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Abstract: In this paper, an adaptive technology and the interconnection and damping assignment
passivity-based control method are combined to solve the stabilization problem for underactuated
mechanical systems with uncertainties (including matched and unmatched). These uncertainties
include unknown friction coefficients and unknown terms in kinetic energy and potential energy. A
novel adaptive interconnection and damping assignment passivity-based control scheme is proposed
and an adaptive stabilization controller is designed to make the closed-loop system locally stable.
Verification is conducted on the ball and beam system. The locally asymptotic stability is demon-
strated using the LaSalle’s invariance principle and approximate linearization. The effectiveness of
the proposed control law is verified through numerical simulations.

Keywords: underactuated mechanical systems; adaptive control; IDA-PBC; the ball and beam system

1. Introduction

The port-controlled Hamiltonian (PCH) model, which is regarded as another alterna-
tive model for the Euler–Lagrange model, is widely used to describe dynamic equations
for nonlinear systems. The system described by the PCH structure has many advantages:
a number of natural physical systems are covered, and significant structural properties
are preserved. The independent control quantity of the system is less than its degree
of freedom to be controlled, and a system with this property is called an underactuated
system [1], and its dynamics are usually nonlinear, which is of significant difficulty to
control. One of the effective technologies used to control underactuated physical systems is
interconnection and damping assignment passivity-based control (IDA-PBC) [2], which
has been resoundingly used to solve the stabilization problems of various underactuated
systems described by the PCH framework. Moreover, this technology has been extensively
used in induction machines [3], power converters [4], flexible spacecrafts [5], aircrafts [6]
and so on.

However, one of the main shortcomings of the IDA-PBC method is that a set of
partial differential equations (PDEs) need to be solved. In order to simplify this problem,
outstanding contributions have been made by a large number of researchers. For instance,
in [7], by parameterizing the expected inertia matrix, the potential PDE was enormously
simplified, and this approach was extended to separable and nonseparable PCH systems.
In order to ensure the solvability of PDEs, some conditions were added to the expected
structure matrices, Jd and Rd, which were allowed to depend on the control input [8].
The good performance of this technique was demonstrated by the well-known boost power
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converter. In addition, some constructive solutions were also proposed to simplify PDEs of
underactuated mechanical systems (UMSs) in [6,9–11].

Many theoretical extensions and practical research on the IDA-PBC approach have
been reported in the literature. In [12], two design methods of IDA-PBC were proposed in
view of the existence of physical damping in the Hamiltonian frame. By combining the data
sampling method with IDA-PBC, a sampling data controller [13] was designed, and the
target dynamics was stabilized to the equilibrium point. In order to tolerate the limitation
of actuator faults, the IDA-PBC method with fault tolerance was improved in [14], and a
high-gain adaptive IDA-PBC scheme was proposed. The effectiveness of the improved
control law was verified by the experiment of a hexarotor UAV.

Furthermore, the robustness of IDA-PBC strategies to disturbances has also been a
hot topic in recent years. As reported in [15], an outer-loop controller was designed to
solve the matched disturbance suppression problem of UMSs. In [16,17], a new IDA-PBC
law was constructed by combining a model reference adaptive control method with IDA-
PBC, which could more effectively compensate for disturbances compared to the standard
IDA-PBC in [2]. In [18,19], a method of adding integral effects to IDA-PBC was presented
for a kind of UMS with constant disturbances. In order to solve the problem of matched
and unmatched disturbance suppression, specific coordinate changes were added to the
damping term in [20]. Ref. [21] proposed a novel IDA-PBC scheme for a quadrotor aircraft
based on a filter observer that could deal with the output measurement of large noise signals
and uncertainties in the translation and rotation dynamics. The simulation results of the
quadrotor aircraft showed that the sensitivity of the noise measurement was significantly
improved and the steady-state error was reduced. As far as UMSs are concerned, external
interference is also abundant, which cannot be ignored during system modeling. In [22],
the IDA-PBC approach was applied to an inertial wheel inverted pendulum, and the
results showed that it had good robustness to external interference. Due to the change
in parachute mass and the existence of wind, ref. [23] proposed two control algorithms
for an unmanned powered parachute aircraft based on PBC. The numerical simulation
showed that the IDA-PBC algorithm based on the Hamiltonian function was unaffected
by the parachute mass change and wind speed. In [24], a novel robust state error IDA-
PBC algorithm was developed for unmanned surface vessels. Through the combination
of a reduced-order extended state observer, the state error IDA-PBC technology and the
auxiliary dynamic system, the tracking performance was improved and the system’s energy
consumption was reduced. Simulations showed that the proposed control strategy ensured
the asymptotic stability of the system’s signals. Considering that the inertia matrix depends
on non-actuated coordinates for underactuated systems, an integral effect with specific
coordinate transformations was added to the outer-loop of the IDA-PBC scheme in [25].
The designed control scheme was applied to a UAV, which proved its effectiveness. In
addition, the influence of viscous friction was studied by using the controlled Lagrangian
method [26], and the closed-loop system was more stable. In [27], the IDA-PBC strategy
was used to analyze continuous friction.

