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Abstract: Aiming at the decrease of tracking accuracy caused by nonlinear friction and strong
coupling of the flexible upper-limb exoskeleton, an improved super-twisting sliding mode controller
(ISTSMC) is proposed. Compared with the conventional super twisted sliding mode controller
(STSMC), this method can replace the switching function under the integral term with a nonsmooth
term, resulting in a faster response, less vibration when performing trajectory tracking, and reduced
steady-state error. The introduction of the nonsmooth term causes the controller to have a stronger
anti-interference ability. At the same time, the parameters of the ISTSMC can be adjusted in order to
achieve the expected control performance. The effectiveness and feasibility of the proposed control
algorithm are verified through experiments.

Keywords: flexible upper limb exoskeleton; nonsmooth term; improved super-twisting sliding
mode control

1. Introduction

Studies show that stroke has become the second leading cause of death in the world
and the leading cause of disability among the elderly [1]. Within this group, nearly 80% of
stroke survivors will experience different degrees of limb function and movement disorders,
seriously affecting their activities of daily living and quality of life [2]. Currently, most
rehabilitation training is dependent on caregivers, which is time-consuming and labor-
intensive [3]. With the development of exoskeleton robots in recent decades, huge strides
have been made in the medical field [4]. Taking the field of medical rehabilitation as
an example, exoskeleton robots have greatly reduced labor costs [5]. Traditional rigid
exoskeletons cannot effectively deal with external shocks and are not conducive to good
human–computer interaction [6]. A flexible mechanism can minimize the reaction force
caused by impact and prevent secondary damage [7]. A flexible upper limb exoskeleton is
a rigid–flexible coupled nonlinear system which is susceptible to external perturbations
and structural parameters during motion, so designing a suitable controller for trajectory
tracking is the key focus of research [8,9].

In order to improve the task accuracy of the exoskeleton, the flexibility of the joints
needs to be considered during the design of the controller. Determining a method for the
design of high-performance controllers has attracted widespread attention from scholars.
In Reference [10], the MARSE-4 exoskeleton robot was teleoperated by an upper limb ex-
oskeleton master hand using a linear proportional integral derivative (PID) control method,
and experiments show that MARSE-4 can effectively track the desired trajectory and pas-
sively treat the movements of the patient’s wrist, elbow, and forearm, thereby achieving
satisfactory training results. However, such methods sacrifice the dynamic characteristics
of the system, which runs counter to the requirements of improving system response. In
contrast to the PID control method, sliding-mode control can change purposefully accord-
ing to the current state of the system in the dynamic process, forcing the system to move
according to the state of trajectory of the predetermined sliding mode [11–13]. STSMC has a
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strong control effect in nonlinear systems, and there are many cases of application [14]. Tran
M-T proposes a novel adaptive superwarp sliding mode control scheme with time-delay
estimation [15]. In Reference [16], a modular control system is used to drive the exoskeleton
to perform rehabilitation tasks using a fast terminal sliding mode method. The finite-time
convergence characteristic of the terminal sliding mode may cause singularity problems in
its control law. As a further extension of Reference [17], a five-degree-of-freedom upper
limb rehabilitation exoskeleton was developed based on a finite-time disturbance observer
and a non-singular fast terminal sliding mode control to solve the problems of modeling
uncertainty and unknown disturbances in robotic systems. The unknown perturbation is
estimated and compensated simultaneously by a finite-time perturbation observer, which
can estimate the perturbation in less than 0.05 s with zero error. However, this method has
the issue of convergence stagnation, and it is necessary to select reasonable parameters to
avoid this situation. The initial state of the system will affect the finite-time convergence,
resulting in limitations to practical application.

Based on the above research, this paper proposes an ISTSMC controller based on a
flexible upper limb exoskeleton. In order to reduce the influence of the switching function
in the traditional STSMC, the switching function is replaced by a nonsmooth term, and the
effectiveness of the algorithm is verified by comparing it with the classic PID and STSMC.
The main contributions of this paper are as follows.

1. ISTSMC replaces the switching function of STSMC with a nonsmooth term, which reduces
the chattering during angle control and is more conducive to practical application.

