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Abstract: This study proposes a method for designing a class of rotationally symmetric Stewart
platforms (RSSPs) with an insensitive condition number (ICN), which is used to minimize the
condition number to achieve a high accuracy for a multi-degree-of-freedom (multi-DOF) shaker.
Considering the rotational symmetry of RSSPs, an analytical relationship between the architecture
parameters and transfer coefficients is first established. Then, the decoupling conditions of the RSSPs
are derived, and the transfer coefficient formulas are simplified by the given decoupling conditions
and iso-length assumption. Following further analyses and discussions, the ICN condition and
analytical form of the condition number are provided. The area of the ICN (AICN) is, subsequently,
derived to evaluate the insensitivity of the condition number. To validate the effectiveness of the
method, a design example (ICN-RSSP), along with a numerical analysis, is implemented, and, finally,
a multi-DOF shaker is developed. The results of the numerical analysis show a smaller condition
number and a larger AICN than those of the RSSP, for comparison. And the experiment results of
the multi-DOF shaker show a high accuracy of vibration waveform reproduction. The method can
reduce the condition number of RSSPs, improve the insensitivity, and further improve the accuracy
of the multi-DOF shaker.

Keywords: rotationally symmetric Stewart platform; condition number; accuracy; decoupling; multi-
DOF shaker; parallel mechanism

1. Introduction

Precise payloads of flying vehicles, such as inertial measurement units, gyroscopes,
and photoelectric pods, are among the high-sensitive devices used for navigation, trans-
portation, and detection [1–3]. However, the vibration from the carrying platforms, such as
the aeroelastic vibration of flying vehicles, reduces the measurement accuracy, reliability,
and service life [4,5]. Therefore, vibration tests on these payloads are required for calibration
and functional verification [6,7]. These tests are implemented by a single-degree-of-freedom
(single-DOF) shaker and are repeated along each sensitive axis of precise payloads to simu-
late the true multi-DOF vibration environment, including TX, TY, TZ, RX, RY, and RZ [8,9].
As the superposition of the responses by the single-DOF vibration cannot be equivalent
to the ones by the multi-DOF vibration [10,11], repeated single-DOF vibration tests can
be inaccurate. When the vibration is sufficiently high, nonlinear responses and complex
multi-DOF vibration modes can occur [12]. Therefore, the need for multi-DOF vibration
tests is reinforced. A multi-DOF shaker is a device used for implementing multi-DOF
vibration tests and is based on spatial parallel mechanisms with struts configured as an
orthogonal architecture [13] or a Stewart platform architecture [14]. The orthogonal archi-
tecture was utilized at first, whereas the Stewart platform was gradually adopted for its
smaller area occupation, lower power consumption, higher structural stability, and larger
load capacity [15].
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Accuracy is a kernel issue for parallel mechanisms [16] because the multi-joint structure
of struts can amplify the motion errors of the actuators mounted on the struts [17,18]. The
condition number (CN) of the Jacobian matrix [19] is used to describe the error amplification
factor, where the Jacobian matrix is utilized to quantify the motion and force transmissibility
of the actuators to the mobile plate (MP). A large CN can lead to large errors in the MP or
control failure, even if the errors in the actuators are small [20].

To ensure motion accuracy, the CN is often supposed to be minimized during the
design of Stewart platforms. Design methods can be divided into numerical and analytical
methods. Numerical methods are commonly employed to obtain a smaller CN because
the analytical form of the CN cannot be acquired as a function of the architecture parame-
ters [19]. Considering this, Pittens et al. [21] carried out the optimal design of a standard
Stewart platform (SSP) and concluded that the minimum CN of the SSP is

√
2. To obtain a

smaller CN, Mehta et al. [22] used a generalized Stewart platform (GSP) and obtained a
smaller value (1.20). The GSP has a loose design constraint so that it is easier to minimize
the CN. However, the lengths of the six struts of the GSP are usually unequal, which leads
to the design inconsistency of the actuators and complicates the structure and controller
design. In addition, Peng et al. [23] adopted a rotationally symmetric Stewart platform
(RSSP) to minimize the CN, which is a typical type of GSP with rotational symmetry and
has the benefit of the consistency of the strut lengths.

Compared with the numerical method, the analytical method does not require a large
amount of calculation and has a higher design efficiency [24]. Although the relationship
between the CN and the architecture parameters of Stewart platforms cannot be directly
established, several studies investigated the analytical methods by adding proper con-
straint conditions. Klein et al. [25] reported that the minimum CN was 1 and that the
equivalent constraint condition was isotropic. Yi et al. [26] derived the constraint condition
of the architecture parameters when the isotropy was satisfied, but it was too harsh to be
directly applied to practical designs [27]. To relax the constraint condition for isotropy, a
homogeneous form of the Jacobian matrix was obtained by introducing the characteristic
length, and the isotropy can be partly satisfied [28,29]. The aforementioned studies are
based on the condition that the manipulation center [30,31] (CP) is fixed. CP is the origin of
the payload coordinate system {P}, which is a virtual point fixed to the payload and is used
to describe the 6-DOF motion of the payload. For a multi-DOF shaker, the CP is the point
at which a vibrational excitation force is applied. In practice, CP should be changed when
referring to different payloads, because the excitation force should coincide with the origin
of the sensitive axes [32] of the payload to avoid a measurement error of the angular rate
induced by the linear vibration [6,33]. However, this movement causes the CN to increase
and further amplify the motion error of the MP [34].