A well-known UMS is the ball and beam system. It is composed of a beam that can
rotate along the horizontal axis and a ball that lies on the beam. The control goal is to
make the ball reach the equilibrium position from any initial position at any initial speed by
applying torque to the beam. There are many existing modeling and control methods for
the ball and beam system. In both [28,29], the Euler–Lagrange method was used to model
a ball and beam system. In [29], the equations of the ball and beam system in [28] were
scaled according to time and torque. In the past few years, more and more new control
methods have been used to control a ball and beam system, such as fuzzy logic, neural
networks, robust control and backstepping [30–33]. A comparative study was conducted
for models of ball and beam systems in [34]. Moreover, the λ-method matching control
law was first applied to a ball and beam system, and the experimental results showed that
the theoretical prediction was consistent with the experimental results in [35]. Ref. [36]
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proposed a new control scheme to eliminate the influence of matched and mismatched
disturbances, which combined time scaling with the redesign of Lyapunov.

Considering the above situation, an IDA-PBC scheme based on an adaptive method is
proposed in this paper in view of the unknown frictions in UMSs and uncertainties in the
modeling process, which are better compensated. Only the matched input disturbances
were considered in [15,37], and the only external frictions of the system were compen-
sated in [22,38]. Finally, the uncertainties in friction and potential energy were handled,
respectively, in [39]. Compared with the above, the uncertainties in external frictions, the
inertia matrix, M, and the potential energy, V, are estimated adaptively in this paper, which
expands the research scope.

The main contributions can be summarized as follows.
(1) An adaptive controller is designed for a UMS with unknown parameters in the

inertia matrix, potential function and friction coefficients.
(2) The estimate values of the unknown terms are placed in the damping injection

controller, udi, instead of the energy shaping controller, ues, which simplifies the solution of
the partial differential equations.

(3) By using LaSalle’s invariance principle and approximate linearization, the locally
asymptotic stability of the state of the ball and beam system is achieved.

The rest of the paper is organized as follows: In Section 2, the design steps of IDA-PBC
are briefly reviewed, and the problems to be solved are formulated. A new adaptive
controller is proposed, and a stability analysis is given in Section 3. In Section 4, the new
control scheme is applied to the ball and beam system, and numerical simulation results
are provided. Finally, a summary is presented in Section 5.

2. Problem Statement

In this section, the standard IDA-PBC method [2] for UMSs is briefly looked at. The var-
ious possible uncertainties are discussed, and the PCH system with uncertainties is pre-
sented.

2.1. Review of IDA-PBC Design

Consider a mechanical system defined by

M(q)q̈ +
(

M(q)− 1
2

∂q̇T M(q)
∂q

)
q̇ +∇qV(q) = G(q)u, (1)

where M(q) = MT(q) > 0 is the inertia matrix, V(q) is the potential energy function,
q ∈ Rn is the generalized position and u ∈ Rm, m ≤ n is the control input. The matrix
G(q) ∈ Rn×m is an input matrix. The system is called fully actuated when m = n and
rank(G) = m = n, whereas it is called underactuated when m < n and rank(G) = m < n.
∇qV is the gradient of V(q), i.e., ∇qV(q) = ∂V(q)

