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Abstract: Depth control is crucial for underwater vehicles, not only to perform certain tasks that
require the vehicle to be still at a given depth but also because most propeller-driven vehicles waste
a considerable amount of energy to counteract the passively tuned positive buoyancy. The use
of a variable buoyancy system (VBS) can effectively address these items, increasing the energetic
efficiency and thus mission length. Achieving accurate depth controllers is, however, a complex task,
since experimental controller development in sea or even in test pools is unpractical and the use of
simulation requires accurate vertical motion models whose parameters might be difficult to obtain or
measure. The development of simple, yet comprehensive, dynamic models for devices incorporating
VBS is therefore of upmost importance, as well as developing procedures that allow a simple
determination of their parameters. This work contributes to this field by deriving a unified model
for the vertical motion of a VBS actuated device, irrespective of the specific technological actuation
solution employed, whether it be electromechanical or electrohydraulic. A concise analysis of the
open-loop stability of the unified model is presented and a straightforward yet efficient procedure for
identifying several of its parameters is introduced. This identification procedure is designed to be
convenient and can be carried out in shallow waters, such as test pools, while its results are applicable
to the deeper water model as well. To validate the procedure, experimental values obtained from
an electromechanical VBS actuated device are used. Closed-loop control of the electromechanical
VBS actuated device is conducted through simulation and experimental tests. The results confirm the
effectiveness of the proposed unified model and the parameter identification methodology.

Keywords: autonomous underwater vehicles; variable buoyancy systems; energetic efficiency

1. Introduction

In recent decades, ocean monitoring and exploration have become increasingly vital,
driven by a combination of scientific and economic factors. This improved significance has
underscored the demand for enhanced precision and durability in equipment, enabling
a sustained human presence in marine environments. The advancement of submersible
vehicles stands out as a prominent trend in this domain, offering superior survivability
compared to their surface counterparts. Furthermore, economic interests are driving the
development of submersible vehicles since it is estimated that there are significant mineral
resources at the bottom of the sea [1,2]. Although the majority of commercial unmanned
underwater robots are connected with tethers and operated remotely (the remotely operated
vehicles, ROV), their application is restricted due to substantial operational expenses,
among other factors [1]. Given the scenario described above and the limitations of ROV,
there is an increasing demand for cutting-edge underwater autonomous robot technologies.
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Research in this field has been rich with different studies addressing the vehicle
structure [3], namely by incorporating shape-optimized and bio-mimetic components to
decrease drag and increase the energetic efficiency [4–7]. A relevant issue in this field is the
difficulty found in underwater communications. Recent trends [3] are the use of wireless
optical communication [8,9] and hybrid acoustic and RF communication [10]. Navigation
and control are also important topics of research in this area. Current developments in
navigation and motion planning include neural networks, computer vision and image
recognition to develop less expensive object detection, obstacle avoidance [11] and visual
odometry systems [12,13]. Present day advancements in vehicle control include the use of
sliding mode [14], fuzzy [15] and neural network [16,17] controllers to cope with the highly
nonlinear behavior of the vehicle dynamics.

Variable buoyancy systems (VBS) play a crucial role in developing the functionality
and efficiency of underwater robotics [18,19]. By adjusting their buoyancy, these systems
enable underwater vehicles to control their depth in water, mimicking the natural behavior
of marine creatures. This capability is particularly significant in various applications such
as marine exploration, underwater inspections and environmental monitoring. By utilizing
variable buoyancy, underwater robots can achieve precise positioning and stabilization,
enabling them to navigate complex underwater environments with ease.

Another important aspect is the conservation of energy and extended operational
endurance. By utilizing variable buoyancy devices, underwater vehicles may minimize
energy expenditure when moving through water or when remaining stationary for long
periods [20], therefore conserving battery life, and thus extending their operational duration.
This is especially valuable in scientific research or exploration missions where prolonged
periods of data collection or monitoring are necessary.