2. By selecting the appropriate ISTSMC parameters, the angle error can be converged
to an arbitrarily small range, and the trajectory tracking ability of the system can be
enhanced.

3. The nonsmooth term can reduce the impact of sampling time on the system, and the
anti-disturbance performance can be improved by selecting an appropriate λ.

The rest of the paper is arranged as follows. Section 2 describes the dynamic modeling
and controller design. Section 3 presents the stability analysis of the controller. Section 4
shows the measured data of the proposed ISTSMC on the experimental platform for
comparison and analysis with PID and STSMC experiments. Conclusions are presented in
Section 5.

2. Modeling and Algorithm Design
2.1. Modeling of Flexible Upper-Limb Exoskeleton

The motion equation of the series chain n-link flexible exoskeleton in the joint space
can be expressed as [18]:

M(q)
..
q + C(q,

.
q)

.
q + G(q) = τ (1)

where q = [q1, q2, . . . , qn]
T is the angle of rotation at the joint. M(q) ∈ Rn×n is the rotational

inertia matrix of the exoskeleton. C(q,
.
q) ∈ Rn×n is the Gauche and centripetal force matrix.

G(q) ∈ Rn is the gravity matrix of the exoskeleton robot. τ is the control torque vector.
The flexible transmission system of this experimental platform uses springs. The

buffering of external disturbances can be achieved by adding springs to the joints of the
upper limbs. At the same time, the introduction of springs also introduces unfavorable
factors to the system, such as increasing the degree of nonlinearity. Therefore, establishing
an accurate mathematical model can lay the foundation for the realization of subsequent
control algorithms. According to Hooke′s law, the torque output of the spring at the joint is:

τn = kn(θ − q) (2)

where τn is the output force of the torsion spring, kn is the stiffness coefficient of the torsion
spring, θ is the rotation angle of the motor end, and q is the rotation angle of the joint.

Combining the motor dynamics and spring output torque, the final mathematical
model of the flexible upper limb exoskeleton robot is as follows:
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{
J

..
θ + B

.
θ + kn(θ − q) = τ

M(q)
..
q + C(q,

.
q)

.
q + G(q) = kn(θ − q)

(3)

where θ = [θ1, θ2, . . . , θn]
T is the motor side rotation angle. J, B, kn denotes the motor-side

rotor rotational inertia, damping and torsion spring elasticity coefficients, respectively.
In the sliding mode control system, the motion of the system is mainly divided into the

arrival phase and the sliding phase. During the arrival stage, the arrival condition is used
to ensure that the system state reaches the sliding surface from any position; in the sliding
stage, the state variables run to the equilibrium point along the sliding surface under the
action of the control law. Therefore, the design of the sliding mode control system is mainly
divided into two parts: the selection of the sliding mode surface and the design of the
control law.

For a nonlinear system like this:

.
x = f (x, u, t)

x ∈ Rn, u ∈ Rm represent the state variables and control variables of the system,
respectively. The sliding surface is designed by s(x, t), s ∈ Rm.

After designing the sliding surface, the following control law is given:

ui =

{
u+

i (t, x) s(x, t) > 0
u−i (t, x) s(x, t) < 0

where u+
i (t, x) 6= u−i (t, x). In order to ensure the effectiveness of the sliding mode controller,

the following three conditions must be met:
1. Existence of sliding modes;
2. Accessibility of the sliding mode, that is, the system state quantities outside the

sliding mode surface can reach those of the sliding mode surface at any position within a
limited time, and the sufficient conditions to ensure its existence are:

lim
s→0

s · .
s < 0

3. The sliding mode motion is stable. Since the continuous switching characteristics of
the sliding mode control will cause chattering in the system, an approach function will be
introduced to cause the system state to better approach the sliding mode surface.

2.2. Design of Conventional STSMC

This paper focuses on the second-order system, the expressions of M(q), C(q,
.
q), and

G(q) are:

M(q) =
[

(m1 + m2)l12 + m2l22 + 2m2l1l2 cos q2 m2l22 + m2l1l2 cos q2
m2l22 + m2l1l2 cos q2 m2l22

]
C(q) =

[
−m2l1l2

.
q2 sin q2 −m2l1l2(

.
q1 +

.
q2) sin q2

m2l1l2
.
q1 sin q2 0

]
G(q) =

[
(m1 + m2)l1g cos q1 + m2l2g cos(q1 + q2)

m2l2g cos(q1 + q2)

]
where m1 is the mass of joint 1, m2 is the mass of joint 2, l1 is the length of joint 1, l2 is the
length of joint 2, and g is the acceleration due to gravity.

