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Abstract: Applied in many fields, nonlinear systems involving delay and algebraic equations are
referred to as singular systems. These systems remain challenging due to saturation constraints that
affect actuators and cause harm to their operation. Furthermore, the complexity of the problem will
increase when uncertainty also simultaneously affects the system under consideration. To address
this issue, this paper investigated a feasible control strategy for nonlinear singular systems with
time-varying delay that are subject to uncertainty and actuator saturation. The IT-2 fuzzy model
was adopted to describe the dynamic of the non-linear delayed systems using lower and upper
membership functions to deal with the uncertainty. Moreover, the polyhedron model was applied
to characterize the saturation function. The goal of the control approach was to design a relevant
IT2 fuzzy state feedback controller with mismatched membership functions so that the closed-loop
system is admissible. On the basis of an appropriate Lyapunov–Krasovskii functional, sufficient
delay-dependent conditions were established and an optimization problem was formulated in terms
of linear matrix inequality constraints to optimize the attraction domain. Simulation examples are
provided to verify the effectiveness of the proposed method.

Keywords: singular system; IT-2 fuzzy model; time varying delay; actuator saturation

1. Introduction

This section includes the literature review, notations, and acronyms used in the docu-
ment, as well as an outline of the publication and its goals.

1.1. Literature Review

Singular systems that are described by a couple of algebraic and differential equations
are characterized by their different modes, namely finite dynamic modes, infinite nondy-
namic modes, and infinite dynamic modes, respectively. The infinite dynamic modes have
the feature to destroy the stability and performance of the system. Thus, the admissibility,
which includes stability, regularity, and non-impulsiveness/causality, should be verified
when dealing with this class of systems. As a consequence, the investigation of singular
systems is both theoretically and practically important [1,2]. It is worth noting that time
delays are common in many physical plants, and they can have a substantial negative
impact on the performance and even the stability of practical systems [3–7]. Singular
models and time-delay phenomena are general enough to enable some fundamental results
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from the theory of state-space systems to be extended to this class of systems (see, for
instance, [8–12]). Alternatively, it is widely known that all physical plants are affected by
the actuator and/or sensor saturation. The saturation constraint has a nonlinear impact on
the performance of the controlled system unless the controller is built to account for it. In
addition, ignorance of the consequences of actuator saturation may destroy system stability.
Control with input/output saturation has been subjected to a great deal of research and
development over the last decade [13–17].

In general, the research on nonlinear systems [18] is an extremely hard issue due
to their inherent complexity. Due to its rigorous mathematical structure, the T-S fuzzy
model has recently been applied to handle nonlinear complex systems, since this model
is known for its powerful approximation of smoothly nonlinear systems [19–21]. In the
research on nonlinear singular systems against input saturation, the T-S fuzzy method
has thus far proven useful, including the finite-time output feedback control for T-S fuzzy
singular system with actuator saturation [22], the fault-tolerant sliding mode control for T-S
fuzzy systems with time-varying delay and actuator saturation [23], the stabilization of the
T-S descriptor systems against input saturation [24], and the fuzzy dissipative controller
design for non-linear descriptor systems subject to time-delay and actuator saturation [25].

In many cases, uncertainty arises, such as partially unknown parameters, unpre-
dictable disturbances in the system, varying interpretations of linguistic variables of the
fuzzy models, etc. It is worth noting, however, that the membership functions of type-1
fuzzy sets are well-known, and the control problem cannot be handled directly for nonlin-
ear plants with parameter uncertainties. As type-1 fuzzy sets have limitations in dealing
with non-linear plants subject to parameter uncertainties, the IT-2 fuzzy model was pro-
posed and used in [26,27]. Research on IT-2 fuzzy systems has attracted attention due
to the advantages of IT-2 fuzzy sets over type-1 fuzzy sets in dealing with parameter
uncertainties, and many control design results have been developed [28–30]. To mention a
few, in [31], fuzzy decentralized output feedback control was investigated using the event-
triggered approach for interval type-2 fuzzy systems against input saturation. The study
in [32] discussed the issue of filter design for IT-2 fuzzy systems with D-stability constraints.
The authors in [33] investigated discrete-time interval-valued fuzzy systems with actuator
faults to study the reliable non-fragile control problem with H∞ performance. When the
system is subject to stochastic network delays and actuator saturation, a distributed-delay-
dependent method was proposed in [34] for stabilizing interval type-2 Takagi–Sugeno
fuzzy systems. Under saturated state feedback, robust stabilization was investigated in [35]
for uncertain linear systems with discrete and distributed delays.
Very recently, the IT-2 fuzzy approach was extended to non-linear singular systems with
uncertainties. To mention a few, admissibilization for IT-2 fuzzy singular systems was
studied in [36]. Based on the LMI approach, the dynamic output-feedback control design
issue was investigated in [37] for singular interval-valued fuzzy systems.

There is a need to emphasize that the previous papers discussed various fuzzy stabi-
lization problems for IT-2 fuzzy singular systems without simultaneously considering the
phenomenon of input saturation. In light of this, we undertook this study. Furthermore,
although some related results have recently been published for delayed nonlinear systems
characterized by IT-2 fuzzy models [38,39], they cannot be applied to nonlinear singular
systems. This paper attempts to overcome the deficiencies of the aforementioned studies
by dealing with the stabilization problem for input-saturated IT-2 fuzzy singular systems
while simultaneously taking into account that uncertainty and delay may affect the process.

1.2. Objective and Outline

This study has the following main objectives:

(i) Instead of existing control schemes developed for type-1 fuzzy singular systems with
delay and actuator saturation [40], this study explored state feedback controllers based
on IT-2 fuzzy rules in order to handle uncertain non-linear singular systems.
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(ii) The delay property and actuator saturation for the IT-2 fuzzy singular system under
consideration were simultaneously considered in this study. Moreover, compared
with the results suggested in [36,41], a more realistic problem was investigated in this
paper that cannot be solved by the methods in the previous references.

(iii) A new Lyapunov–Krasovskii functional candidate was constructed, and the delay-
range-dependent approach was adopted to derive an admissibilization criterion via
LMI formulation. Furthermore, the domain of attraction of the origin can be estimated
for the underlying system.

After outlining the introduction and the objectives of our study, the paper is organized
as follows: Section 2 presents the model and assumptions, as well as a description of the
problem under study. In Section 3, we present and discuss the main findings of the paper.
Specifically, this section is dedicated to developing a new delay-dependent admissibility
criterion using the IT-2 fuzzy model from (3) and selecting a suitable Lyapunov–Krasovskii
functional. To further ensure the usage of this scheme, we developed an LMI criterion to
establish that the closed-loop system is admissible and to optimize the attraction domain.
To demonstrate the potential applications of the proposed scheme and validate its effective-
ness, numerical simulations on mass–spring–damper and inverted pendulum systems are
presented in Section 4. Lastly, we conclude with some conclusions regarding the obtained
results, as well as some suggestions for future research in Section 5.