In order to take advantage of the benefits that a variable buoyancy system may
provide, a suitable controller should be devised. The controller might be tuned to increase
performance, whenever the task requires accurate depth control, like for instance when
performing underwater filming tasks [21] or detecting seismic ocean waves [22], or on
energy saving, whenever the goal is to extend the mission duration, like for instance in
tasks requiring the inspection of long-distance water tunnels [23]. Despite the particular
focus of the control task, an accurate dynamic model of the system is of upmost importance
to develop the controller. In fact, experimentally developing controllers is challenging
and often impractical due to the high costs and time required for conducting pool tests or
sea trials. Although several studies in the literature present experimental and simulation
results of depth control in vehicles using buoyancy change devices [22,24–28], the accuracy
of the model, namely for depth control purposes, is usually discarded. For instance,
in [22], the model of an electrohydraulic VBS vertical motion is developed and used to
synthesize several linear and nonlinear controllers. However, no experimental validation
of the model is provided. In [24], the vertical motion model of an electromechanical VBS is
modelled and used in simulation to tune a PD controller. Once again, no direct experimental
validation of the model is presented. In [25], the mathematical dynamic model for a deep-
sea electrohydraulic buoy is established, accounting for the pressure hull deformation
and the current disturbances on the vertical motion. A finite-time boundedness (FTB)
depth control strategy is then developed and simulated on the proposed model of the
buoy. Although sea experimental closed-loop control results are presented, there appears
to be a considerable difference between the results predicted with the model and the ones
obtained experimentally. In [26], depth controllers for the vertical motion of a variable
buoyancy module are developed. The controllers are developed based on a complete model
of the system comprehending actuator dynamics and vertical motion dynamics. Although
the authors of [26] state that the model parameters were determined through rigorous
experimentation, no presentation of such experimental procedures is provided and no
experimental validation of the model is presented. In [27], the vertical motion model of
a low-cost autonomous profiling float, able to dive up to 50 m, is developed and used to
devise a state-feedback depth controller. The model does not include actuator dynamics.
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Since some of the model parameters are hard to determine, an Extended Kalman Filter is
used to estimate some of the model parameters. Experimental results show accurate control
performance, but once again no comparison between model simulation and experimental
results is provided.

As can be seen from the description above, many works in the literature use the
vertical motion model of a VBS to develop the controller in simulation, but there is not any
comparison between the experimental and simulated results. A notable exception may be
found in [28], where an electromechanical actuated VBS is developed for incorporation in a
hybrid aerial underwater vehicle. In this work, a complete motion 3D model is developed,
and the pitch angle and heave velocity simulation results obtained in closed-loop control
using a PID controller are compared against the ones obtained in lake experiments. The
model does not comprehend, however, the actuator dynamics, and there is no experimental
procedure to determine the model parameters. This is of particular importance given that
the vertical motion requires many parameters that might be difficult to experimentally
determine or to obtain from manufacturer’s datasheets. Although an observer could be
used to estimate such parameters, following a strategy similar to the one in [27], such a
strategy involves more computing power and complexity of the control law.

This paper is an evolution of a previous work by the authors [29] where the dynamic
model of an electromechanical actuated VBS model was devised and experimentally iden-
tified. The main novel contributions of this paper are the following: (i) it is shown that a
unified model for the vertical motion of a VBS can be found, regardless of the technological
actuation solution used, electromechanical or electrohydraulic. The focus is exclusively on
the vertical motion component, assuming that the device is either a float without pitch and
roll characteristics or that these variables are managed with other vehicle actuators; (ii) the
open-loop stability of the unified model is briefly analyzed and a simple, yet effective,
procedure to identify several of the unified model parameters is proposed. For convenience,
this procedure was designed to be performed in shallow waters (for example, in test pools),
although its results are appliable to the deeper water model; (iii) the procedure is validated
through experimental values obtained using an electromechanical VBS; and (iv) closed-loop
control of an electromechanical VBS is performed both in simulation and experimentally.
Results validate the proposed unified model and the parameter identification methodology.