∂q .
The Hamiltonian function, H, which is defined as the sum of the kinetic energy and

the potential energy, is the total energy of the system. It can be written as

H(q, p) =
1
2

pT M−1(q)p + V(q), (2)

where p = Mq̇ is momenta. Then, the dynamic Equation (1) can be represented in the
following PCH form

[
q̇
ṗ

]
=

[
0 In
−In 0

][
∇q H
∇p H

]
+

[
0

G(q)

]
u

y = GT(q)∇p H, (3)

where y ∈ Rm is the output. In represents the n× n identity matrix.
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The IDA-PBC method is composed of two parts, namely energy shaping and damping
injection, i.e.,

(1) Energy Shaping: The state feedback controller, ues, should be designed so that the
closed-loop system takes the following form[

0 In
−In 0

][
∇qH
∇p H

]
+

[
0

G(q)

]
ues =

[
0 M−1Md

−Md M−1 J2(q, p)

][
∇q Hd
∇p Hd

]
. (4)

Here, J2 = −JT
2 =

[
0 j
−j 0

]
is a free parameter and Hd is the desired Hamiltonian

function, which is defined by

Hd(q, p) =
1
2

pT M−1
d (q)p + Vd(q), (5)

with Md(q) = MT
d (q) > 0 and Vd(q) representing the desired inertia matrix and the desired

potential energy, respectively. It is assumed that there is an isolated minimum at the desired
equilibrium point q∗, i.e.,

q∗ = arg min Hd(q) = arg min Vd(q). (6)

This is true if the conditions ∇qVd(q∗) = 0 and ∇2
qVd(q∗) > 0 are satisfied.

It can be easily verified that the first line of Equation (4) is satisfied. The second line of
Equation (4) can be written as

−∇qH + G(q)ues = J2(q, p)∇p Hd −Md M−1∇q Hd,

which is equivalent to

G(q)ues = ∇q H + J2(q, p)∇pHd −Md M−1∇q Hd. (7)

Let G⊥ represent a full rank left annihilator of G, i.e., G⊥G = 0. As a result, multiplying (7)
by G⊥ from the left-hand side gives

G⊥
{
∇q H + J2∇p Hd −Md M−1∇q Hd

}
= 0. (8)

The PDE (8) can be equivalently written as the following two PDEs:

G⊥
{
∇q

(
pT M−1 p

)
−Md M−1∇q

(
pT M−1

d p
)
+ 2J2∇p Hd

}
= 0, (9)

G⊥
{
∇qV −Md M−1∇qVd

}
= 0. (10)

The energy shaping control law, ues, can be determined as

ues =
(

GTG
)−1

GT
(
∇q H −Md M−1∇q Hd + J2M−1

d p
)

. (11)

by solving (9) for J2 and Md, and (10) for Vd.
(2) Damping Injection: The object is to design a damping injection controller,

udi = −KvGT∇pHd, (12)

where Kv = KT
v > 0 is a parameter matrix.

By using the controller
u = ues + udi, (13)
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the given PCH system (3) is made to have the following expected PCH dynamics:[
q̇
ṗ

]
= [Jd(q, p)− Rd(q, p)]

[
∇q Hd
∇p Hd

]
(14)

yd = GT(q)∇p Hd, (15)

where Jd and Rd are the redistributed expected interconnection and damping matrices,
defined by

Jd = −JT
d =

[
0 M−1Md

−Md M−1 J2

]
,

Rd = RT
d =

[
0 0
0 GKvGT

]
≥ 0.

The desired Hamiltonian function (5) is considered as a candidate Lyapunov function.
Its derivative is

Ḣd =
(
∇p Hd

)T ṗ +
(
∇qHd

)T q̇

= pT M−1
d
(
−∇q H + G(ues + udi)

)
+
(
∇qHd

)T M−1 p

= pT M−1
d J2M−1

d p− pT M−1
d GKvGT∇p Hd

= −
(
∇pHd

)TGKvGT∇p Hd ≤ 0.

Thus, (q∗, 0) is a stable equilibrium point of systems (14) and (15). In addition, if the
zero-state of the closed-loop systems (14) and (15) can be detected from their outputs (15),
then the equilibrium point (q∗, 0) is asymptotically stable.