This study proposes an analytic method to design a class of RSSPs, which possesses
an “insensitive CN (ICN)” and allows CP to move in a designable area. This method was
subsequently used to design a multi-DOF shaker to maintain the advantages of a high
accuracy and applicability to different payloads. By offering the condition of the ICN (ICN
condition), the analytical form of the CN can be obtained as a function of the architecture
parameters, which improves the efficiency of the design process for minimizing the CN.
Meanwhile, the ICN condition is looser than the isotropy condition, making it easier to use
in a practical design. The RSSP was selected because it can achieve a smaller CN than the
SSP and avoid strut inconsistency in the GSP.

To investigate how CN changes with CP, the transfer coefficients of the RSSP and
the decoupling problem are first investigated. After simplification, the ICN condition
is deduced, and the analytical forms of the CN and insensitive domain are provided.
Subsequently, a design example (ICN-RSSP) and numerical analysis are conducted to verify
the effectiveness of the method at maintaining the CN constant in a larger space of CP
and reducing the errors in the MP. Finally, a multi-DOF shaker is developed based on the
ICN-RSSP, and the experiment results are provided. The main contributions of this study
are summarized as follows:
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i. The ICN condition is provided, improving the insensitivity of the CN and decreasing
the error amplification of the RSSPs when CP moves in larger space;

ii. The analytical form of the CN is given by involving the ICN condition, which makes
it possible to minimizing the CN by an analytical method and improves the design
efficiency and effectiveness;

iii. A multi-DOF shaker is developed, and the experimental results indicate that the
multi-DOF shaker designed using the method is effective for high-accuracy vibra-
tion waveform reproduction.

2. Mathematical Foundation
2.1. Problem Description

An RSSP comprises an MP for installing precise payloads, a base plate (BP), and
six struts (each strut includes an actuator) connecting the two plates with six upper
(p1, p2, . . . , p6) and six lower (b1, b2, . . . , b6) joints (Figure 1). For rotational symmetry [35],
the struts were partitioned into two groups: the first group included struts 1, 3, and 5, and
the second group contained struts 2, 4, and 6, which were obtained by rotating struts 1 and
2. Hence, the RSSP architecture can be described by the parameters of struts 1 and 2 as
follows:

i. MP radius: rp1, rp2;
ii. BP radius: rb1, rb2;
iii. Upper-joint distribution angle: ωp1, ωp2;
iv. Lower-joint distribution angle: ωb1, ωb2;
v. Architecture height: h.
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The CP coordinate with reference to the MP center, OP, is (xc, yc, zc)
T , to establish the

payload frame {P} for the RSSP with the manipulation center, CP, as the origin and the base
frame {B} with the origin, OB, at the BP center. To avoid asymmetry, both the {P} and {B}
Z axes coincide with the RSSP symmetry axis. And let CP move along the Z axis, and the
coordinate is (0, 0, zc)

T .
Let L be the elongation vector of the six struts and XP be the displacement vector of

the MP (CP). The transmission between the actuation velocity vector
.
L and the velocity

vector
.
XP = (vTX , vTY, vTZ, ωRX , ωRY, ωRZ)

T can be expressed as

.
L = J

.
XP, (1)
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where J is the Jacobian matrix

J =


sT

1 (p1 × s1)
T

...
...

sT
6 (p6 × s6)

T

, (2)

where si is the unit direction vector along the i-th strut; pi is the vector pointing to the i-th
upper joint pi, with respect to CP; and i = 1,2,. . .,6.

For struts 1 and 2, we obtain{
si = (sin θi cos ϕi, sin θi sin ϕi, cos θi)

T , i = 1, 2
pi =

(
rpi cos ωpi, rpi sin ωpi, pzi

)T , i = 1, 2
(3)

where θi shows the angle between si and the positive Z axis, and ϕi stands for the angle
between the projection of si on the XY plane and positive X axis.

By rotational symmetry, the struts in each group were repeated every 2π/3. Thus, for
the other struts, we obtain

s3 = Rz, 2
3 πs1, p3 = Rz, 2

3 πp1, s5 = Rz, 4
3 πs1, p5 = Rz, 4

3 πp1,
s4 = Rz, 2

3 πs2, p4 = Rz, 2
3 πp2, s6 = Rz, 4

3 πs2, p6 = Rz, 4
3 πp2,

(4)

where the rotation matrix is

Rz,ϑ =

cos ϑ − sin ϑ
sin ϑ cos ϑ

1

, (5)

where ϑ is the angle of rotation.
As expressed in Equation (6), the CN is equivalent to the amplification factor [19] of

the relative errors in
.
L and

.
XP:

‖∆
.
XP‖
‖

.
XP‖

≤ ‖J‖‖J−1‖‖∆
.
L‖
‖

.
L‖

, (6)

where ‖J‖ is the matrix norm of GJ = JTJ, and the Euclidean norm (2-norm) is adopted.
Therefore, CN (κ) can be calculated using the square root of the ratio of the maximal and
minimal eigenvalues of GJ , which is expressed as

κ = ‖J‖‖J−1‖ =

√
λmax(JTJ)
λmin(JTJ)

. (7)

Matrix GJ is termed the transfer coefficient matrix, and the components in GJ , called
“transfer coefficients”, represent the velocity amplification factors. The transfer coefficients
vary when CP is changed for different payloads, altering the maximum and minimum of
the six eigenvalues of GJ . Consequently, the CN failed to maintain the optimal value.