The paper is organized as follows: Section 2 presents the dynamic model of the vertical
motion of a VBS actuated device. This section starts by presenting the detailed actuation
models for the motor in Section 2.1.1 and electrohydraulic and electromechanical solutions
in Sections 2.1.2 and 2.1.3, respectively. Then, in Section 2.1.4, a unified actuation model is
presented. The model presented in Section 2.1.4 is combined with the submerged device
dynamics leading to the overall vertical motion model in Section 2.2. The model devised
in Section 2.2 is then simplified in Section 2.3 to be able to determine its parameters in a
shallow water experimental procedure. In Section 2.4, the model determined in Section 2.2
is rewritten as a function of the parameters determined in Section 3.1. Section 2.5 presents
a concise analysis of the open-loop stability of the model presented in Section 2.4. Section 3
presents the experimental results obtained in the model identification procedure, as well as
the ones obtained in closed-loop control. A comparison between these results and the ones
obtained in simulation is also provided.

2. Dynamic Model of the Vertical Motion of a VBS Actuated Device
2.1. Actuation System Model

As presented in Section 1, many solutions to implement the actuator element of
a VBS can be found in the literature. However, the majority of them are either (a) an
electrohydraulic solution, consisting of a motor driving a pump inserting/retrieving a
nearly incompressible fluid in/from a flexible volume or (b) an electromechanical solution,
consisting of a linear actuator pushing/retracting a piston. These two solutions can be
described with the scheme presented in Figure 1, where the hydraulic transmission is a
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pump, the mechanical transmission is typically a gearbox and a spindle and the mechanical
converter is a bladder or a piston.
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2.1.1. Motor Model

In this work, it will be assumed that the motor driving either the electromechanical or
electrohydraulic solutions is a voltage-driven permanent magnet DC motor, for which the
model presented in Figure 2 applies [30]:
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In Figure 2, R is the coils’ resistance, L is the coils’ inductance, kT is the current to
torque gain, kemf is the back electromotive force gain, Jm is the inertia of the rotor, Bm
is a coefficient describing the torque losses proportional to motor velocity, Tb is a torque
representing losses due to motor viscous friction, brushes’ friction and eddy currents, Tem
is the motor torque, Tz is an external torque and

.
ω, ω and θ are the motor acceleration,

velocity and angular position, respectively.
Since the electrical dynamics are much faster than the mechanical dynamics of the

motor, they will be neglected in this work. In this case, the model reduces to the following
model, presented in Figure 3:
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Where ku = kT/R, relating the applied voltage with the stall torque Ts, kvm =
Bm + kem f kT/R and Tvm is the total torque decrease with velocity.

2.1.2. Electrohydraulic Solution Model

The typical electrohydraulic circuit used in VBS comprehends a motor driving a pump
and a piston or bladder, with possibly a pressure amplifier, as depicted in Figure 4. The
amplifier has a gain of nh = A1/A2, where nh can generically be higher or lower than
one and A1 and A2 are the areas defined in Figure 4. It is typically desired that the pump
operating pressure is lower than the sea pressure, so that nh = A1/A2 > 1.
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Hydraulic valves are omitted from this circuit as it is assumed that they do not impose
significant pressure drops.

Using the mass conservation principle, the pressure evolution inside the oil chamber
can be written as follows [31]:

Voil
βe(poil)

dpoil
dt

+
dVoil

dt
= Q (1)

where Q is the volumetric flow from/to the pump, Voil is the volume of the chamber
connected to the pump and βe(poil) is the oil effective isothermal bulk modulus (account-
ing for trapped air). For a mineral oil at 5 MPa, the bulk modulus is approximately
1.5 × 109 Pa [32]. For this example, the relative variation of volume dVoil/Voil for a pressure
variation, dpoil , of 10 MPa (corresponding to a working depth of 1000 m) would be very
small, as shown below:

dVoil
Voil

= − 1
βe(poil)

dpoil =
1

1.5 × 109 10 × 106 = 0.6% (2)

Based on the assumption that the oil is essentially incompressible, the inertia of the
hydraulic transmission and of the pressure amplifier/reducer may be lumped into the
inertia of the motor whose model is depicted in Figure 3. By doing so, the model of the
electrohydraulic actuation system can be represented as in the block diagram of Figure 5.