2.2. Possible Uncertainties

It is usually assumed that all the parameters of the system are known when using
the IDA-PBC method. However, uncertainties exist inevitably in reality, which may lead
to poor control performance. In the PCH system (3), uncertainties might occur in the
Hamiltonian function H. In addition, frictions f exist in almost all mechanical systems.

Consider the following dynamic model:

Mq̈ + ∆Mq̈ +
(

M− 1
2

∂q̇T M
∂q

)
q̇ +

(
∆M− 1

2
∂q̇T∆M

∂q

)
q̇ +

(
∇qV +∇q∆V

)
= Gu∗ − f , (16)

where ∆M and ∆V denote unknown terms in M and V, respectively, and f = diag{q̇1, q̇2,
· · · , q̇n}θ represents frictions, with θ = [θ1, θ2, · · · , θn]

T being frictional coefficients. Define
H as (2) and p = Mq̇. Then, it can be verified that (16) can be changed to the following
PCH form: [

q̇
ṗ

]
=

[
0 In
−In 0

][
∇qH
∇p H

]
+

[
0
G

]
u∗ −

[
0

ΦT β

]
, (17)

where ΦT β = ∆Mq̈ +
(

∆M− 1
2

∂q̇T∆M
∂q

)
q̇ +∇q(∆V) + f represents a parameterization of

the uncertainties, with β = [β1, β2, · · · , βn]
T being a vector of unknown constant parameters.

3. Controller Design and Stability Analysis

In this section, an adaptive controller is designed to compensate for uncertainties,
which was discussed in the previous section.
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Theorem 1. For the PCH system (17) with an unknown term, ΦT β, consider the closed-loop
system [

q̇
ṗ

]
=

[
0 M−1Md

−Md M−1 J2

][
∇q H∗d
∇p H∗d

]
−
[

0
ΦT β̃

]
(18)

y∗d = GT∇p H∗d . (19)

This corresponds to the adaptive controller

u∗ = u∗es + u∗di, (20)
·
β̂ = −γΦ∇p H∗d , (21)

with
u∗es =

(
GTG

)−1
GT
(
∇qH −Md M−1∇qH∗d + J2∇pH∗d

)
. (22)

u∗di =
(

GTG
)−1

GT
(
−GKvGT∇p Hd + ΦT β̂

)
, (23)

and the desired Hamiltonian function:

H∗d =
1
2

pT M−1
d p + Vd +

1
2γ

β̃T β̃. (24)

Here, β̃ = β− β̂, β̂ is the estimated value of the unknown constant parameter β and γ =
diag{γ1, γ2, · · · , γn} > 0 is the controller parameters. Assume that the detectability condition
of the output (19) is satisfied. Then, (q∗, 0) = (0, 0) is a locally asymptotically stable equilibrium
point of the closed-loop systems (18) and (19), and β̃ is bounded.

Proof of Theorem 1. The energy shaping controller, u∗es, should be constructed so that[
0 In
−In 0

][
∇q H
∇p H

]
+

[
0
G

]
u∗es −

[
0

ΦT β

]
=

[
0 M−1Md

−Md M−1 J2

][
∇q H∗d
∇p H∗d

]
−
[

0
ΦT β̃

]
. (25)

The first line of the equation is satisfied automatically, but the second line becomes

Gu∗es = ∇q H −Md M−1∇q Hd + J2∇p H∗d . (26)

By premultiplying G⊥, it follows from the above equation that

G⊥
{
∇qH + J2∇p H∗d −Md M−1∇qHd

}
= 0. (27)

Equation (27) can be divided into the following two PDEs:

G⊥
{
∇q

(
pT M−1 p

)
−Md M−1∇q

(
pT M−1

d p
)
+ 2J2∇p H∗d

}
= 0, (28)

G⊥
{
∇qV −Md M−1∇qVd

}
= 0. (29)

Premultiplying (26) by GT and solving for u∗es produces

u∗es =
(

GTG
)−1

GT
(
∇qH −Md M−1∇qH∗d + J2∇pH∗d

)
.