In order to facilitate the design of the controller, let x1 = q, x2 =
.
q, x3 = θ − q,

x4 =
.
θ − .

q and transform the kinetic equation into the following equation of state:{ .
x1 = x2,
.
x2 = x3 + d1,

(4)
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{ .
x3 = x4,
.
x4 = J−1τ + d2,

(5)

where d1 = (M−1(q)kn − I)(θ − q)−M−1(q)(C(q,
.
q)

.
q + G(q) + w1),

d2 = −J−1B
.
θ − (J−1kn + M−1kn)(θ − q) + M−1(q)
(C(q,

.
q) + G(q) + w1)− w2,

w1, w2 are the external disturbance on the motor side and joint side; d1, d2 are the un-
matched disturbance and the matched disturbance in the system, including the unmolded
dynamics of the system and external disturbances.

First, define the sliding surface of the system as follows:

s = c1e1 + c2e2 + c3e3 + e4, (6)

where e1 = qr − x1, e2 =
.
qr − x2, e3 =

..
qr − x3 − d1, e4 = q(3)r − x4 −

..
d1.

Derivation of the sliding surface

.
s = c1

.
e1 + c2

.
e2 + c3

.
e3 +

.
e4. (7)

The following control signal U can be generated by the STSMC algorithm:
τ = J(c1

.
e1 + c2

.
e2 + c3

.
e3 + q(4)d − um − d2 −

..
d1)

um = −k1|s|1sign(s) + zm.
zm = −k2sign(s)

, (8)

where k1 and k2 are adjustable parameters.
The stability and finite-time convergence of the controller have been proven in [18]

using Lyapunov functions.

2.3. Controller Design

Assumption 1. All perturbations in the flexible lower limb exoskeleton system and their derivative
values of all orders are bounded, i.e., they satisfy

∣∣∣d(j)
1

∣∣∣ ≤ µ1,
∣∣∣d(j)

2

∣∣∣ ≤ µ2, j = 0, 1 . . . r, where
µ1, µ2 is positive.

Lemma 1 [19]. Suppose 0 < h ≤ 1, then for ∀a, b ∈ R,∣∣∣ah · sign(a)− bh · sign(b)
∣∣∣ ≤ 21−h|a− b|h

Lemma 2 [20]. Assuming that g ≥ 1, then for ∀a, b ∈ R

|ag · sign(a)− bg · sign(b)| ≤ g(2g−2 + 2)(|a− b|h + |a− b||b|g−1).

Lemma 3 [21]. Let α > 0 and β > 0, then for ∀a, b ∈ R,

|a|α|b|β ≤ α

α + β
h(a, b)|a|α+β +

β

α + β
h(a, b)

−α
β |b|α+β

where h(a, b) is a positive function.

Lemma 4 [21]. Suppose that the positive–definite function ζ(x) : Rn → R and function
ξ(x) : Rn → R have the same homogeneous degree pertaining to the same dilation weight. Then,
there exists a positive constant a, such that ξ(x) ≤ aζ(x). In addition, if ξ(x) is positive–definite,
one has bζ(x) ≤ ξ(x), where b is a positive constant.
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Definition 1 [22]. Given real numbers ai > 0, i = 1, 2, . . . , n and fixed coordinates
(τ1, τ2, . . . , τn) ∈ Rn. If there exists a real number j ∈ R, such that for ∀k > 0 and ∀τ ∈ Rn,
one has g(ka1 τ1, ka2 τ2, . . . , kan τn) = kjg(τ1, τ2, . . . , τn), then the function g : Rn → R is called
homogeneous of degree j, where (a1, a2, . . . an) are the weights of the coordinates.