2.2. Transfer Coefficients

It is important to derive transfer coefficients to explore how the GJ eigenvalues change
with the CP location. Partition J, as J =

[
Jt Jr

]
and GJ , can be divided into four parts:

GJ =

[
JT

t Jt JT
t Jr

JT
r Jt JT

r Jr

]
, (8)
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where Jt and Jr are 6 × 3 matrices that represent the translational and rotational parts,
respectively.

For any 3 × 3 matrix, A =
{

aij
}

, the following equation can be derived:

A + Rz, 2
3 πART

z, 2
3 π

+ Rz, 4
3 πART

z, 4
3 π

=
3
2

a11 + a22 a12 − a21
a21 − a12 a11 + a22

2a33

. (9)

If A is symmetric, a12 − a21 = 0. Considering this property, the top-left part of GJ can
be obtained as follows:

JT
t Jt = ∑

i=1,2

(
sisT

i + Rz, 2
3 πsisT

i RT
z, 2

3 π
+ Rz, 4

3 πsisT
i RT

z, 4
3 π

)
=

ηTX
ηTY

ηTZ

, (10)

where {
ηTX = ηTY = 3

2
(
sin2 θ1 + sin2 θ2

)
ηTZ = 3

(
cos2 θ1 + cos2 θ2

) (11)

Notably, ηTX + ηTY + ηTZ = 6. Similarly, the rest can be found as

JT
r Jr =

6

∑
i=1

(pi × si)(pi × si)
T =

ηRX
ηRY

ηRZ

, (12)

where
ηRX = ηRY = 3

2 ∑
i=1,2

[
rpi

2 cos2 θi + pzi
2 sin2 θi − 2rpi pzi cos θi sin θi cos

(
ωpi − ϕi

)]
ηRZ = 3 ∑

i=1,2

[
rpi

2 sin2 θi sin2(ωpi − ϕi
)] ,

(13)
and

JT
r Jt =

6

∑
i=1

(pi × si)si
T =

ηTXRX ηTYRX
ηTXRY ηTYRY

ηTZRZ

, (14)

where 
ηTXRX = ηTYRY = − 1

2 ηTZRZ = 3
2 ∑

i=1,2

[
rpi cos θi sin θi sin

(
ωpi − ϕi

)]
ηTXRY = −ηTYRX = 3

2 ∑
i=1,2

[
pzi sin2 θi − rpi cos θi sin θi cos

(
ωpi − ϕi

)] . (15)

Note that ηTX , ηTY, ηTZ, ηRX , ηRY, and ηRZ characterize the transfer coefficients in each
DOF, and ηTXRX , ηTYRY, ηTZRZ, ηTXRY, and ηTYRX are the coupling transfer coefficients.

2.2.1. Decoupling Conditions

Coupling is one of the important problems of a multi-DOF shaker. It can cause unex-
pected responses when the multi-DOF shaker reproduces a desired vibration waveform
signal, leading to a reduction in accuracy. The coupling transfer coefficients characterize
the coupling of transmissibility between the two DOFs.

Assuming that the BP is fixed to the ground, the dynamic equilibrium of the RSSP is

MP
..
XP + cJTJ

.
XP + kJTJXP = FP (16)

where MP shows the mass matrix of the MP (including the payload); c and k denote the passive
damping and the stiffness of each strut, respectively; and FP = ( fTX , fTY, fTZ, tRX , tRY, tRZ)

T

is the excitation force attached to the MP, assuming that MP is designed to be diagonal.
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If the coupling transfer coefficients become zero, GJ becomes diagonal, and the RSSP
becomes decoupled. Equation (16) can be subsequently divided into six equations, rep-
resenting TX, TY, TZ, RX, RY, and RZ. And the excitation force in one DOF only causes
the response in the same DOF, for example, TX to TX, TY to TY, etc., which implies better
control performance [36]. Based on this deduction, the decoupling conditions can be given
by Equation (15) to make JT

r Jt = 0 as follows:
(i) Decoupling condition 1

ηTXRX = ηTYRY = −1
2

ηTZRZ = 0 (17)

To facilitate discussion, a simplified diagram with strut 1 and 2 is shown in Figure 2,
where the blue circles denote the MP and the red arrows denote the struts 1 and 2. A line
perpendicular to the symmetry axis OBOP is drawn, and the line intersects OBOP and b1 p1
at Ot1 and q1, respectively. To define the angle σ1, ωp1 − ϕ1 + σ1 = π/2 is employed. The
length of Ot1q1 is rt1 = rp1 cos σ1 = rp1 sin