1.3. Notations

Table 1 lists the notations and acronyms that should be used in this study.

Table 1. List of notations and acronyms used in the paper.

Symbol Acronym/Notation

R set of the real numbers
X ∈ Rn n-dimensional Euclidean space

X ∈ Rn×m n×m real matrix
X > 0 real symmetric positive definite matrix X
‖X‖ norm of the matrix X
X> transpose of the matrix X

sym(X) X + X>

λ() eigenvalue of a matrix
‖φ‖c maxα∈[−d2, 0] ‖φ(α)‖
‖φ̇‖c maxα∈[−d2, 0] ‖φ̇(α)‖
∗ term that is induced by symmetry
r number of if-then rules

LMI linear matrix inequalities
IT-2 Interval type-2 fuzzy model
TS Takagi–Sugeno

2. Preliminaries and Problem Statement

The aim of this section is to introduce some preliminaries that facilitate the under-
standing of our proposal and state the problem that we are investigating.

2.1. IT-2 TS Fuzzy Model

Consider a class of non-linear singular systems that can be described by the following
IT-2 TS fuzzy model:

Ri : If θ1(x(t)) is M1
i and If θ2(x(t)) is M2

i · · · If θs(x(t)) is Ms
i , Then{

Eẋ(t) = Aix(t) + Adix(t− d(t)) + Biσ(u(t))

x(t) = φ(t), ∀t ∈ [−d2 0],
(1)
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where Mk
i is an IT-2 fuzzy set of rule i corresponding to the premise variable θi(x(t)),

k = 1, 2, · · · , s, k is the number of premise variables, and i ∈ S , {1, 2, . . . , r} is the number
of rules. x(t) ∈ Rn and σ(u(t)) ∈ Rm define, respectively, the state and saturated input
vectors. Matrices Ai, Adi and Bi in model (1) are known with appropriate dimensions. d(t)
stands for the time-varying delay, and φ(t) defines the initial state for all t ∈ [−d2 0].

2.2. Assumptions and Resulting Model

A1 d(t) is a continuous function such that

0 < d1 ≤ d(t) ≤ d2, 0 ≤ ḋ(t) ≤ dr (2)

where d1 represents the lower delay bound, d2 stands for the upper delay bound, and
dr is the delay variation rate.

A2 Singular matrix E satisfies rank(E) = q < n.
A3 σ(u(t)) is the saturation that affects the actuator according to the following model:

σ(u(t)) =
[
σ(u1(t)) σ(u2(t)) · · · σ(um(t))

]>
σ(ul(t)) =


ūl if ul(t) > ūl

ul(t) if − ūl ≤ ul(t) ≤ ūl

−ūl if ul(t) < −ūl

where ul(t) is the lth value of u(t), and ūl is the lth saturated level, l = 1, · · · , m.

Based on the IT-2 fuzzy approach, the following interval defines the firing strength of
the ith rule:

Mi =
[
∏s

k=1 ωMk
i (θ(x(t))) ∏s

k=1 ω̄Mk
i (θ(x(t)))

]
=
[
µ

i
(x(t)) µ̄i(x(t))

]
where µ

i
(x(t)) ≥ 0 and µ̄i(x(t)) ≥ 0 are, respectively, the the lower and upper membership

functions, and ωMk
i (θ(x(t))) ≥ 0, and ω̄Mk

i (θ(x(t))) ≥ 0 stand, respectively, for the lower and
upper grades of membership. Therefore, the non-linear singular system can be described asEẋ(t) =

r

∑
i=1

µi(x(t))
(

Aix(t) + Adix(t− d(t)) + Biσ(u(t))
)

x(t) = φ(t), t ∈ [−d2, 0]

(3)

µi(x(t)) denotes the grade of the membership of the ith local system defined as

µi(x(t)) = αi(x(t))µ
i
(x(t)) + ᾱi(x(t))µ̄i(x(t)),

r

∑
i=1

µi(x(t)) = 1

where αi(x(t)) and ᾱi(x(t) are two weighting coefficient functions satisfying

0 ≤ αi(x(t)), ᾱi(x(t)) ≤ 1, αi(x(t)) + ᾱi(x(t)) = 1 (4)

Note that, by introducing weighting coefficient functions, we can represent any time-
variant or time-invariant unmeasured parameters of the general non-linear system. More-
over, these functions are not necessarily known but exist and satisfy (4).

As a matter of convenience, µi(x(t)) will be referred to as µi in the sequel.
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2.3. IT-2 Fuzzy State Feedback Controller Design

Here, the subsequent IT-2 fuzzy state-feedback controller structure was adopted to
admissibilize the system under consideration:

Controller Rule j : If ϑ1(x(t)) is N 1
j and If ϑ2(x(t)) is N 2

j · · · If ϑs(x(t)) is N s
j , Then

u(t) = Kjx(t)

where Kj is the gain matrix to be designed. Similarly, ϑ(x(t)) = [ϑ1(x(t)), ϑ2(x(t)), . . . , ϑs

(x(t))] defines the premise vector, and N kc
j , (kc = 1, 2, · · · , s) represents the type-2 fuzzy

sets of the j-th controller rule.
The following is the firing interval for the jth rule:

Nj =
[
νj(x(t)) ν̄j(x(t))

]
, j ∈ S

where

νj(x(t)) =
s

∏
kc=1

ωN kc
j (ϑ(x(t))) ≥ 0, ν̄j(x(t)) =

s

∏
kc=1

ω̄N kc
j (ϑ(x(t))) ≥ 0,

νj(x(t)) and ν̄j(x(t)) define, respectively, the lower and upper membership func-
tions. ωN kc

j (ϑ(x(t))) ≥ 0 and ω̄N kc
j (ϑ(x(t))) ≥ 0 stand for the lower and upper grades of

the membership of ϑ(x(t)) in N k
j , respectively. The global fuzzy model can be inferred

as follows:

u(t) =
r

∑
j=1

νj(x(t))(Kjx(t)) (5)

νj(x(t)) =
β

j
(x(t))νj(x(t)) + β̄ j(x(t))ν̄j(x(t))

r
∑

l=1
(β

l
(x(t))νl(x(t)) + β̄l(x(t))ν̄l(x(t)))

, νj(x(t)) ≥ 0,
r

∑
j=1

νj(x(t)) = 1 (6)

Remark 1. Over the past several decades, type-1 T-S fuzzy systems have been extensively investi-
gated. It is interesting to note that all of these studies are founded on the PDC approach, in which the
controller and the plant both have the same membership functions. Nevertheless, this assumption is
not always valid since membership functions may be uncertain in practice. As proposed in [36,41],
we aim to address this issue using the interval-valued type-2 fuzzy controller (5).