In the diagram of Figure 5, ω is the motor speed, Tz is the torque the motor has to
surpass due to the increase in pressure with depth, Jh is the inertia of the motor plus the
reflected inertia on the motor of the pump, moving oil, piston and added mass of the
displaced water, kvh is a parameter equal to the sum of kvm with a term representing pump
and piping viscous friction, V is the volume displaced using the piston or bladder and
kb is a constant relating the change in buoyancy force Fb with the change in the volume
(assuming that water density ρ is essentially constant). Also, the leakage-caused volume
change

.
V l can be written as

.
V l = Ql/nh (3)
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where Ql is the leakage flow of the pump, assumed to be proportional using the factor kpl
to the pump operating pressure:

Ql = kpl
ρgz
nh

(4)

.
V l can therefore be written as

.
V l = klz (5)

where kl is the leakage coefficient defined with

kl =
kplρg

n2
h

(6)

In the diagram of Figure 5, the influence of the depth on the motor torque, denoted
with Tz, is characterized using the factor kzh, which can be written as

kzh =
ρg

2πηpnh
Dp (7)

where Dp is the pump displacement, ηp is the mechanical efficiency of the pump and nh is
the ratio between areas defined above.

Finally, kqh can be written as

kqh = Dp/(2πnh) (8)
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2.1.3. Electromechanical Solution Model

A typical electromechanical solution comprehends an electrical motor, a mechanical
reducer and a spindle, as depicted in Figure 6.
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In this case, since the mechanical transmission stiffness is very high, the moving
masses of both the mechanical reducer and the piston can be lumped into the electrical
motor inertia, leading to the block diagram of Figure 7.
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Where Je is the inertia of the motor plus the reflected inertia on the motor of the
mechanical reducer, spindle, piston and added mass of the displaced water, kve is a pa-
rameter equal to the sum of kvm with a term representing mechanical transmission viscous
friction, kze = ρgA α

2πηe
is a constant accounting for the transmission ratio between the force

exerted with the outside pressure and the corresponding torque caused on the motor, ηe
is the transmission efficiency, A is the area of the piston in contact with sea water, α is the
transmission pitch and kqe =

α
2π A. All other remaining variables are defined as in Figure 5.

2.1.4. Unified Model for the Actuation System of the VBS

Comparing the block diagrams of Figures 5 and 7, it is possible to check that in both
cases, there is a second-order, type-one transfer function between the voltage applied to the
motor and the buoyancy change. The model of the actuator part of the VBS can therefore
be defined generically as in Figure 8:
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Where the several constants and variables are resumed in Table 1.
For the block diagram presented in Figure 8, the transfer function between the control

action U(s) and the volume V(s) is given with

V(s) =
kukq/kv

s
(

λ
kv

s + 1
)U(s)−

λkl/kvs +
(
kl + kqkz/kv

)
s
(

λ
kv

s + 1
) Z(s) (9)

It is clear from the analysis of transfer function (9). that the volume of the piston is
affected by the depth at which the VBS is. This means that if the controller of V(s) is not
able to fully reject the disturbance caused by Z(s), the depth of the VBS will affect, with a
negative sign, V(s). As it will be seen in the next section, this means that if the controller is
not able to fully reject Z(s), then positive feedback will occur, making the system unstable.
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Table 1. Constants and variables of Figure 8.