(
ωp1 − ϕ1

)
. Similarly, the angle and length are

obtained as ωp2 − ϕ2 + σ2 = 3π/2 and rt2 = rp2 cos σ2 = −rp2 sin
(
ωp2 − ϕ2

)
. Then, the

decoupling condition 1 can be derived as follows:

rt1 cos θ1 sin θ1 = rt2 cos θ2 sin θ2. (18)

Both groups of RSSP struts lie on a pair of circular hyperboloids formed by rotating
struts 1 and 2 around the symmetry axis [37]. Hence, rt1 and rt2 denote the throat radiuses
of the hyperboloids, and Ot1 and Ot2 are the two throat centers of the RSSP. In addition, σ1
and σ2 define the angle between the throat radius and the MP radius.

(ii) Decoupling condition 2

ηTXRY = −ηTYRX = 0 (19)

Introduce σ1 and σ2 and then obtain

pz1 sin2 θ1 + pz2 sin2 θ2 = rp1 sin σ1 cos θ1 sin θ1 − rp2 sin σ2 cos θ2 sin θ2. (20)
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2.2.2. Simplification

To simplify the transfer coefficient formulas, let pz1 = pz2 = −zc and θ1 = θ2 = θ
maintain the identical lengths of struts 1 and 2, implying the same throat radiuses from
Equation (18), which is expressed as rt1 = rt2 = rt. The transfer coefficients in GJ are
simplified as follows:
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
ηTX = ηTY = 3 sin2 θ
ηTZ = 6 cos2 θ

ηRX = ηRY = 3 sin2 θ · zc
2 + 3

(
rp1 sin σ1 − rp2 sin σ2

)
cos θ sin θ · zc +

3
2
(
rp1

2 + rp2
2) cos2 θ

ηRZ = 6rt
2 sin2 θ

(21)

The decoupling condition 1 is met as

ηTXRX = ηTYRY = −1
2

ηTZRZ =
3
2

cos θ sin θ(rt1 − rt2) = 0. (22)

In addition, decoupling condition 2 is rewritten as

ηTXRY = −ηTYRX = −3 sin2 θ · zc −
3
2
(
rp1 sin σ1 − rp2 sin σ2

)
cos θ sin θ = 0 (23)

which is fulfilled if and only if one of the following equivalents is ensured as follows:
(i) sin θ = 0
Then, θ = 0, which is a singular pose in which all struts are parallel to the Z-axis;

thereby, sin θ = 0 cannot be satisfied.
(ii) sin θ 6= 0 and sin θ · zc +

1
2
(
rp1 sin σ1 − rp2 sin σ2

)
cos θ = 0

Thus, the decoupling condition is simplified as

z∗c = −1
2
(
rp1 sin σ1 − rp2 sin σ2

)
cot θ. (24)

The following corollaries can be given.

Corollary 1. The decoupling center, C∗P, is at the midpoint of the line connecting the two throat
centers of the RSSP.

Proof. As shown in Figure 2b, a vertical line is drawn through p1, and the horizontal plane
containing Ot1q1 at a1 is intersected. Evidently, triangles ∆Ot1q1a1 and ∆p1a1q1 share the
same side, |q1a1| = rp1 sin σ1, and then |p1a1| = rp1 sin σ1 cot θ. �

Draw the vectors t1 =
(
0, 0,−rp1 sin σ1 cot θ

)T and t2 =
(
0, 0, rp2 sin σ2 cot θ

)T in
Figure 2b (the blue and yellow arrows). The decoupling center coordinates are
C∗P = (0, 0, z∗c )

T = (t1 + t2)/2, which lies at the Ot1Ot2 midpoint.

Corollary 2. The minimum ηRX (or ηRY) is obtained only if the decoupling condition is satisfied
as follows.

Proof. The following equations are involved in Equation (21).

d2 = 3 sin2 θ
d1 = 3

(
rp1 sin σ1 − rp2 sin σ2

)
cos θ sin θ

d0 = 3
2
(
rp1

2 + rp2
2) cos2 θ

It is recognized that the ηRX curve is a parabola, which is expressed as

ηRX = ηRY = d2 · zc
2 + d1 · zc + d0.

The parabolic vertex is z∗c = −d1/(2d2), which is the location of the decoupling center,
C∗P, compared with Equation (24). Here, the minimum is

η∗RX = η∗RY =
4d2d0 − d1

2

4d2
=

3
4

cos2 θ
[
rp1

2
(

1 + cos2 σ1

)
+ rp2

2
(

1 + cos2 σ2

)
+ 2rp1rp2 sin σ1 sin σ2

]
(25)

�
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3. ICN Condition
3.1. Eigenvalues of the Transfer Coefficient Matrix

The eigenvalues of GJ should be derived first to obtain the condition for keep-
ing κ constant when CP moves. From the simplification of the transfer coefficient in
Equations (21)–(23), the general form of GJ can be obtained from the previous analysis
as follows:

GJ =



ηTX ηTXRY
ηTX −ηTXRY

ηTZ
−ηTXRY ηRY

ηTXRY ηRY
ηRZ

 (26)

when zc 6= z∗c , ηTXRY 6= 0, and the characteristic equation is

∣∣λE−GJ
∣∣ = (λ− ηTX −

η2
TXRY

λ− ηRY

)2

(λ− ηRY)
2(λ− ηTZ)(λ− ηRZ) = 0, (27)

where E is a 6 × 6 unit matrix, and the eigenvalues are deduced below as
λ1,2 =

(ηTX+ηRY)+
√
(ηTX−ηRY)

2+4η2
TXRY

2

λ3,4 =
(ηTX+ηRY)−

√
(ηTX−ηRY)

2+4η2
TXRY

2
λ5 = ηTZ
λ6 = ηRZ

(28)

If the decoupling condition is satisfied (zc = z∗c ), the characteristic equation is

(λ− ηTX)
2(λ− η∗RY)

2(λ− ηTZ)(λ− ηRZ) = 0. (29)

The eigenvalues also become 
λ1,2 = ηTX
λ3,4 = η∗RY
λ5 = ηTZ
λ6 = ηRZ

(30)

3.2. ICN Condition

According to Equation (21), zc is not included in the formulas for λ5 and λ6. Thus, the
CN remains constant when CP moves along the Z-axis if the following equation is satisfied:{

λmax = max(λ5, λ6) = max(ηTZ, ηRZ)
λmin = min(λ5, λ6) = min(ηTZ, ηRZ)

(31)

For Equation (28), η2
TXRY ≥ 0, and the following can be obtained when ηTX ≥ ηRY:

λ1,2 ≥ ηTX+ηRY
2 + ηTX−ηRY

2 = ηTX
λ3,4 ≤ ηTX+ηRY

2 − ηTX−ηRY
2 = ηRY

Similarly, when ηTX < ηRY,
λ1,2 ≥ ηRY
λ3,4 ≤ ηTX

.
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Therefore, the lower limit of λ1,2 and the upper limit of λ3,4 are deduced as

λ1,2 ≥ max(ηTX , ηRY)
λ3,4 ≤ min(ηTX , ηRY)

. (32)

According to Corollary 2, ηRY reaches the minimum η∗RY when the decoupling condi-
tion is satisfied. In addition, ηTX remains constant for zc; thus, Equation (31) is satisfied if
one of the following conditions is fulfilled as follows:

(i) ηTZ ≥ max
(
ηTX , η∗RY

)
and min

(
ηTX , η∗RY

)
≥ ηRZ

This condition prescribes ηTZ and ηRZ as the maximum and minimum values, respec-
tively. As expressed in Equation (21), the θ range can be further defined using ηTZ ≥ ηTX .
Note that 0 < θ < π/2. Thus, we obtain

0 < θ ≤ arctan
√

2. (33)

The throat radius is deduced by ηTX ≥ ηRZ:

0 < rt
2 ≤ 1

2
. (34)

Considering that ηTZ ≥ η∗RY and η∗RY ≥ ηRZ,

rt
2
[
(tan σ1 + tan σ2)

2 + 4
]
≤ 8, (35)

(tan σ1 + tan σ2)
2 ≥ 8 tan2 θ − 4. (36)

ICN condition 1 is defined by Equations (33)–(36), providing the relation of the archi-
tecture parameters to make the CN insensitive to zc, and the analytical form of CN can be
found as

κ =
cot θ

rt
. (37)

For Equations (33) and (36), if θ = arctan
√

2, (tan σ1 + tan σ2)
2 = 8 tan2 θ − 4, and the

decoupling condition is satisfied, GJ becomes a specific form, which is expressed as

GJ = diag{ηT , ηT , ηT , ηR, ηR, ηR},

where the transfer coefficients are ηT = 2 = ηTX = ηTY = ηTZ and ηR = ηRX = ηRY = ηRZ.
This property is called kinematic isotropy [38]. Furthermore, a particular case of this
isotropy is shown when the additional conditions for Equations (34) and (35) are met:
rt

2 = 1/2 and rt
2
[
(tan σ1 + tan σ2)

2 + 4
]
= 8, where the transfer coefficients become

identical and equal to 2. The CN reaches the minimum, 1.
(ii) ηRZ ≥ max

(
ηTX , η∗RY

)
and min

(
ηTX , η∗RY

)
≥ ηTZ.

Note that both conditions have the same form; thus, the same derivation of ICN
condition 2 is given as

ηR = ηRX = ηRY = ηRZ


arctan

√
2 ≤ θ < π

2
rt

2 ≥ 1
2

rt
2
[
(tan σ1 + tan σ2)

2 + 4
]
≥ 8

(tan σ1 + tan σ2)
2 ≤ 8 tan2 θ − 4

(38)

Herein, the CN is the inverse of Equation (37):

κ = rt tan θ. (39)



Actuators 2023, 12, 368 10 of 19

This makes an analytical form of the CN possible. Using Equations (37) and (39), the
CN can be the demanded value and is guaranteed to be insensitive to the CP location of
zc by ICN condition 1 or 2. Accordingly, a class of RSSPs with an ICN (ICN-RSSP) can be
designed. Note that ICN conditions 1 and 2 provide different requirements for rt and θ,
determining the MP envelope and the total size of a multi-DOF shaker. Therefore, it is
necessary to select suitable ICN conditions.