From (5), the fuzzy-model-based actuator saturation control input is expressed as:

σ(u(t)) = σ
( r

∑
j=1

νj(x(t))Kjx(t)
)

(7)

To deal with the saturation function, the following lemmas should be provided for
further development.

Definition 1.

• For a positive scalar ρ, an ellipsoid set is defined as

ε(E>PE, ρ) = {x ∈ Rn; x>E>PEx ≤ ρ},

where E>PE defines a positive definite matrix.
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• For a given matrix H ∈ Rm×n, a polyhedral set is given by

L(H, ū) = {x ∈ Rn; |Hl x| ≤ ūl , l = 1, . . . , m},

where Hl represents the lth row of H, and ūl is a positive given scalar.

Lemma 1 ([40]). For given matrices K, H ∈ Rm×n, if x ∈ L(H, ū), then

σ(Kx, ū) = co
{

MsK + M−s H, s ∈ [1, ς]
}

; ς = 2m

where x ∈ Rn is a vector and co stands for the convex hull. In addition, we have

σ(Kx, ū) =
ς

∑
s=1

δs

(
MsK + M−s H

)
x(t)

where Ms is an appropriate dimensional diagonal matrix with either elements 1 or 0, and δ1, . . . , δς

are positives scalars such that
ς

∑
s=1

δs = 1.

By combining (3) and (7), the following closed-loop system is obtained according to
the above lemma:

Eẋ(t) =
ς

∑
s=1

r

∑
i=1

r

∑
j=1

µiνjδs

(
Aijsx(t) + Adix(t− d(t))

)
(8)

where Aijs = Ai + Bi(MsKj + M−s Hj), s ∈ [1, ς].

2.4. Problem Statement

The main objective of this paper is to develop an IT-2 fuzzy controller that maintains
the closed-loop system admissible in the presence of actuator saturation for non-linear
singular systems expressed by an IT-2 fuzzy model as defined in (3).

3. Main Results
3.1. Admissibility Analysis

In this section, the admissibility of the closed-loop system (8) will be addressed using
the following lemmas.

Lemma 2 ([42]). For a given vector x(t) : [u, v] 7−→ Rn where the derivative ẋ(t) is a piecewise
continuous function on the interval [u , v], the following inequality holds for any given matrix
R > 0:∫ v

u
ẋ(s)>Rẋ(s)ds ≥ 1

v− u

(
Υ>1 (x)RΥ1(x) + 3Υ>2 (x)RΥ2(x) + 5Υ>3 (x)RΥ3(x)

)
where

Υ1(x) = x(v)− x(u), Υ2(x) = x(v) + x(u)− 2
v− u

∫ v

u
x(s)ds

Υ3(x) = x(v)− x(u) +
6

v− u

∫ v

u
x(s)ds− 12

(v− u)2

∫ v

u

∫ v

s
x(w)dwds

Lemma 3 ([43]). For any singular matrix E with rank(E) = q, and decomposed as E = ELE>R ,
a full row rank matrix U and a full column rank matrix V can be found such that UE = 0
and EV = 0.
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For any symmetric matrix P ∈ Rn×n and non-singular matrix X ∈ R(n−q)×(n−q), we define
a non-singular matrix PE + U>XV> so that

(PE + U>XV>)−1 = P̄E> + V X̄U

where P̄ = E>L PEL > 0 and X̄ = (V>X)−1V−1(UU>)−1.

Theorem 1. Let ūl be a positive scalar, and d1, d2, dr be scalars satisfying assumption A1 if
matrices P > 0, X, Q1 > 0, Q2 > 0, Q3 > 0, W1 > 0, W2 > 0, V1 > 0, V2 > 0, R > 0,
and Z > 0 exist and verify the following conditions:

Ψ̃(Ai, Adi) =

Ψ̃11ijs Ψ̃12ijsR Ψ̃13ijsZ
∗ −R 0
∗ ∗ −Z

 < 0, i, j ∈ S, s = 1, 2 · · · , ς (9)

[
E>Π (Hj)

>
l

∗ 1
ρ ū2

l

]
≥ 0, l = 1, . . . , m (10)

Then, the controller in (5) exists, and for any compatible initial condition satisfying (11), the
closed-loop system (8) is admissible within the set ε(E>PE, ρ).

Ω(ς1, ς2) =

{
φ, :
‖φ‖2

c
ς1

+
‖φ̇‖2

c
ς2
≤ 1

}
(11)

ς1 =
ρ

χ1
, ς2 =

ρ

χ2
,

χ1 = λmax(E>Π) + d1λmax(Q1) + d2(λmax(Q2) + λmax(Q3)) +
1
2

d3
1λmax(W1)

+
1
2

d2
12(d2 + d1)λmax(W2) +

d5
1

12
λmax(V1) +

1
12

d2
12(d

3
2 − d3

1)λmax(V2)

χ2 =
1
2

d3
1λmax(E>RE) +

1
2

d2
12(d2 + d1)λmax(E>ZE)

(12)

Ψ̃11ijs =



Ψ11ijs Ψ12i Π>Adi 0 Ψ15 0 Ψ17 0
∗ Ψ22 0 3E>ZE Ψ25 −24E>ZE Ψ27 30E>ZE
∗ ∗ Ψ33 0 0 0 0 0
∗ ∗ ∗ Ψ44 0 36E>ZE 0 −30E>ZE
∗ ∗ ∗ ∗ Ψ55 0 Ψ57 0
∗ ∗ ∗ ∗ ∗ Ψ66 0 180E>ZE
∗ ∗ ∗ ∗ ∗ ∗ Ψ77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ88


,

Ψ̃12ijs = col
{

d1 AT
ijs, 0, d1 AT

di, 0, 0, 0, 0, 0
}

,

Ψ̃13ijs = col
{

d12 AT
ijs, 0, d12 AT

di, 0, 0, 0, 0, 0
}

Ψ11ijs = Q1 + Q2 + d2
1W1 + d2

12W2 +
d4

1
4

V1 +
d4

12
4

V2

− 9E>RE + sym(Π>Aijs)

Ψ12 = 3E>RE,

Ψ15 = −24E>RE

Ψ17 = 30E>RE

Ψ22 = Q3 −Q1 − 9E>RE− 9E>ZE

Ψ25 = 36E>RE

Ψ27 = −30E>RE

Ψ33 = −(1− dr)Q2 − 9E>ZE,

Ψ44 = −Q3 − 9E>ZE

Ψ55 = −192E>RE− d2
1W1

Ψ57 = 180E>RE

Ψ66 = −192E>ZE− d2
12W2

Ψ77 = −180E>RE−
d4

1
4

V1

Ψ88 = −180E>ZE−
d4

12
4

V2

Π = (PE + U>XV>)
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Matrices U ∈ R(n−q)×n and V ∈ Rn×(n−q) are as defined in Lemma 3.