Constant/Variable (a) Electrohydraulic Solution (b) Electromechanical Solution

u Voltage applied to the motor

Ts Stall torque of the motor

Tz Torque caused on the motor with the increase in vehicle depth

Tv Torque losses proportional to motor speed

λ

Inertia of the motor plus the
reflected inertia on the motor of the

pump, moving oil, piston and
added mass of the displaced water

Inertia of the motor plus the reflected
inertia on the motor of mechanical
reducer, spindle, piston and added

mass of the displaced water

ku Constant relating the control action u and motor stall torque

kb Constant relating V and the buoyancy force Fb

kv Constant relating ω and Tv

kl kl =
kpl ρg

n2
h

0

kq kqh = Dp/(2πnh) kqe =
α

2π A

kz kzh =
ρg

2πηpnh
Dp kze = ρgA α

2πηe

V Volume of the piston

ω Motor velocity

2.2. Overall Vertical Motion Model of the VBS Actuated Device

In this work, it will be assumed that the device is either a float, for which pitch
and roll do not exist, or that these variables are controlled with other vehicle actuators.
Consequently, the free body diagram of a buoyancy change device with overall structure
and added masses m can be represented schematically as in Figure 9. Two of the forces
appearing in this diagram have the same value and opposite signs: the forces Fw, due to
the weight of the vehicle, and Fb0, the buoyancy force caused by the immersed volume at
its equilibrium position (which is trimmed to compensate for the vehicle weight). Fb is
the buoyancy force caused by changing the immersed volume and Fd, the hydrodynamic
drag force, assumed to be proportional to the square of the vehicle velocity [25]. Finally,
Fde f is the buoyancy force caused by the relative variation of the vehicle hull and sea water
volumes with pressure, which can be written as Fde f = kde f z [27].
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Applying Newton’s second law to the VBS device, according to Figure 9, leads to the
following equation, where z denotes the prototype depth:

m
..
z = −Fb + Fde f − Fd

( .
z
)

(10)



Actuators 2023, 12, 380 9 of 19

By considering Equation (10) and the ones resulting from the block diagram of Figure 8,
Equations (11)–(13) can be found. Equations (11) and (12) derive directly from the block
diagram of Figure 8 and Equation (13) can be obtained by rewriting Equation (10) using the
definitions of Fb and Fde f previously presented at the beginning of this section. The block
diagram corresponding to these equations is detailed in Figure 10.

.
ω =

1
λ
(kuu − kvω − kzz) (11)

.
V = kqω − klz (12)

..
z =

1
m

(
−kbV + kde f z − Fd

( .
z
))

(13)
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Equations (11) and (12) can be further collapsed into Equation (14), leading to the
following model:

..
V = − kv

λ

.
V − kl

.
z −

(
klkv

λ
+

kqkz

λ

)
z +

kukq

λ
u (14)

..
z =

1
m

(
−kbV + kde f z − Fd

( .
z
))

(15)
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where Fd
( .
z
)

is the drag force defined as

Fd
( .
z
)
=

{
kdt

.
z
∣∣ .
z
∣∣ i f

.
z > ε

kdl
.
z i f

.
z ≤ ε

(16)

where ε is a parameter defining the transition between laminar and turbulent flow regimes,
characterized, respectively, with kdl and kdt. From a control perspective, it is interesting to
have a linearized model around an equilibrium point corresponding to small vehicle vertical
velocities. In this case, the flow regime is laminar, so that Equations (17) and (18) apply:

δ
..
V = − kv

λ
δ

.
V − klδ

.
z −

(
klkv

λ
+

kqkz

λ

)
δz +

kukq

λ
δu (17)

δ
..
z =

1
m

(
−kbδV + kde f δz − kdlδ

.
z
)

(18)

Applying the Laplace transform to Equations (17) and (18), transfer functions (19)
and (20) can be found, where, as expected, transfer function (19) is similar to transfer
function (9) as they both represent the actuator dynamics:

V(s) =
kukq/kv

s
(

λ
kv

s + 1
)U(s)−

(
λkl/kvs +

(
kl + kqkz/kv

))
s
(

λ
kv

s + 1
) Z(s) (19)

Z(s) =
−kb/kde f

m
kde f

s2 + kdl
kde f

s − 1
V(s) (20)