The derivative of (24) along the trajectories of (18) and (19) is
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Ḣ∗d = pT M−1
d ṗ +

(
∇qVd

)T q̇− 1
γ

β̃T
·
β̂

= pT M−1
d

(
−∇qH + G(u∗es + u∗di)−ΦT β

)
+
(
∇qVd

)T∇pH − 1
γ

β̃T
·
β̂

= pT M−1
d

(
−Md M−1∇qH∗d + J2∇pH∗d + Gu∗di −ΦT β

)
+
(
∇qVd

)T M−1 p− 1
γ

β̃T
·
β̂

= −
(

pT M−1∇qH∗d
)T

+ pT M−1
d J2∇p H∗d − pT M−1

d ΦT β + pT M−1
d Gu∗di

+
(
∇qVd

)T M−1 p− 1
γ

β̃T
·
β̂

= − 1
γ

β̃T
·
β̂ + pT M−1

d Gu∗di − pT M−1
d ΦT β. (30)

By substituting (21) and (23) into (30), the following inequality is obtained:

Ḣ∗d = −pT M−1
d GKvGT M−1

d p ≤ 0. (31)

It follows from (30) that the desired equilibrium point, (q∗, 0, 0), is stable. Furthermore,
since the output (19) is locally zero-state detectable, the local asymptotic stability of the
state is guaranteed.

4. Example: The Ball and Beam System

In this section, the well-known ball and beam system [28] is considered to have
uncertainties, including uncertainties in the friction coefficients and uncertainties in the
Hamiltonian function, H.

4.1. System Model

As shown in Figure 1, the dynamic behavior of the ball and beam system [28] is
described as

c2

R2 q̈1 + Mbg sin(q2)−Mbq1q̇2
2 + β1q̇1 = 0

c1q̈2 + 2Mbq1q̇1q̇2 + Mbgq1 cos(q2) + β2q̇2 = u, (32)

where c1 = Mbq2
1 + J + Jb, c2 = MbR2 + Jb, c3 = c2

c1
and Mb, R are the mass and the radius

of the ball, respectively, q1 and q2 are the position of the ball and the angle of the beam,
respectively, Jb and J are the moment of inertia of the ball and the beam, respectively, u
is the torque applied to the beam and β1andβ2 are the friction coefficients. Due to the
ball being always maintained on the beam, the angle of the bar, q2, is assumed to be
q2 ∈ (−180◦, 180◦). Additionally, from (32), the inertia matrix, M, and potential energy
function, V, are attained:

M(q) =

[ c2
R2 0
0 c1

]
, (33)

V(q) = Mbgq1 sin(q2), (34)

and G =
[

0 1
]T .
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Figure 1. The ball and beam system.

The friction coefficients, the moment of inertia of the beam, J, in the inertia matrix and
the gravitational constant, g, in the potential energy function are assumed to be unknown,
which includes both matched and unmatched coefficients. Therefore,

ΦT β = ∆Mq̈ +
(

∆M− 1
2

∂q̇T∆M
∂q

)
q̇ +∇q(∆V) + f

=

[
Mbβ3 sin(q2) + β1q̇1

β4(q̈2 + q̇2) + Mbβ3q1 cos(q2) + β2q̇2

]
. (35)

Here, ∆M =

[
0 0
0 β4

]
, ∆V = Mbβ3q1 sin(q2) and β3 and β4 are the unknown part

of the gravitational constant, g, and the moment of inertia of the beam, J, respectively.

4.2. Controller Design

According to the method in [2], Md is adopted as

Md =

 R
√

2
c3

R2

c3
R2

c3

√
2
c3

3
R3

. (36)

After substituting Md into (28), j is calculated as

j =
MbR3q1

(
2R
√

2c3 p1 p2 − R2 p2
1 − 2c3 p2

2
)

c2
2
(√

2c3 p2 − Rp1
) . (37)

The potential energy is solved by substituting M and Md into PDE (29), which can be
represented as √

2R2

c3

∂Vd
∂q1

+
∂Vd
∂q2

=
c2

R2 Mbg sin(q2). (38)

Solving (38) for Vd results in

Vd =
c2Mbg[1− cos(q2)]

R2 +
kpw2

2
,

where w =
(

q2 −
√

c2√
2MbR arcsin h

(√
Mbq1√
J+Jb

))
and kp is the controller parameter.