Proof. First, we choose the following Lyapunov–Krasovsky functional to address the
stability of system (8):

V(x(t)) = V1(x(t)) + V2(x(t)) + V3(x(t)) + V4(x(t))

where

V1(x(t)) = x(t)>E>PEx(t)

V2(x(t)) =
∫ t

t−d1

x(s)>Q1x(s)ds +
∫ t

t−d(t)
x(s)>Q2x(s)ds +

∫ t−d1

t−d2

x(s)>Q3x(s)ds

V3(x(t)) = d1

∫ 0

−d1

∫ t

t+θ
ẋ(s)>E>REẋ(s)dsdθ + d12

∫ d1

−d2

∫ t

t+θ
ẋ(s)>E>ZEẋ(s)dsdθ

V4(x(t)) = d1

∫ 0

−d1

∫ t

t+θ
x(s)>W1x(s)dsdθ + d12

∫ d1

−d2

∫ t

t+θ
x(s)>W2x(s)dsdθ

V5(x(t)) =
d2

1
2

∫ 0

−d1

∫ 0

u

∫ t

t+θ
x(s)>V1x(s)dsdθdu +

d2
12
2

∫ d1

−d2

∫ 0

u

∫ t

t+θ
x(s)>V2x(s)dsdθdu

In evaluating the derivative of V(x(t)) along the trajectories of system (8), and noting
that UE = 0, we obtain

V̇1(x(t)) = x(t)>E>PEẋ(t) = x(t)>Π>
ς

∑
s=1

r

∑
i=1

r

∑
j=1

µiνjδs

(
Aijsx(t) + Adix(t− d(t))

)
V̇2(x(t)) ≤ x(t)>(Q1 + Q2)x(t) + x(t− d1)

>(Q3 −Q1)x(t− d1)

− (1− dr)x(t− d(t))>Q2x(t− d(t) + x(t− d2)
>Q3x(t− d2)

V̇3(x(t)) = ẋ(t)>(d2
1E>RE + d2

12E>ZE)ẋ(t)− d1

∫ t

t−d1

ẋ(s)>E>REẋ(s)ds

− d12

∫ t−d1

t−d2

ẋ(s)>E>ZEẋ(s)ds

V̇4(x(t)) = x(t)>(d2
1W1 + d2

12W2)x(t)− d1

∫ t

t−d1

x(s)>W1x(s)ds− d12

∫ t−d1

t−d2

x(s)>W2x(s)ds

V̇5(x(t)) = x(t)>(
d4

1
4

V1 +
d4

12
4

V2)x(t)−
d2

1
2

∫ 0

−d1

∫ t

t+θ
x(s)>V1x(s)dsdθ

−
d2

12
2

∫ d1

−d2

∫ t

t+θ
x(s)>V2x(s)dsdθ

(13)

According to Lemma 2, we know that:

−d1

∫ t

t−d1

ẋ(s)>E>REẋ(s)ds ≤ ζ1(t)>Λ(R)ζ1(t)

−d12

∫ t−d1

t−d2

ẋ(s)>E>ZEẋ(s)ds ≤ ζ2(t)>Λ(Z)ζ2(t)
(14)

where ζ1(t) =
[

x(t)> x(t− d1)
> 1

d1

∫ t
t−d1

x(s)>ds 2
d2

1

∫ 0
−d1

∫ t
t+θ x(s)>dsdθ

]
,

ζ2(t) =
[

x(t− d1)
> x(t− d2)

> 1
d12

∫ t−d1
t−d2

x(s)>ds 2
d2

12

∫ −d1
−d2

∫ t
t+θ x(s)>dsdθ

]
, and

Λ(X) =


−9E>XE 3E>XE −24E>XE 30E>XE
∗ −9E>XE 36E>XE −30E>XE
∗ ∗ −192E>XE 180E>XE
∗ ∗ ∗ −180E>XE
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Jensen’s inequality leads to

− d1

∫ t

t−d1

x(s)>W1x(s)ds ≤ −
( ∫ t

t−d1

x(s)ds
)>W1

( ∫ t

t−d1

x(s)ds
)

− d12

∫ t−d1

t−d2

x(s)>W2x(s)ds ≤ −
( ∫ t−d1

t−d2

x(s)ds
)>W2

( ∫ t−d1

t−d2

x(s)ds
)

−
d2

1
2

∫ 0

−d1

∫ t

t+θ
x(s)>V1x(s)dsdθ ≤ −

( ∫ 0

−d1

∫ t

t+θ
x(s)dsdθ

)>V1
( ∫ 0

−d1

∫ t

t+θ
x(s)dsdθ

)
−

d2
12
2

∫ d1

−d2

∫ t

t+θ
x(s)>V2x(s)dsdθ ≤ −

( ∫ d1

−d2

∫ t

t+θ
x(s)dsdθ

)>V2
( ∫ d1

−d2

∫ t

t+θ
x(s)dsdθ

)
(15)

Let

ζ(t) =
[

x>(t) x>(t− d1) x>(t− d(t)) x>(t− d2)
1
d1

∫ t
t−d1

x>(s)ds

1
d12

∫ t−d1
t−d2

x>(s)ds 2
d2

1

∫ 0
−d1

∫ t
t+θ x>(s)dsdθ 2

d2
12

∫ −d1
−d2

∫ t
t+θ x>(s)dsdθ

]
.