In order to reduce the influence of the switching function hidden under the integral of
STSMC on the system, according to Equations (4) and (5) and the improved super-twisted
fractional order control law proposed in Reference [23], the specific control law of the
system can be obtained as follows:

τ = J(c1
.
e1 + c2

.
e2 + c3

.
e3 + q(4)d − um − d2 −

..
d1)

um = −k1|s|1+λsign(s) + zm.
zm = −k2|s|1+2λsign(s),

(9)

where k1, k2 > 0 and λ ∈ (− 1
2 , 0).

The control structure is shown in Figure 1. The exoskeleton system feeds back the
angle of the joint measurement and the motor side, and then uses ISTSMC to realize the
bounded stability of the closed state of the system. The parameter λ can be adjusted to
achieve the desired effect.
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3. Stability Analysis

Theorem 1. This subsection will prove that states z1 and z2 in the system converge to the following
region:

|z1| ≤ |γ2|
1

1+λ +
∣∣∣γ1 − |γ2|

1
1+λ · sign(γ2)

∣∣∣
≤ β

1
2+λ ( 2

1+λ )
1
2 ( α(µ1+µ2)

k1(1−σ)
)

1
1+2λ

+ 2
1
2 β

1
2+λ ( α(µ1+µ2)

k1(1−σ)
)

1
1+2λ ,

|z2| ≤ 1
k1

β
1+λ
2+λ ( 2

1+λ )
1+λ

2 ( α(µ1+µ2)
k1(1−σ)

)
1+λ
1+2λ .

(10)

Remark 1. From Theorem 1 we can determine that

β
1

2+λ ( 2
1+λ )

1
2 ( α(µ1+µ2)

k1(1−σ)
)

1
1+2λ

+ 2
1
2 β

1
2+λ ( α(µ1+µ2)

k1(1−σ)
)

1
1+2λ is the boundary of the angle error. By select-

ing appropriate parameters λ, the angle error can be converged to arbitrarily small, thus ensuring
the accuracy of trajectory tracking.

Remark 2. Although STSMC has strong anti-interference ability, the long-term operation of the
exoskeleton may be adversely affected due to the switch function under the integral. In addition to
the impact of sampling time on the controller, the anti-interference performance of STSMC is not
necessarily stronger than ISTSMC in actual use.
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Proof of Theorem 1. Substituting (9) into (7) yields:{ .
s = −k1|s|1+λsign(s) + zm − d2 − c2d1
.
zm = −k2|s|1+2λsign(s) +

.
φ(t),

(11)

where
.
φ(t) = −d2 − c2d1, the above equation can be rewritten as:{

z1 = s
z2 = φ(t)− k2

∫ t
0 |s|

1+2λsign(s)d(t).
(12)

Let γ1= z1, γ2 = z2
k1

, one receives:
.
γ1 = k1

(
γ2 − γ1+λ

1 · sign(γ1)
)

.
γ2 = − k2

k1
γ1+2λ

1 · sign(γ1) +
.
φ(t)
k1

.
(13)

For the convenience of calculation:

η1 = −γ1+λ
1 · sign(γ1) + γ2, η2 = −γ

1+2λ
1+λ

2 · sign(γ2),

η3 = −γ1+2λ
1 · sign(γ1) + γ

1+2λ
1+λ

2 · sign(γ2), η4 = −η1 + γ
1

1+λ
2 · sign(γ2).

(14)

According to Lemmas 1 and 0 < 1+2λ
1+λ < 1, we can obtain

|η3| ≤ 2
−λ

1+λ |η1|
1+2λ
1+λ . (15)

According to Lemma 4, we can obtain

|η4| ≤ ξ
(
|η1|

1
1+λ + |η1| · |z2|

−λ
1+λ

)
, (16)

where ξ = 1
1+λ

(
2
−1−2λ

1+λ + 2
)

.
Design the Lyapunov function as follows

V(γ1, γ2) = P1(γ1, γ2) + P2(γ2), (17)

where P1(γ1, γ2) =
1
2

(
γ1 − |γ2|

1
1+λ · sign(γ2)

)2
and P2(γ2) =

1+λ
2 |γ2|

2
1+λ .