By substituting Md, j and H∗d into (22), with some straightforward calculations, the en-
ergy shaping term, u∗es, is expressed as

u∗es =

RMbq1

(
− R2 p2

1√
c3

+
√

2Rp1 p2 +
√

c3 p2
2

)
√

2c1c2
+ ϕ(q), (39)
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where

ϕ(q) = Mbgq1 cos(q2)−

√
2
c3

RMbg sin(q2)−
kpR3w
c2
√

2c3
.

Furthermore, from (23), the damping injection term, u∗di, is determined as

u∗di = kv

 c3 p1

R2 −

√
2c3

3 p2

R3


+β̂4(q̈2 + q̇2) + Mb β̂3q1 cos(q2) + β̂2q̇2, (40)

where kv is the damping injection gain. Moreover, the adaptive law from (21) is constructed
as

·
β̂

= −γΦM−1
d p

=



−γ1

(√
2c3 p1
R − c3 p2

R2

)
q̇1

−γ2

(
− c3 p1

R2 +

√
2c3

3 p2
R3

)
q̇2

− γ3 Mb
R

(
2

1
2 c

1
2
3 p1 sin(q2)− c3q1 p1 cos(q2)

R − c3 p2 sin(q2)
R +

2
1
2 c

3
2
3 q1 p2 cos(q2)

R2

)
−γ4

(
− c3 p1

R2 +

√
2c3

3 p2
R3

)
(q̈2 + q̇2)


(41)

4.3. Stability Analysis

In this example, LaSalle’s invariance principle is applied to prove the asymptotic
stability of the closed-loop system. Under the control of (20) and (21), the state equations of
the ball and beam system can be described as

q̇1 =
R2

c2
p1,

q̇2 =
1
c1

p2,

ṗ1 = −Mbg sin(q2) + Mbq1q̇2
2 − β1q̇1,

= −Mbg sin(q2) +
Mb

c2
1

q1 p2
2 −

R2

c2
β1 p1,

ṗ2 = −Mbgq1 cos(q2)− β2q̇2 + u∗

= − β2

c1
p2 +

RMbq1

(
− R2 p2

1√
c3

+
√

2Rp1 p2 +
√

c3 p2
2

)
√

2c1c2

−

√
2
c3

RMbg sin(q2)−
kpR3w
c2
√

2c3
+ kv

 c3 p1

R2 −

√
2c3

3 p2

R3


+β̂4(q̈2 + q̇2) + Mb β̂3q1 cos(q2) + β̂2q̇2. (42)

and the output equation is

y∗d = GT∇p H∗d

=

√
2c3

3 p2

R3 − c3 p1

R2 . (43)
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Restricted by manifold y∗d ≡ 0, ∀t, the trajectories of the system (42) are analyzed as
follows. It follows from y∗d = 0 that

p2 =

√
1

2c3
Rp1. (44)

According to ẏ∗d = 0, one obtains

0 = − c2Mbg sin(q2)

R2 − w−
Mbq1 p2

1
c1

+ β1 p1

− c3 β̃2 p1

R2 +
c2
√

2c3Mb β̂3q1 cos(q2)

R3

+
β̂4

c1

(
−

Mbq1 p2
1

2c1
− c2Mbg sin(q2)

R2 − β1 p1 +
c2 p1

R2

)
. (45)

From Equation (44), the ball and beam system can be reduced to the following system

q̇1 =
R2

c2
p1, (46)

ṗ1 = −Mbg sin(q2) +
MbR2q1 p2

1
2c1c2

− R2β1 p1

c2
, (47)

q̇2 =
R√

2c1c2
p1. (48)

According to (46) and (48), it can be easily verified that

dw
dt

=
d
dt

(
q2 −

√
c2√

2MbR
arcsin h

(√
Mbq1√
J + Jb

))
=

R√
2c1c2

p1 −
√

c3√
2R

q̇1

= 0,

which means that

q2(t)−
√

c2√
2MbR

arcsin h
(√

Mbq1(t)√
J + Jb

)
= 2δ, ∀t. (49)

It is known that the origin is an equilibrium point, which requires δ = 0. According
to (49),

q2 =

√
c2√

2MR
arcsin h

(√
Mq1(t)√
J + Jb

)
. (50)

After a series of simplifications, the final second-order system is described as:

q̇2 =
R√

2c1c2
p1, (51)

ṗ1 = −Mbg sin(q2) +
MbR2q1 p2

1
2c1c2

− R2β1 p1

c2
. (52)

Assumption 1. Assume that the following condition is true.

