
i=1 |yi − r|2

and the root-mean-square error RMSE =
√

∑4
i=1 ∑M

w=1(yi(w)− r(w))2)/M to compare the
consensus performance, where w was the sample index, and M was the total number of
the samples.

The trajectories of the OTE for the proposed control scheme and the CFB control algo-
rithm in [23] are presented in Figure 7. The settling time and the RMSE in the performance
comparison between the two control schemes are shown in Table 1, where we suppose that
the settling time was the time after which OTE ≤ 0.15 always held. It can be seen from
Figure 7 and Table 1 that, benefiting from the finite-time convergence compensation error
mechanism, the settling time and RMSE of the proposed control scheme were lower than
those of the CFB control algorithm in [23]. Obviously, the proposed finite-time distributed
consensus control algorithm not only had a faster convergence rate, but also obtained better
tracking performance compared with that of the CFB in [23].

Figure 2. The communication topology for non-triangular SNMASs.
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Figure 3. The trajectories of the follower output signals yi and leader signal r.
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Figure 4. The trajectories of the consensus tracking errors yi − r.
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Figure 5. The trajectories of the adaptive laws θ̂i.
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Figure 6. The trajectories of the control inputs ui.
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Figure 7. The trajectories of the OTE with different control algorithms.

Table 1. Performance comparison.

Scheme Settling Time (s) RMSE

Proposed 0.59 0.1032

CFB in [23] 1.31 0.1219

5. Conclusions

The problem of the finite-time distributed consensus control of non-triangular SN-
MASs with input constraints was studied. Unlike in traditional distributed control algo-
rithms, the problem of an “explosion of complexity" was solved via a finite-time command
filter, and the distributed control performance was improved based on a fractional power
error compensation mechanism. The proposed distributed control algorithm could en-
sure that all signals of the closed-loop system were semi-globally finite-time bounded in
probability, while the consensus tracking errors were driven into a sufficiently small neigh-
borhood of the origin in a finite time. Based on the results of this paper, our future research
will focus on the problems of the finite-time distributed output-feedback containment
control of non-triangular SNMASs and the fixed-time distributed control of non-triangular
SNMASs in an event-triggered framework.
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