Derivative for V(γ1, γ2), one receives

.
V(γ1, γ2)

∣∣∣
(10)

=
.
P1(γ1, γ2)

∣∣∣
(10)

+
.
P2(γ2)

∣∣∣
(10)

, (18)

.
P2(γ2)

∣∣∣
(10)

= ∂P2(γ2)
∂γ2

.
γ2
∣∣
(10)

≤ −2|η2|
2+λ

1+2λ − k2
k1
|η2|

1−λ
1+2λ · sign(η2)η3 +

∂P2(η2)
∂η2

·
.
φ(t)
k1

.
(19)

According to Lemma 3 and (15)

k2
k1
|η2|

1−λ
1+2λ · sign(η2)η3 ≤ k2

k1
|η2|

1−λ
1+2λ · 2

−λ
1+λ · |η1|

1+2λ
1+λ

≤ 1
2 |η2|

2+λ
1+2λ + ε1|η1|

2+λ
1+λ ,

(20)

where ε1 > 0. By using (19) and (20), one receives

.
P2(η2)

∣∣∣
(10)
≤ −3

2
|η2|

2+λ
1+2λ + ε1|η1|

2+λ
1+λ +

∂P2(η2)

∂η2
·

.
φ(t)
k1

. (21)
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The same reason can be proven as

.
P1(η1, η2)

∣∣∣
(10)

≤ 1
2 |η2|

2+λ
1+2λ +

(
ε2 + ε3 − k12

λ
1+λ

)
|η1|

2+λ
1+λ + ∂P1(η1,η2)

∂η2
·

.
φ(t)
k1

,
(22)

where ε2 > 0, ε3 > 0.
By combining (18), (21) and (22), one gets

.
V(γ1, γ2)

∣∣∣
(10)

≤ −|η2|
2+λ

1+2λ +
(

ε1 + ε2 + ε3 − k12
λ

1+λ

)
|η1|

2+λ
1+λ + ∂V1(γ1,γ2)

∂γ2
·

.
φ(t)
k1

,
(23)

In selecting k1, make k1 ≥ 2
−λ

1+λ (ε1 + ε2 + ε3 + 1), one receives

.
V(γ1, γ2)

∣∣∣
(10)
≤ −H(γ1, γ2) +

∂V1(γ1, γ2)

∂γ2
·

.
φ(t)
k1

. (24)

where H(γ1, γ2) = |η1|
2+λ
1+λ + |η2|

2+λ
1+2λ .

By employing Assumption 1, it is not difficult to obtain

.
V(γ1, γ2)

∣∣∣
(10)
≤ −H(γ1, γ2) +

∣∣∣∣∂V1(γ1, γ2)

∂γ2

∣∣∣∣ · µ1 + µ2

k1
. (25)

Definition D1 =

{
(γ1, γ2) : |η1|

2+λ
1+λ + |η2|

2+λ
1+2λ ≤

(
α(µ1+µ2)
k1(1−σ)

) 2+λ
1+2λ

}
,where α is a posi-

tive constant, and σ is a sufficiently small constant.
Since (η1, η2) /∈ D1, one receives

|η1|
2+λ
1+λ + |η2|

2+λ
1+2λ ≥

(
α(µ1 + µ2)

k1(1− σ)

) 2+λ
1+2λ

. (26)

According to Definition 1, we can get
∣∣∣ ∂V1(γ1,γ2)

∂γ2

∣∣∣ and H
1−λ
2+λ (γ1, γ2) are homogeneous

of degree 1− λ pertaining to the dilation weight (1, 1 + λ).
From Lemma 4, one receives∣∣∣∣∂V1(η1, η2)

∂η2

∣∣∣∣ ≤ αH
1−λ
2+λ (η1, η2). (27)

Substituting (27) in (25) yields

.
V(γ1, γ2)

∣∣∣
(10)
≤ −H(γ1, γ2) +

α(µ1 + µ2)

k1
H

1−λ
2+λ (γ1, γ2). (28)

Through (26), it yields

.
V(γ1, γ2)

∣∣∣
(10)

< −λH(γ1, γ2) < 0

In order to ensure that the system can exist at any initial moment (η1(0), η2(0)) ∈ D2
for a time T such that (η1(t), η2(t)) ∈ D2, ∀t ≥ T.