Combining (13)–(15) yields

V̇(x(t)) ≤
ς

∑
s=1

r

∑
i=1

r

∑
j=1

µiνjδs

(
ζ(t)>

(
Ψ̃11ijs + Ψ̃>12ijsRΨ̃12ijs + Ψ̃>13ijsZΨ̃13ijs

)
ζ(t)

)
Performing the Schur complement lemma to (9) yields Ψ̃11ijs + Ψ̃>12ijsRΨ̃12ijs + Ψ̃>13ijsZ

Ψ̃13ijs < 0, which implies that V̇(x(t)) ≤ 0 and the closed-loop system in (8) is stable.
Next, we prove the regularity and impulse-free properties of system (8). From (9), we

know that Ψ11ijs < 0, which implies that

sym(Π>Aijs)− 9E>RE < 0 (16)

For matrix E, there exist two non-singular matrices M and N, such that

Ê = MEN =

[
Iq 0
0 0

]
, Âijs = MAijsN =

[
Âijs11 Âijs12
Âijs21 Âijs22

]
,

Π̂ = M−TΠN =

[
Π̂11 Π̂12
Π̂21 Π̂22

]
, R̂ = M−T RM−1 =

[
R̂11 R̂12
R̂21 R̂22

] (17)

Based on Lemma 3, we know that E>Π = Π>E. Pre- and post-multiplying Π>E
and (16) by N> and N, respectively, using (17), we know that Π̂12 = 0 and

sym (Π̂>22 Âijs22) < 0

Thus, this would mean that Âijs22 is non-singular; then, it can be concluded, given the
definition suggested in [1], that system (8) is regular and impulse-free.

Pre and post-multiplying (10) by diag(
√

ūl
ρ ,
√

ρ
ūl
), we obtain[

ūl
ρ E>Π (Hj)

>
l

∗ ūl

]
≥ 0 (18)

Using (18) yields:

[
±x(t)> 1

][ ūl
ρ E>Π (Hj)

>
l

∗ ūl

][
±x(t)

1

]
≥ 0
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Equivalently, we obtain

2|Hjl x(t)| ≤ ūl(1 +
1
ρ

x(t)>E>PEx(t)) ≤ 2ūl , ∀j = 1, · · · , r

Thus, it can be verified that ε(E>PE, ρ) ⊂ ⋂r
j=1 L(Hj, ū), and using the fact that

V̇(x(t)) ≤ 0, it is easy to verify that V(x(t)) ≤ V(x(0)); this results in

x(t)>E>PEx(t) ≤ V(x(t)) ≤ V(x(0)) ≤ ‖φ‖2
c

{
λmax(E>Π) + d1λmax(Q1)

+ d2(λmax(Q2) + λmax(Q3)) +
1
2

d3
1λmax(W1) +

1
2

d2
12(d2 + d1)λmax(W2)

+
1

12
d5

1λmax(V1) +
1
12

d2
12(d

3
2 − d3

1)λmax(V2)

}
+ ‖φ̇‖2

c

{
1
2

d3
1λmax(E>RE) +

1
2

d2
12(d2 + d1)λmax(E>ZE)

}
≤ χ1‖φ‖2

c + χ2‖φ̇‖2
c ≤ ρ

Thus, the constraint in (11) is verified for any compatible initial condition, and this
completes the proof.

3.2. Fuzzy Controller Design

Our task here is to translate the conditions in Theorem 1 into LMI terms that can be
solved with the existing solvers.

Theorem 2. For positive scalars d1, d2, dr, and ūl > 0, if there exist scalars γ > 0, λ1, and λ2,
and matrices P̄ > 0, X̄, Q̄1 > 0, Q̄2 > 0, Q̄3 > 0, W̄1 > 0, W̄2 > 0, V̄1 > 0, V̄2 > 0,
R̄ > 0, Z̄ > 0 H̄j, Fj, and Γ>i = Γi such that, under the condition µj − κjνj ≥ 0 , (0 < κj < 1),
the following LMIs hold:

Ψ̄ijs − Γi < 0

κi(Ψ̄iis − Γi)− Γi < 0

κj(Ψ̄ijs − Γi) + κi(Ψ̄jis − Γj) + Γi + Γj < 0

(19)

[
Π̄>E> (H̄j)

>
l

∗ γū2
l

]
≥ 0, γ =

1
ρ

, i, j ∈ S, s = 1, 2 · · · ς , l = 1, . . . , m (20)

then the closed-loop singular system (8) is admissible within the set ε(E>PE, ρ) for any compatible
initial condition satisfying (11). Moreover, the gains Hj and Kj are computed by Hj = H̄jΠ̄

−1 ,
Kj = FjΠ̄

−1, and the parameters in (12) are defined as

χ1 = λmax(E>Π̄−1) + d1λmax(Π̄
−TQ̄1Π̄−1)

+ d2(λmax(Π̄
−TQ̄2Π̄−1) + λmax(Π̄

−TQ̄3Π̄−1))

+
1
2

d3
1λmax(Π̄

−TW̄1Π̄−1) +
1
2

d2
12(d2 + d1)λmax(Π̄

−TW̄2Π̄−1)

+
d5

1
12

λmax(Π̄
−TV̄1Π̄−1) +

1
12

d2
12(d

3
2 − d3

1)λmax(Π̄
−TV̄2Π̄−1)

χ2 =
1
2

d3
1λmax(EΠ̄−1R̄Π̄−TE>) +

1
2

d2
12(d2 + d1)λmax(EΠ̄−1Z̄Π̄−TE>)
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where

Ψ̄ijs =

Ψ̄11ijs Ψ̄12ijs Ψ̄13ijs
∗ −λ1 sym(Π̄) + λ2

1R̄ 0
∗ ∗ −λ2 sym(Π̄) + λ2

2Z̄



Ψ̄11ijs =



Ψ̂11ijs Ψ̂12i AdiΠ̄ 0 Ψ̂15i 0 Ψ̂17i 0
∗ Ψ̂22 0 3EZ̄E> Ψ̂25i −24EZ̄E> Ψ̂27i 30EZ̄E>

∗ ∗ Ψ̂33 0 0 0 0 0
∗ ∗ ∗ −Q̄3 − 9EZ̄E> 0 36EZ̄E> 0 −30EZ̄E>

∗ ∗ ∗ ∗ Ψ̂55 0 Ψ̂57 0
∗ ∗ ∗ ∗ ∗ Ψ̂66 0 180EZ̄E>

∗ ∗ ∗ ∗ ∗ ∗ Ψ̂77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ̂88i



Ψ̄12ijs = col
{

Āijs, 0, Π̄>AT
di, 0, 0, 0, 0, 0

}
,

Ψ̄13ijs = col
{

Āijs, 0, Π̄>AT
di, 0, 0, 0, 0, 0

}
Ψ̂11i = Q̄1 + Q̄2 + d2

1W̄1 + d2
12W̄2 +

d4
1

4
V̄1 +

d4
12
4

V̄2

− 9ĒR̄Ē> + sym
(

Ā>ijs
)