2.3. Simplified Model for Parameter Identification in Shallow Water

In order to fully know the model represented in Equations (19) and (20), a total of
nine parameters is required. Some of those parameters might be difficult to determine
because they are not directly measurable and/or the manufacturer does not provide their
values. In this section, the model presented in Equations (19) and (20) will be rewritten
so that a simple experimental procedure to determine its parameters can be derived. This
procedure is meant to be used, for convenience, in shallow waters, although the parameters
determined from it are still valid for the deeper water model. This procedure is based
on rewriting the model as two first-order transfer functions, one between U(s) and V(s)
and one between V(s) and Z(s). As will be presented in the following, this allows four
of the model parameters to be directly estimated with simple shallow water experiments.
The remaining five parameters can be either measured, retrieved from the manufacturer’s
datasheets or estimated using basic physics laws.

For shallow waters, the values of Tz and
.

V l can be neglected, since the value of z is
low. Applying this simplification to the block diagram of Figure 10 leads to the following
transfer function between U(s) and V(s):

V(s)s =
kukq
kv

λ
kv

s + 1
U(s) (21)

The transfer function (21) can be rewritten as

V(s)s
A

=
K1

Ts + 1
U(s) (22)

where
kq

ku

kv
= K1 A (23)
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and
λ

kv
= T1 (24)

Using the same reasoning as above, for shallow waters, the force Fde f can be neglected
in the block diagram of Figure 10. The transfer function between V(s) and Z(s) in this
situation simplifies to

Z(s)s =
− kb

kdl
m
kdl

s + 1
V(s) (25)

The transfer function (25) can be rewritten as

Z(s)s =
−K2

T2s + 1
V(s) (26)

or
Z(s) =

−K2

s(T2s + 1)
V(s) (27)

where
kb
kdl

= K2 (28)

m
kdl

= T2 (29)

2.4. Overall Vertical Motion Model with Identification Parameters

The parameters of the model determined in the previous section can be identified at
low depths. However, for control purposes, for instance, it is useful to have a model that is
valid at any depth. Rewriting Equation (20) using the coefficients defined in the previous
section leads to Equation (30).

Z(s) =
−K2

T2s2 + s − kde f /kdl
V(s) (30)

In Equation (30), kdl = kb
K2

= ρg
K2

from Equation (28) and kde f can be written as
follows [27]:

kde f = ρgψ (31)

where ψ (m3/m) is a parameter expressing the loss of volume per meter depth due to the
relative variation of volume of the prototype’s structure compared to the comparable one
of water, under the same pressure. Using this information, (30) can be further written as

Z(s) =
−K2

T2s2 + s − ψK2
V(s) (32)

Rewriting Equation (19) using the coefficients determined in the previous section leads
to Equation (33):

V(s) =
K1 A

s(T1s + 1)
(U(s)− kz/kuZ(s))− kl

s
Z(s) (33)

2.5. Open-Loop Stability Analysis

Combining Equations (32) and (33) leads to the open-loop transfer function between
the applied voltage and the VBS depth:

Z(s) =
−K1K2 A

T1T2s4 + (T1 + T2)s3 + (1 − ψK2T1)s2 − (ψ + klT1)K2s − K2(K1 Akz/ku + kl)
U(s) (34)
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According to the Routh [33] criterion, the open-loop system is unstable. In fact, given
that all parameters of the transfer function are positive, at least two of the coefficients of
the characteristic equation are negative.

One interesting conclusion that can be made from the analysis of transfer function (34)
is that, contrary to what has been described in the literature, even if ψ is negative, which
happens whenever the effect of the increase in water density with pressure is higher than
the decrease in volume of the VBS device due to pressure, the system remains unstable due
to kz and kl .

An interesting case occurs when considering that

1. kl ≈ 0, which is expected in the electromechanical solution, and might be acceptable
if a high volumetric efficient pump is used in the electrohydraulic solution;

2. ψ ≈ 0, by assuming that the device structure compressibility is exactly counterbal-
anced with the increase in water density with pressure;

3. kz ≈ 0, by assuming that the outside pressure does not influence the velocity and posi-
tion of the actuator (for instance, if the controller is able to fully reject the disturbance
caused by the VBS depth in Equation (33)).