3.3. Area of ICN (AICN)

Given the analytical form of the CN, this section derives the feasible domain of
zc, which is called AICN in this study. The AICN can be calculated by solving the
following equation:

λ1,2 = max(λ5, λ6)
λ3,4 = min(λ5, λ6)

.

Since λ1,2 and λ3,4 are quadratic functions of zc, each equation should have two
solutions.

zc1,2 = − rt(tan σ1 − tan σ2)

2 tan θ
± 1

2

√√√√( 2
tan2 θ

− 1
)[

4− rt2 · 4 + (tan σ1 + tan σ2)
2

2

]
, (40)

zc3,4 = − rt(tan σ1 − tan σ2)

2 tan θ
± 1

2

√√√√(1− 2rt2)

[
4 + (tan σ1 + tan σ2)

2

2 tan2 θ
− 4

]
. (41)

Equations (40) and (41) further define the boundaries of the two domains, where the
eigenvalues are equal, and AICN represents the intersection of the two domains. Both
domains share the same midpoint, which is the decoupling center, C∗P, in comparison
with Equation (24). Accordingly, the AICN can be determined using a domain with a
smaller width.

Compare the widths of both domains:

|zc1 − zc2| =

√√√√( 2
tan2 θ

− 1
)[

4− rt2 · 4 + (tan σ1 + tan σ2)
2

2

]
, (42)

and

|zc3 − zc4| =

√√√√(1− 2rt2)

[
4 + (tan σ1 + tan σ2)

2

2 tan2 θ
− 4

]
(43)

For simplification, the squares of the widths are employed to analyze the difference in
the widths, which is expressed as

|zc1 − zc2|2 − |zc3 − zc4|2 =

[
(tan σ1 + tan σ2)

2

2
− 6

](
rt

2 − 1
tan2 θ

)
. (44)

For ICN condition 1, considering κ ≥ 1 and Equation (37), rt
2 − 1/tan2 θ ≤ 0 is

obtained. Similarly, regarding ICN condition 2, rt
2 − 1/tan2 θ ≥ 0. To obtain the AICN,

∆ = (tan σ1 + tan σ2)
2 is calculated first, and then the narrower domain is determined

using Equation (44). Subsequently, the appropriate formula can be selected from Equations
(40) and (41) to analyze the AICN.

The AICN width, WAICN , partly represents the CN insensitivity. A wider AICN also
implies that the CN is less sensitive (i.e., the CN can maintain the desired value over a larger
range of zc). When rt and θ are determined, Equations (42) and (43) become monotonic
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functions of ∆. Thus, only one intersection exists, ∆ = 12, according to Equation (44). The
maximum value of WAICN is calculated as follows:

WAICNm = 2

√(
1− 2r2

t
)( 2

tan2 θ
− 1
)

. (45)

4. Design and Numerical Verification

The preceding derivation provides an analytical method for obtaining an ICN and a
feasible domain that limits error amplification. To investigate and validate the method, an
RSSP was provided for comparison, and a design example was presented and examined.

4.1. RSSP for Comparison

The RSSP for comparison should be decoupled to verify its effectiveness because the
design method is based on decoupling conditions. Therefore, an RSSP with kinematic
isotropy (KI-RSSP) is represented, referring to [26]. The architecture parameters of the
KI-RSSP are listed in Table 1, and the architecture is displayed in Figure 3, where the blue
circles and red lines denote the upper-joint distribution circles on the MP and the struts
(the end points represent the joints), respectively. For a multi-DOF shaker, the MP envelope
determines the payload size to a certain extent; therefore, the MP envelope can be set as a
design constraint. The radius of the MP envelope is re = max

(
rp1, rp2

)
= 335 mm, and the

origin point is set at the center of the MP, whereas the BP (black dashed circles) is−300 mm.
The decoupling center, C∗P (black point), of the KI-RSSP is further located at the origin, and
the CN is κ0 = 5.169.

Table 1. KI-RSSP architecture parameters.

Items Values

MP radius rp1 = 250 mm, rp2 = 335 mm
BP radius rb1 = 135.410 mm, rb2 = 981.950 mm

Upper-joint distribution angle ωp1 = 15◦, ωp2 = −15◦

Lower-joint distribution angle ωb1 = −82.779◦, ωb2 = 2.789◦

Architecture height h = 300 mm
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4.2. Design Example of ICN-RSSP

Although a large MP can provide a large installation area for payloads, the MP
envelope is limited to decreasing the mass of the moving parts and the energy consumption
of the system. Therefore, the MP envelope of the ICN-RSSP should not be larger than that
of the KI-RSSP. It should be noted that the MP envelope radius of the KI-RSSP in Table 1
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is smaller than 707 mm. Therefore, ICN condition 1 is selected to design the ICN-RSSP
according to Equation (34) and is carried out by the following steps:

(i) Choose rt = 250 mm; to make κ smaller than κ0, obtain θ = 39◦ via Equations (33)
and (37): κ = 4.940;

(ii) Calculate the upper and lower limits of ∆ via Equations (35) and (36): 1.246≤ ∆ ≤ 124;
(iii) Choose σ1 and σ2 by designing ωp1, ωp2, ϕ1, and ϕ2, to make ∆ within the limits:

let ωp1 = −ωp2 = 30◦ for simplification, and let ϕ1 = −30◦ and ϕ2 = 100◦ to obtain
∆ =2.006 and make the MP envelope radius (326.352 mm) smaller than that of the KI-RSSP
(335 mm);

(iv) Involve rt, θ, and ∆, and Equation (44) > 0 can be determined. Therefore, the AICN
can be further computed by Equation (41): the midpoint is z∗c = 40.404 mm, and the width
is WAICN = 712.230 mm.

Table 2 and Figure 4 present the architectural parameters and diagrams, respectively.
The decoupling center of the ICN-RSSP can be moved to the required position by adjusting
the AICN midpoint in step (iii), if it is necessary to decouple the system to diminish the
modeling and controlling complexity.

Table 2. ICN-RSSP architecture parameters.

Items Values

MP radius rp1 = 288.675 mm, rp2 = 326.352 mm
BP radius rb1 = 268.740 mm, rb2 = 517.152 mm

Upper-joint distribution angle ωp1 = 30◦, ωp2 = −30◦

Lower-joint distribution angle ωb1 = 81.524◦, ωb2 = −51.091◦

Architecture height h = 300 mm
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4.3. Numerical Verification

Numerical analyses of the KI-RSSP and ICN-RSSP are implemented to validate the
effectiveness of the method. Figure 5a shows the eigenvalues and transfer coefficients
of the KI-RSSP. When zc = z∗c , the minimum values of λ1,2 and the maximum values of
λ3,4 coincide with ηTX and η∗RY, respectively, because of ηTX > η∗RY. From the kinematic
isotropy satisfied by the KI-RSSP at the decoupling center, C∗P, ηTX = ηTY = ηTZ, and
η∗RX = η∗RY = ηRZ can be derived, indicating that the minimum CN occurs at zc = z∗c . In
Figure 5b, there are four intersection points of the eigenvalue curves of the ICN-RSSP that
correspond to the four solutions of Equations (40) and (41). The CN of the ICN-RSSP can be
further maintained in the range between zc3 and zc4 for zc2 < zc3 and zc1 > zc4. Therefore,
the width of the AICN is determined using WAICN = |zc3 − zc4|. The CN curves of the
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KI-RSSP and ICN-RSSP are shown in Figure 6. Compared with the KI-RSSP, the CN of
the ICN-RSSP is constant within the AICN and is smaller than the minimum CN of the
KI-RSSP. Furthermore, the CN of the ICN-RSSP is smaller than that of the KI-RSSP in the
range outside the AICN.
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In real situations, CP is not set exactly on the Z axis of the multi-DOF shaker, causing
the CN to change. The CP deviations from the Z axis are assumed to be xc and yc, and the
rate of change can be defined as

ξc =
|κc − κ0|

κ0
× 100%, (46)

where κc is the CN at (xc, yc, zc)
T , and κ0 is the CN at the decoupling center. Several spatial

scatter points with a constant ξc can be obtained by searching and calculating with the
appropriate steps. A closed surface is further attained by splicing these scattered points,
which is called the iso-ξc surface in this study, to define the space with low CN sensitivity.
The space is equivalent to the AICN when ξc = 0. Let ξc = 1%, and the iso-ξc surfaces are
plotted in Figure 7. The shape of the KI-RSSP is approximately spherical, while that of the
ICN-RSSP approximates a cocoon upright along the Z axis. By computing the volume of
each space by integration, the ICN-RSSP is 16.050 times the KI-RSSP, indicating that the
CN of the ICN-RSSP can increase less than 1% in a larger space. These analysis results
demonstrate that the given method can design and minimize the CN and expand the
low-sensitive space of the CN. Meanwhile, the MP envelope is not increased.
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To demonstrate the effectiveness of reducing the error amplification, let eL and eP be
the actuator and MP error vectors, respectively, and make the modulus of eL constant 1:

eT
LeL = 1. (47)

It is a six-dimensional sphere, and constant 1 denotes the energy of the actuator errors.
From Equations (1) and (47), it can be transformed into a six-dimensional hyper-ellipsoid
equation:

eT
PJTJeP = 1. (48)

Equation (48) can be expanded by integrating Equation (26). To facilitate discussion,
the projections of the hyper-ellipsoid on each 2-DOF plane are displayed in Figure 8a,b,
when zc varies from −1500 mm to 1500 mm. The semi-major axis of each ellipse describes
the maximum error in each diagram, and the maximum error occurs in TX-RY. As CP
moves away from the decoupling center, the TX error intensifies because of the coupling
between TX and RY. Comparing the TX-RY diagrams in Figure 8c,d, the maximum TX
and RY errors of the ICN-RSSP are 69.80% and 66.85%, respectively, of the KI-RSSP. The
hyper-ellipsoid analysis results demonstrate that the proposed method can reduce the
transfer error amplification of the multi-DOF shaker and maintain this advantage in a
larger space for the manipulation center, which is meaningful for multi-DOF shakers to
improve motion accuracy and control performance [21].
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5. Development and Experiment of the Multi-DOF Shaker
5.1. Development of the Multi-DOF Shaker