Ψ̂12i = 3ER̄E>,

Ψ̂15i = −24ER̄E>

Ψ̂17i = 30ER̄E>,

Ψ̂22i = Q̄3 − Q̄1 − 9ER̄E> − 9EZ̄E>

Ψ̂25i = 36ER̄E>

Ψ̂27i = −30ER̄E>

Ψ̂33i = −(1− dr)Q̄2,

Ψ̂55i = −192ER̄E> − d2
1W̄1

Ψ̂57i = 180ER̄E>,

Ψ̂66i = −192EZ̄E> − d2
1W̄2

Ψ̂77i = −180ER̄E> −
d4

1
4

V̄1,

Ψ̂88i = −180EZ̄E> −
d4

12
4

V̄2

Aijs = AiΠ̄ + Bi(MsFj + M−s H̄j)

Π̄ = P̄E> + V X̄U

Proof. Consider ∑r
i=1 ∑r

j=1 µi(µj − νj)Γi = 0, where Γi = Γ>i is any arbitrary matrix with
suitable dimensions. Then, we have

ς

∑
s=1

δs

( r

∑
i=1

r

∑
j=1

µiνjΨ̄ijs

)
=

ς

∑
s=1

δs

( r

∑
i=1

r

∑
j=1

µiνjΨ̄ijs +
r

∑
i=1

r

∑
j=1

µi(µj − νj)Γi

)
=

ς

∑
s=1

δs

( r

∑
i=1

r

∑
j=1

µi(νj + κjµj − κjµj)Ψ̄ijs +
r

∑
i=1

r

∑
j=1

µi(µj − νj + κjµj − κjµj)Γi

)
=

ς

∑
s=1

δs

( r

∑
i=1

r

∑
j=1

µiµj(κjΨ̄ijs − κjΓi + Γi) +
r

∑
i=1

r

∑
j=1

µi(νj − κjµj)(Ψ̄ijs − Γi)
)

=
ς

∑
s=1

δs

( r

∑
i=1

µ2
i (κiΨiis − κiΓi + Γi) +

r−1

∑
i=1

r

∑
j=i+1

µiµj(κjΨ̄ijs − κjΓi + Γi + κiΨjis − κiΓj + Γj)

+
r

∑
i=1

r

∑
j=1

µi(νj − κjµj)(Ψ̄ijs − Γi)
)

(21)

It can be concluded from (19) that

ς

∑
s=1

δs

( r

∑
i=1

r

∑
j=1

µiνjΨ̄ijs

)
< 0 (22)

The theorem implies that −λ2 sym(Π̄) + λ2
2Z̄ < 0 and that Π̄ is non-singular.
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Since P̄ > 0, it is easy to verify that E>L P̄EL > 0. Thus, according to Lemma 3, we have

Π̄−1 = (PE + U>XV>) = Π

Using the fact that, for any λ1 > 0 and λ2 > 0, the following condition holds:

0 ≤ (λ1Π̄− R−1)>R(λ1Π̄− R−1) = R−1 − λ1 sym(Π̄) + λ2
1Π̄>RΠ̄

0 ≤ (λ2Π̄− Z−1)>R(λ2Π̄− Z−1) = R−1 − λ2 sym(Π̄) + λ2
2Π̄>ZΠ̄

Equivalently, we obtain

−R−1 ≤ −λ1 sym(Π̄) + λ2
1R̄, −Z−1 ≤ −λ2 sym(Π̄) + λ2

2Z̄ (23)

Let Fj = KjΠ̄ and H̄j = HjΠ̄. Using (23), and performing the congruence transforma-
tion to (22) by diag(Π, Π, Π, Π, Π, Π, Π, Π, I, I), its transpose

Ψ̃(Aijs, Adi) < 0

holds using the following expressions:

Qi = Π̄−TQ̄iΠ̄
−1, (i = 1, 2, 3), W1 = Π̄−TW̄1Π̄−1, W2 = Π̄−TW̄2Π̄−1, V1 = Π̄−TV̄1Π̄−1,

V2 = Π̄−TV̄2Π̄−1, R = Π̄−1R̄Π̄−T , Z = Π̄−1Z̄Π̄−T .

Then, by convexity and using the fact that δs ≥ 0, and ∑ς
s=1 δs = 1, it can be deduced

that system (8) is admissible according to Theorem 1. Pre and post-multiplying (20) by
diag(Π, I), (10) holds.

Remark 2. For the purpose of maximizing the the set of initial conditions on (11), the following
optimization problem can be solved:

OP: min
Π̄, Q̄1>0,Q̄2>0,Q̄3>0,W̄1>0,W̄2>0,V̄1>0,V̄2>0,R̄>0,Z̄>0,γ>0

Θ

subject to

a) (19)-(20)

b)
[

w1 I ER
∗ E>R P̄ER

]
≥ 0

c) w2 I − Q̄1 > 0, w3 I − Q̄2 > 0, w4 I − Q̄3 > 0,

w5 I − W̄1 > 0, w6 I − W̄2 > 0, w7 I − V̄1 > 0, w8 I − V̄2 > 0, w9 I − Z̄ > 0, w10 I − R̄ > 0

d) w̄1 = λ−1
max(E)w1 ≥ wk, k = 2, 3, · · · 10

(24)

where

Θ = τ1

{
w1 + w2d1 + (w3 + w4)d2 +

1
2

w5d3
1 +

1
2

w6d2
12(d2 + d1)

+
d5

1
12

w7 +
1

12
d2

12(d
3
2 − d3

1)w8

}
+ τ2

{
1
2

d3
1w9 +

1
2

d2
12(d2 + d1)w10

}
+ τ3γ

where variables wi, (i = 1, 2, . . . 10) are introduced for the optimization procedure, and τc, (c =
1, 2, 3) represents the weighting relative to the objective function.

From LMI b), we have

ER(E>R P̄ER)
−1E>R = ER(E>L PEL)E>R = E>Π = E>Π̄−1 < w1 I
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The satisfaction of LMI b) implies that

λmax(E>Π̄−1) ≤ w1, and λmax(Π̄
−1) ≤ w̄1

Additionally, the satisfaction of the LMIs in c) implies that

χ1 ≤ w1 +
(

w2d1 + (w3 + w4)d2 +
1
2

w5d3
1 +

1
2

w6d2
12(d2 + d1) +

d5
1

12
w7 +

1
12

d2
12(d

3
2 − d3

1)w8

)
w̄2

1

χ2 ≤
(1

2
d3

1w9 +
1
2

d2
12(d2 + d1)w10)λmax(E>E

)
w̄2

1

We know that ςi =
ρ

χi
. If we minimize the criterion as defined in (24), then the bounds

on ‖φ‖ and ‖φ̇‖ tend to be greater.

4. Numerical Applications

As part of this section, we present two examples illustrating the proposed control strategy.