Under these circumstances, the system model can be written as

Z(s) =
−K1K2 A

s2(T1T2s2 + (T1 + T2)s + 1)
U(s) (35)

Equation (35) shows that the system becomes a fourth-order type-two system. It is
still, however, an unstable system, since its phase margin is negative.

3. Experimental Results

The prototype used for the experimental results presented in this section is presented
in Figure 11.
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It is a prototype of an electromechanical VBS capable of diving up to 100 m and with a
maximum volume change of ±350 cm3. Its full length is 1285 mm with an outer radius of
200 mm. The prototype displaced volume is Vp = 0.0275 m3 when the movable piston is at
its central position. Its dry weight is 33 kg, so approximately 5.5 dm3 of extra floatation
was added to make the prototype neutrally buoyant at that equilibrium situation. More
details on the VBS and its control unit can be found in [29].

3.1. Model Identification Results

The steady state values and time constants of transfer functions (22) and (26) can
be estimated using two simple experiments that can be performed in shallow waters:
in order to identify the parameters of (22), the VBS is actuated with different voltage
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steps, corresponding to different steady state velocities of the piston motion. Voltages and
velocities (estimated using centered finite differences applied, in post processing, to the
piston displacement sensor data) are registered so that the parameters of (22) are identified.
This procedure was presented in detail in [29], for an electromechanical VBS, leading to the
following results: K1 = 0.444 mm·s−1·V−1 and T1 = 0.09 s.

In order to identify the parameters of (26), the variable volume of the VBS is changed
to different values around the one corresponding to neutral buoyancy, so that different
terminal velocities of the prototype are achieved. Imposed volumes and vehicle depth
velocities are registered so that the parameters of (26) are identified. In order to be able to
do this in shallow waters while ensuring that the identification steps start from a neutral
buoyancy situation, the following procedure is developed in this work:

a. Starting from the bottom, and using closed-loop control, control the depth of the
vehicle until it reaches nearly zero velocity around z = zmax −∆z m, where ∆z should
be conveniently chosen, according to the vehicle length, in order to ensure that it is
neither touching the bottom nor partially emerged (see step (d) below). When this
happens, the vehicle is at its zero-buoyancy setting. Please notice that the dynamic
and steady state closed-loop characteristics obtained with the controller used at this
stage (and at stage (c)) are essentially irrelevant, as the only purpose is to make the
vehicle reach a nearly zero velocity. For this reason, the controller to be used in this
step can have a coarse tuning;

b. Stop closed-loop control, and increase the buoyancy by a factor of ∆V . In the par-
ticular case of the prototype presented in Figure 11, this is equivalent to increasing
the piston position by a constant value ∆x. This was made in an open loop, by using
the information provided by the manufacturer regarding the steady state relation
between applied voltage and actuator speed. Having that information, the time that
a given voltage should be applied to reach a desired position can be easily calculated.
Wait until the vehicle reaches the bottom while recording the value of its depth z;

c. Using closed-loop control, control the depth of the vehicle until it reaches nearly zero
velocity around z = ∆z. When this happens, the vehicle is at its zero buoyancy setting;

d. Stop closed-loop control, and decrease the buoyancy by a factor of ∆V . Again, in
the particular case of the prototype presented in Figure 11, this is equivalent to
decreasing the piston position by a constant value, ∆x. Wait until the vehicle reaches
the bottom, while recording the value of its depth z.

The procedure outlined above was used to identify the parameters of Equation (26) for
the prototype presented in Figure 11. The procedure was run four times, corresponding to
eight experiments, each with a different value of ∆x, ±≈2.5 mm, ±≈4 mm, ±≈6 mm and
±≈10 mm, corresponding to the following values of ∆V : ±≈20 cm3, ±≈30 cm3, ±≈45 cm3

and ±≈75 cm3. Results of the evolution of the depth z are presented in Figure 12, along
with the identification of steps (a) to (d) presented above for the first run.