D2 =

{
(γ1, γ2) : V(γ1, γ2) ≤ K K =β

2
2+λ

(
α(µ1 + µ2)

k1(1− σ)

) 2
1+2ε

}
⊃ D1
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According to Definition 1, we can get V
2+λ

λ (γ1, γ2) and H(γ1,γ2) are homogeneous of
degree 2 + λ pertaining to the dilation weight (1, 1 + λ).

From Lemma 4, one receives

V
2+λ

2 (γ1, γ2) ≤ βH(γ1, γ2) ≤ β
(

α(µ1+µ2)
k1(1−σ)

) 2+λ
1+2λ

≤
(

β
2

2+λ

(
α(µ1+µ2)
k1(1−σ)

) 2
1+2λ

) 2+λ
2

= K
2+λ

2 .
(29)

From (29), it follows that there exists a time T such that ∀t ≥ T, V(γ1, γ2) ≤ K. When
t ≥ T, there exists

P2(γ2) =
1 + λ

2
|γ2|

2
1+λ ≤ V(γ1, γ2) ≤ K, (30)

P1(γ1, γ2) =
1
2

(
γ1 − |γ2|

1
1+λ · sign(γ2)

)2
≤ V(γ1, γ2) ≤ K. (31)

Since γ1= z1, γ2 = z2
k1

, one receives

|z2| ≤
1
k1

β
1+λ
2+λ (

2
1 + λ

)

1+λ
2
(

α(µ1 + µ2)

k1(1− σ)
)

1+λ
1+2λ

, (32)

|z1| ≤ |γ2|
1

1+λ +
∣∣∣γ1 − |γ2|

1
1+λ · sign(γ2)

∣∣∣
≤ β

1
2+λ ( 2

1+λ )
1
2 ( α(µ1+µ2)

k1(1−σ)
)

1
1+2λ

+ 2
1
2 β

1
2+λ ( α(µ1+µ2)

k1(1−σ)
)

1
1+2λ .

(33)

From the above two equations, it follows that z1 and z2 converge to the infinitesimal
range in finite time again. �

4. Experimental Analysis

This section uses the two-degree-of-freedom flexible upper limb exoskeleton experi-
mental platform to verify the effectiveness and feasibility of the proposed ISTSMC algo-
rithm. The experimental platform is shown in Figure 2, including a two-degree-of-freedom
upper limb exoskeleton, an industrial computer (to collect information such as angle and
torque), and PC_MATLAB/Simulink (to process the collected signals). The main body of
the platform consists of two MAXON DC motors, two reducers, and two rigid connecting
rods. The first joint is connected to motor 1 through a spring, the end of the joint is motor 2,
and the second joint is connected through a spring. Each motor has a quadrature encoder on
the bottom and joint side. The springs at both joints are replaceable to adjust the flexibility
of the joints. The nominal values of its parameters are listed in Table 1.
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Table 1. Parameters of two-degree-of-freedom flexible upper limb exoskeleton.

Descriptions Nominal Values

spring rate(N.m) 2
Moment of inertia of motor 1(kg.m2) 1.42× 10−2

Moment of inertia of motor 2(kg.m2) 1.08× 10−2

Joint 1 mass(kg) 1.8
Joint 2 mass(kg) 1.1
Joint 1 length(m) 0.35
Joint 2 length(m) 0.23

Joint 1 moment of inertia (kg.m2) 0.11
Joint 2 moment of inertia (kg.m2) 0.016

Sampling time(s) 0.01

In order to verify the effectiveness of the proposed algorithm, it was compared with a
widely used PID controller. Additionally, it is compared with STSMC to verify the ability
to reduce chattering. The parameters of the selected controller are in Table 2

Table 2. Control Parameters.