4.1. Mass-Spring-Damper System

With the help of the example of a mass–spring–damper system shown in Figure 1 and
borrowed from [44], the efficiency and correctness of the proposed control scheme can be
demonstrated. Define x1(t), x2(t), and x3(t) as the displacement, velocity, and acceleration
of the system, respectively, and u(t) is the applied force. Newton’s law can be used to
describe the mechanical system as follows:

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

0 = −mx3(t)− x2(t)− f (x1(t)) + h(x2(t))u(t)

(25)

where m is the mass, and the non-linear functions in the model are defined as follows:

f (x1(t)) = 1.13x1(t) + 0.13x1(t)(t− d(t)), h(x2(t)) = 1 + 0.13(x2(t) + ∆x2(t))3

m u

x1(t)

Figure 1. Mass–spring–damper system.

Assume that m = 1, x1(t) ∈ [−1.5 1.5], x2(t) ∈ [−1.5 1.5], and 0 ≤ ∆x2(t) ≤ 0.1.
Given the uncertainty associated with the parameter ∆x2(t), it is evident that the IT-2
T-S fuzzy system should be adopted to model the non-linear system (25). The lower and
upper bounds of membership functions of the corresponding IT-2 TS fuzzy model are listed
in Table 2.

Table 2. Lower and upper membership functions of the plant.

Lower Membership Functions Upper Membership Functions

µ
1
=

3.375 + x2(t)3

7.471
µ̄1 =

3.375 + (x2(t) + 0.1)3

7.471

µ
2
=

4.096− (x2(t) + 0.1)3

7.471
µ̄2 =

4.096− x2(t)3

7.471
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The weighting functions are chosen as αi = sin2(x2(t)) and ᾱi = 1− α2
i for i = 1, 2.

The interval-valued fuzzy system (1) is defined by the following matrices:

E =

1 0 0
0 1 0
0 0 0

, A1 = A2 =

 0 1 0
0 0 1
−1.13 −1 −1

, Ad1 = Ad2 =

 0 0 0
0 0 0
−0.13 0 0

,

B1 =

 0
0

1.43875

, B2 =

 0
0

0.56125


This example aims to design a fuzzy controller (5) that guarantees the admissibility of

closed-loop systems. To accomplish this goal, Table 3 lists the lower and upper bounds of
membership functions to characterize the interval-valued fuzzy controller.

Table 3. Lower and upper membership functions of the controller.

Lower Membership Functions Upper Membership Functions

ν1(x2) = 0.3e−(x2
2/0.35) ν̄1(x2) = ν1(x2)

ν2(x2) = −0.3 + 0.3e−(x2
2/0.35) ν̄2(x2) = ν2(x2)

To well-determine the membership functions, the non-linear weight functions are
selected as β

j
(x2(t)) = cos2(x2(t)) and β̄ j(x2(t)) = 1− β

j
(x2(t)). Define d1 = 0.1, d2 =

0.25, dr = 0.6, κ1 = 0.9, and κ2 = 0.8.
Then, by solving the problem formulated in (24), a feasible solution can be obtained

with minimum values of λ1 = 0.35 and λ2 = 0.4, and the design parameters are given by

H1 =
[
−1.1115 −0.033098 0

]
, H2 =

[
−1.0735 −0.26308 0

]
,

K1 =
[
−1.4242 −0.14551 0.83455

]
, K2 =

[
−1.7949 −0.27625 0.77306

]
,

P =

 6.4385 −0.11536 0
−0.11536 5.9703 0

2.7418 4.7886 8.0895


The simulation results are presented in Figure 2 using the above-mentioned fuzzy

control gains. In particular, Figure 2a depicts the state responses of the saturated closed-
loop for the initial condition φ(t) = [1.25, 1, −0.7]>, t ∈ [−0.25 0]. Based on Figure 2c,
it is evident that the closed system is well-controlled. Figure 2b illustrates the estimated
domain of attraction for various initial conditions when actuator saturation is present and
time-varying delay exists.

0 5 10 15

t

-1

-0.5

0

0.5

1

1.5

x1

x2

x3

(a)

0 5 10 15

t

-1

-0.5

0

0.5

1

1.5

u

σ(u)

(b)

Figure 2. Cont.
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-1.5 -1 -0.5 0 0.5 1 1.5

x1(t)

-1.5

-1

-0.5

0

0.5

1

1.5

x
2
(t
)

(c)

Figure 2. Simulation plots for mass–spring–damper system. (a) Trajectories of x1(t), x2(t), and x3(t).
(b) Ideal and saturated control input signals. (c) Estimated domains of attraction and state trajectories
under various initial conditions.

4.2. Inverted Pendulum System

Our goal in this section is to illustrate the effectiveness of the proposed control scheme
by comparing it with the relevant work proposed in [45] for an inverted pendulum system
described by the interval type-2 fuzzy model without delay and saturation. The following
is a system that describes the process:

ẋ1(t) = x2(t)

ẋ2(t) = f (x(t))x1(t) + h(x(t))u(t)

0 = L sin(x1(t))− x3(t)

(26)

Non-linear functions f (x(t)) and h(x(t)) are defined as

f (x(t)) =

(
g− ampLx2

2(t) cos(x1(t))
)

sin(x1(t)))(
4L/3− ampLx2

2(t) cos2(x1(t))
)
x1(t)

, h(x(t)) =
−a cos(x1(t))

4L/3− ampL cos2(x1(t))

x1(t) represents the angle between the pendulum and vertical, x2(t) represents the
angular velocity, and x3(t) is the relative horizontal distance between the pendulum center
and cart. The force applied to the cart is given by u(t). The numerical values of the model
are: 2L = 1 m is the length of the pendulum, g = 9.8 m/s2 is the gravity acceleration,
mc ∈ [2 3] kg is the mass of the cart, mp ∈ [8 16] kg is the mass of the pendulum, and
a = 1/(mc + mp). For the sake of this study, the inverted pendulum was taken to operate

in a domain fixed by x1(t) ∈ [−5π

12
5π

12
], and x2(t) ∈ [−5 5].

Next, we describe the inverted pendulum system (26) as follows:

Eẋ(t) =
4

∑
i=1

µi(x(t))
(
(1− β)Aix(t)(t) + βAix(t)(t− d(t)) + Biu(t)

)
(27)

where β = 0.1, and

E =

1 0 0
0 1 0
0 0 0

, A1 = A2 =

 0 1 0
0 0 0

10.0078 0 −1

, A3 = A4

 0 1 0
0 0 0

18.4800 0 −1


B1 = B3 =

 0
0

−0.1765

 B2 = B4 =

 0
0

−0.0206


Table 4 defines the lower and upper membership functions used for this example.
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Table 4. Lower and upper membership functions of the inverted pendulum.