Results of the piston position X, depth Z and depth velocity dZ/dt from steps (b) and
(d) were then used to identify open-loop transfer function (26), from V (= A × X) to Z and
(21) from V to dZ/dt. The average parameters obtained are presented in Table 2. These
parameters are very close, validating the proposed approach. Using the average values
of Table 2 for each parameter, the measured and predicted values for dZ/dt and for Z are
presented in Figures 13 and 14, respectively, for each experiment.

Table 2. Model identification results for depth and depth velocity.

Transfer Function K (ms−1m−3) T (s)

(26) −7935.54 36.3
(27) −7634.95 35.7
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3.2. Control Results

The model presented in Equations (32) and (33), with the parameters identified in the
previous section, was used to tune a cascaded controller, according to the block diagram
presented in Figure 15.

Regarding Equation (33), K1 and T1 were identified in [29], kz/ku = 7.707·10−2 V/m
for the prototype considered in this work and kl = 0.

Regarding Equation (32), the parameter ψ was estimated by considering that there is
a loss of volume at a 100 m depth of 1% of the original prototype volume Vp due to hull
compression. In this case, ψ = 0.01Vp/100 = 4.04× 10−6 m3/m. K2 and T2 of Equation (32)
are found in Section 3.1.
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In this work, a proportional controller is used for CV , while a PID controller is used
for Cz. The controller parameters for the vehicle dynamics were heuristically tuned using
the Matlab PID tuner toolbox. The controller was tuned to have a slightly underdamped
behaviour, in order to avoid excessive oscillations that might cause energy waste. The
controller that was obtained was implemented in the Arduino controlling the DFC actuator,
running at a sampling period of Sp = 0.3 s, according to Equations (36) and (37). Table 3
resumes the parameters that were used at the experimental trials.

U(k) = kpze(k) +
kdz(e(k)− e(k − 1))

Sp
+ Ui(k) (36)

Ui(k) = Ui(k − 1) + kizSpe(k − 1) (37)

Table 3. Controller parameters used at the experimental trials.

CV CZ

kp 1002 (V × dm−3) −0.1043 (dm3 × m−1)
ki −7.486 × 10−4 (dm3 × s−1 × m−1)
kd −2.341 (dm3 × s × m−1)

In order to test the performance of the actuator and validate the model presented in the
previous sections, a series of experimental trials was performed in a 4.5 m depth pool. These
trials consisted of a series of steps between different depths as shown in Figure 16. This
figure shows not only the experimental evolution of depth of the VBS actuated device but
also the one predicted with the model developed in Section 2.4. As can be seen, the overall
prediction is very good, although a slight tendency to predict lower overshoots, especially
in ascending steps, can be noticed. Finally, a longer trial was performed (Figure 17), to
show that the device converges to the target depth with a neglectable error.
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4. Conclusions and Future Work

This paper presented the model of the vertical motion of a variable buoyancy actuated
device. Starting from the derivation of the models for electrohydraulic and electromechan-
ical solutions, a unified model, independent of the actuation technology, was proposed.
This model was then rewritten in a simplified way so that its parameters can be directly
estimated with simple shallow water experiments. An experimental procedure for such
experiments was proposed and tested. This procedure may be applied, for convenience,
in shallow waters, although the identified parameters are also usable in the model that is
valid for deeper waters. Both the modelling approach and the identification procedure
were experimentally validated using an electromechanical actuated VBS, previously de-
veloped by the authors. In fact, experimental results show that the closed-loop model
predictions match the measured ones with good accuracy. Future work will focus on (i) the
development of a thruster actuated device, to obtain an experimental energetic comparison
between the use of thrusters and the use of a VBS, (ii) a theoretical analysis of the closed-
loop stability and (iii) development of a prototype for deeper waters (1000 m), allowing the
experimental validation of the models developed in this work for greater depths.
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