A multi-DOF shaker prototype is developed based on the architecture parameters of
the ICN-RSSP listed in Table 2. The six struts are configured in line with the architecture
displayed in Figure 9. Each strut contains an actuator, two hook joints (the lower and the
upper joints), and a rod connecting the two joints. The actuator is based on the voice coil
motor. The fixed part of the actuator is fixed to the ground, and the moving part is driven
by the actuation force and can only move along the axis of the fixed part. The lower joint is
a 3-DOF hook joint, connecting the moving part of the actuator and the lower end of the
rod, while the upper joint is a 2-DOF hook, connecting the upper end of the rod and the
MP. Therefore, the multi-DOF shaker includes 13 moving bodies, six translational joints,
six spherical joints, and six universal joints. And the number of DOFs is six, equal to the
number of actuators, which implies that the multi-DOF shaker can be fully controlled by
the six actuators.
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The MP is designed as a regular hexagon with a diameter of 600 mm, and the X and Y
axes are shown in Figure 9. Maintaining the same strut length allows for the same design
of the actuators and joints, reducing the structural design complexity.

Accelerometers are attached to the MP to measure its 6-DOF acceleration of the MP
(or payload) to ensure the accuracy of the desired vibration waveform reproduction. A
real-time controller is adopted to process the sensor signals via the AD card and the signal
amplifier and produce the drive signals through the DA card and the power amplifiers to
control the multi-DOF shaker.

5.2. Experiment Results

A vibration excitation experiment was conducted to validate the effectiveness of the
multi-DOF shaker for vibration waveform reproduction. The total mass of the moving
parts for the vibration excitation experiment, including the MP and payload, was 51.08 kg.
The experimental condition was the swept frequency sinusoidal vibration in RX, RY, and
RZ, with the desired angular velocity amplitude of 5◦/s, because the precise payloads were
more sensitive to rotation errors. The frequency range of the experiment was 5–200 Hz, and
the sweep rate was 1 Hz/s. The controller was further developed and presented in [39]
by using adaptive disturbance cancellation (ADC), which is a typical time-domain control
method for sinusoidal signals.

To evaluate the accuracy, the amplitude ratio and phase difference in the RX, RY, and
RZ measured signals in the frequency domain of 5–200 Hz were calculated, and the results
are shown in Figure 10. The left and right columns show the amplitude–frequency and
phase–frequency curves, respectively. Here, the amplitude and phase errors are smaller
than 10% and 10◦ in the frequency band, except for 104 Hz (111.63%, −2.55◦) and 111 Hz
(83.39%, −3.66◦) in RZ, respectively, which were caused by the local vibration modes. The
waveforms at 104 and 111 Hz are displayed in Figure 11a,b, where the blue lines and red
dashed lines denote the measured signal and the desired signals, respectively. The real-time
sweeping frequency was recorded along with time; thus, time can be replaced by frequency
as the horizontal axis to directly exhibit the waveform at each frequency. The measured
signal agreed well with the desired signal, although there were some amplitude errors
and high-frequency noise. The results demonstrated the effectiveness of the method for
obtaining a highly accurate multi-DOF shaker.
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6. Conclusions

This study provided a new analytical method to design a class of RSSPs with ICN and
used the method for a multi-DOF shaker design to reduce its motion error. Based on RSSP
rotational symmetry, an analytical relationship between the architecture parameters and
transfer coefficients of GJ was established, and the decoupling conditions were deduced.
The transfer coefficients were simplified using the decoupling conditions and the assump-
tion of the iso-length struts. Based on this simplification, the eigenvalues of the GJ were
discussed, and the ICN conditions can be derived. Correspondingly, an analytical form
of the CN was provided. Subsequently, the AICN concept was proposed, and its design
formula was determined. A design example and numerical analysis were carried out to
validate the effectiveness of the method. The numerical calculation results verified the
effectiveness of the method at minimizing the CN and improving its insensitivity. Finally, a
multi-DOF shaker was developed based on the design example, and the multi-DOF vibra-
tion excitation experimental results showed small vibration waveform errors. In addition,
this method can be used to design other parallel robots that require high-precision motion
control, such as a motion simulator [40], parallel machine tools [41] and precise positioning
and pointing devices [42].
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Abbreviations

The following abbreviations are used in this manuscript:

DOF Degree-of-freedom
CN Condition number
ICN Insensitive CN
AICN Area of the ICN
SSP Standard Stewart platform
GSP Generalized Stewart platform
RSSP Rotationally symmetric Stewart platform
KI-RSSP RSSP with kinematic isotropy
ICN-RSSP RSSP with an ICN
MP Mobile plate
BP Base plate
ADC Adaptive disturbance cancellation
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