Controllers Parameters

PID kp1 = 0.15, ki1 = 1, kd1 = 0.001
kp2 = 2, ki2 = 15, kd2 = 0.005

STSMC c1 = 50, c2 = 1, c3 = 1
k1 = 40, k2 = 200

ISTSMC c1 = 50, c2 = 1, c3 = 1
k1 = 40, k2 = 200, λ = −0.3

In the selection of PID parameters, the response speed of the system will be accelerated
with the increase of P, but too large a value of P will cause the system to be unstable; I is
used to eliminate static errors, and with a larger integral action comes a slowed response
speed of the system. D can reduce the overshoot of the system and speed up the dynamic
response of the system. ci(i = 1, 2, 3) in STSMC and ISTSMC guarantees the boundedness
and stability of the steady-state response of the system. The larger c1 is, the faster the
convergence speed will be, but if it is too large it will also cause chattering in the system.
The larger k1, the smaller the system overshoot; k2 can reduce the steady-state error of
the system. The size of λ in ISTSMC affects the steady-state of the system error, and
anti-interference ability undergoes specific experimental analysis in the fourth section.

Case 1: The effect of PID, STSMC, and ISTSMC when tracking the step signal.
It can be seen from Figure 4 that in order to speed up the tracking speed, the PID has

11% overshoot. Although STSMC has no overshoot, the response slows down and only
tracks the step signal after 0.7 s. The ISTSMC proposed in this paper can track the upper
signal after 0.3 s without overshooting, which is 57% faster than STSMC.
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Case 2: The effect of sudden increase of control torque on tracking effect.
In order to verify the anti-disturbance performance of the proposed controller, at 5.9 s,

the torque output is suddenly increased by 50%. It can be seen from Figure 3 that the PID
directly loses the ability to stabilize. STSMC gradually converges after being disturbed
for 0.7 s, and ISTSMC can overcome the influence of disturbance within 0.1 s, showing
excellent anti-disturbance ability.
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Case 3: The effect of λ on the controller in ISTSMC.
In order to verify the influence of λ on trajectory tracking, parameter k1 is set to 40,

and parameter k2 is set to 200. As shown in Figure 5, when λ = −0.45, λ = −0.3, and
λ = −0.1, increasing the parameter λ will increase the chattering of the system, but the
tracking error will decrease.
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Case 4: Simultaneous tracking of sinusoidal trajectories by dual joints.
The initial angle of the two joints before the start of the experiment was 0 degrees,

the set trajectory of the joint 1 was qr = −15 sin(0.5t), and the trajectory of joint 2 is
qr = 20 sin(0.5t).

From Figure 6a joint 1 trajectory tracking and Figure 7a joint 2 trajectory tracking it
can be seen that the control responses of STSMC and ISTSMC are faster than PID control
and can track the upper trajectory in 0.1 s. The state can see that ISTSMC has a smaller
error than PID and STSMC. The trajectory tracking has a "flat top phenomenon", which is
caused by the elastic structure of the spring, which causes the the system have a certain
hysteresis effect during the commutation process. ISTSMC handles this phenomenon better
than PID and STSMC.

From Figure 6b joint 1 error and Figure 7b joint 2 error it can be seen that under the
ISTSMC algorithm, the steady-state error of joint 1 is about 70% less than that of PID and
the commutation error is 40% less than that of STSMC. At 4 s and 10 s, the joint trajectories
are reversed. Due to the deformation of the torsion spring, the two joints have the largest
error, but they are within the acceptable range. It can be seen from Figures 6c and 7c that
the control torque of ISTSMC is similar to the other two methods, but the control effect is
significantly improved and the vibration is also reduced.
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5. Conclusions

Traditional control methods used on flexible upper extremity exoskeletons have prob-
lems such as poor tracking accuracy and are susceptible to disturbance and parameter



Actuators 2023, 12, 32 15 of 16

perturbation. Although some methods have improved accuracy, the amount of calcula-
tion and the design process are relatively complex, which limits the application of these
methods. This paper proposes an ISTSMC algorithm for a flexible upper limb exoskeleton
system, which has a smaller error and better anti-disturbance ability in trajectory track-
ing. A nonsmooth term is added to the control law in order to make the motion process
smoother, and the parameter λ can be adjusted to achieve the desired effect. Through
the analysis of case1, it can be seen that ISTSMC has a smaller overshoot than PID and a
faster response time than STAMC; through case2, it can be seen that ISTSMC has stronger
anti-interference ability; through case3, it can be seen that changing the value of λ can
obtain the ideal tracking effect and anti-interference ability; through case4 fully shows the
effectiveness of the proposed method.
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