Lower Membership Functions Upper Membership Functions

ωM1
1
(x1(t)) = ωM2

1
(x1(t)) =

f1max− f1
f1max− f1min

ω̄M1
1
(x1(t)) = ω̄M2

1
(x1(t)) =

f1max− f1
f1max− f1min

ωM3
1
(x1(t)) = ωM4

1
(x1(t)) = 1−ωM1

1
(x1(t)) ω̄M3

1
(x1(t)) = ω̄M4

1
(x1(t)) = 1− ω̄M1

1
(x1(t))

with x2(t) = 0, mp = mpmax and mc = mcmin with x2(t) = x2max, mp = mpmax and mc = mcmin

ωM1
2
(x2(t)) = ωM3

2
(x2(t)) =

f2max− f2
f2max− f2min

ω̄M1
2
(x2(t)) = ω̄M3

2
(x2(t)) =

f2max− f2
f2max− f2min

ωM2
2
(x2(t)) = ωM4

2
(x2(t)) = 1−ωM1

2
(x2(t)) ω̄M2

2
(x2(t)) = ω̄M4

2
(x2(t)) = 1− ω̄M1

2
(x2(t))

with mp = mpmin and mc = mcmax mp = mpmin and mc = mcmax

We choose the controller membership functions as ν1(x1(t)) = ν̄1(x1(t)) = 0.3e(−x2
1(t)/0.35),

ν2(x1(t)) = ν̄2(x1(t)) = 0.3 − ν1(x1(t)), ν3(x1(t)) = ν̄3(x1(t)) = 0.7e(−x2
1(t)/0.35), and

ν4(x1(t)) = ν̄4(x1(t)) = 0.7− ν3(x1(t)).
Let d1 = 0, d2 = 0.05, ū = 300, κ1 = 0.9, and κ2 = 0.8, κ3 = 0.9, and κ4 = 0.8.

Problem (24) produces a feasible solution for λ1 = 122 and λ2 = 122. The controller gains
are listed below.

H1 =
[
485.99 150.97 0

]
,

K1 =
[
7949.1 2472.3 338.89

]
, K2 =

[
11109 3457.4 469.51

]
,

K3 =
[
7965.8 2469.4 338.69

]
, K4 =

[
11170 3457.7 469.7

]
,

(28)

To perform some simulations, based on the parameters mentioned above and the
controller in [45] with the following gains:

K1 =
[
−1174.4396 −189.5425 −96.3306

]
, K2 =

[
−256.0090 2.4789 −61.9688

]
(29)

different cases are considered:

Case 1: Delay does not affect system. Here, we set β = 0, and both controllers are ap-

plied to the system under φ(t) = [−π

6
, 3, 0.5]>. The evolution of the state signals is

plotted in Figure 3.

Case 2: A delay affects the system. By using the gains in (28) and (29), respectively, for β =
0.1 and the above delay parameters, the simulation results are shown in

Figures 3 and 4 for the initial condition φ(t) = [− π

20
, 0.5, 0.5]>, t ∈ [−0.05 0].

Case 3: A delay and saturation affect the system For this case, Figure 5 shows the states
and saturated input signals of the pendulum system when the control law calculated
using (28) is implemented for different delays and different initial conditions.

0 1 2 3 4 5 6 7 8 9 10

-8

-6

-4

-2

0

2

4

(a) Using the gains (29)

0 0.5 1 1.5 2 2.5 3

-12

-10

-8

-6

-4

-2

0

2

4

(b) Using the gains (28)

Figure 3. State trajectories of the system without delay.
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(a) Using the gains (29)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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6

8

10

12

14

(b) Using the gains (28)

Figure 4. State trajectories of the system with delay.
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(a) For d2 = 0.01 and φ(t) =
[
− π

20
0.3 0.5

]> 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-4

-2

0

2

4

6

8

10

12

14

(b) For d2 = 0.05 and φ(t) =
[
− π

20
0.3 0.5

]>

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1

0

1

2

3

4

5

6

(c) For d2 = 0.025 and φ(t) =
[
0 0.5 0.5

]> 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

(d) For d2 = 0.03 and φ(t) =
[
−0.15 − 0.45 0.5

]>
Figure 5. State trajectories using the proposed controller for different delays and initial conditions.

Figure 3 indicates that the two implemented controllers are capable of guaranteeing a
convergence of the system’s states when the latter is not affected by delay and saturation.
However, in contrast, as can be seen from Figure 4, the controller proposed by [45] is not
able to stabilize the system when the delay occurs. Upon examination of the plotted figure
in Figure 5, it is evident that the presented control law stabilizes the system despite the
time-varying delay and saturation of inputs.

It should be noted that the simulation is conducted assuming measurement errors
in mp and mc, which appear in membership functions such that mc = 2.5 + 0.5 sin(t)
and mp = 12 + 4 sin(t). This means that the stability conditions based on the type-1 fuzzy
system cannot be applied. In light of these results, the synthesized control law is effective
in stabilizing the underlying system as well as remaining robust despite input saturation
and uncertainty.
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4.3. Comparative Explanations

The suggested strategy in this article can effectively solve the problem of admissibi-
lization for mass–spring–damper and inverted pendulum mechanical systems based on the
IT-2 fuzzy singular model subject to the time-varying delay and actuator saturation con-
straints. When compared to previous findings, the following are the primary advantages of
the suggested method:

(i) Compared to existing findings in [22,24,46], the outcome developed in this paper
is more realistic and general, since the IT-2 fuzzy model incorporates the system
uncertainties. In addition, the premise membership functions of fuzzy controllers and
fuzzy systems are not the same.

(ii) Though further results for interval-valued fuzzy singular systems have been pub-
lished, such as [36,45], none of these results will be applicable when the system under
examination exhibits actuator saturation.

(iii) For this class of systems, considering the effects of dynamic quantization, using a
dynamic/static output feedback controller or an observer-based controller [16] can be
a significant issue.

5. Conclusions

An attempt was made in this study to provide solutions to the main challenges
that come up when dealing with non-linear singular systems, such as uncertainty, time-
varying delay, and saturation. The proposed control scheme emphasizes the use of a
state feedback controller based on an IT-2 fuzzy model that exploits both the lower and
upper membership functions to adequately characterize uncertainties. By employing
an appropriate Lyapunov–Krasovskii functional with convex optimization techniques,
the controller existence was analyzed. The proposed control scheme was validated by
numerical simulations considering mass–spring–damper and inverted pendulum systems.
Research areas that need to be pursued in the near future include quantized output feedback
stabilization problems for Markovian jump singular IT-2 fuzzy systems with sensor and
actuator saturation.
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