(J + Jb)β1 −
c2

R2 β̃2 − β̂4β1 +
c2

R2 β̂4 6= 0.
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Lemma 1. With Assumption 1, if the trajectories of (50)–(52) are confined to y∗d = 0 and ẏ∗d = 0,
that is, (44) and (45), then q2(t) ≥ 0, ∀t or q2(t) ≤ 0, ∀t.

Proof of Lemma 1. Assume q2(t∗) = 0 at t∗. It can be obtained from (50) that q1(t∗) = 0.
Substituting (q1, q2) = (0, 0) into (45) leads to(

(J + Jb)β1 −
c2

R2 β̃2 − β̂4β1 +
c2

R2 β̂4

)
p1 = 0. (53)

According to Assumption 1, (53) has only one real solution, p1 = 0, which implies that
p2 = 0. Since q1(t∗) = 0 and q2(t∗) = 0, the fact that ṗ1(t∗) = 0 can be obtained from (52).
Because p1(t∗) = 0 and ṗ1(t∗) = 0, p̈1(t∗) = 0 because

p̈1(t∗) = −Mbg cos(q2)q̇2(t∗)

+

(
MbR2q̇1(t∗)p2

1 + 2MbR2q1 p1
)
(2c1c2)−MbR2q1 p2

12Mbq1q̇1(t∗)c2

(2c1c2)
2

−R2β1 ṗ1(t∗)
c2

= 0

together with (46). As a result, p1(t) = 0 for t > t∗, which implies that p2(t) = 0 for t > t∗

due to (44). Since q2(t∗) = 0 and q̇2(t) = 0 for t > t∗, because p1(t) = 0 and (51), q2(t) = 0

for t > t∗ because q̈2(t∗) = Rṗ1(t∗)
√

2c1c2−4RMb p1q1 q̇1(t∗)c2
2c1c2

= 0. With (50), it follows from
q2(t) = 0 that q1(t) = 0 for t > t∗. Finally, it can be concluded that if q2(t∗) = 0, the system
will stay at the origin for t > t∗.

Next, the final second-order system, (51) and (52), is linearized at the origin to obtain

q̇2 =
R√

2c2(J + Jb)
p1

ṗ1 = −Mbgq2 −
R2

c2
β1 p1. (54)

The system matrix, A, can be obtained from (54) as follows:

A =

 0 R√
2c2(J+Jb)

−Mbg − R2

c2
β1

,

and the eigenvalues of matrix A are calculated as

λ1 = − 1
2c2

R2β1 −

√√√√
R4β2

1 −
2
√

2c3
2RMbg

√
J + Jb

,

λ2 = − 1
2c2

R2β1 +

√√√√
R4β2

1 −
2
√

2c3
2RMbg

√
J + Jb

.

Whether R4β2
1 −

2
√

2c3
2RMbg√

J+Jb
> 0 or R4β2

1 −
2
√

2c3
2RMbg√

J+Jb
< 0 , the eigenvalues have a

negative real part. So the linearized system (54) is asymptotically stable. Furthermore, the
system in (51) and (52) is locally asymptotically stable. Since q2 ∈ (−180◦, 180◦), it can be
easily verified that the origin is the only equilibrium point, so q2 → 0. According to the
proof of Lemma 1, (q, p) = (0, 0) can be deduced. Hence, the conclusion that lim p = 0 is
proved. The equilibrium point (q∗, 0) = (0, 0) is locally asymptotically stable.
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4.4. Numerical Simulation Results

In this section, the proposed controller is simulated and compared with the article
in [33] under different initial conditions and controller parameters. Matlab software is
used to implement this numerical simulation. The legends “Proposed” and “Backstepping”
in Figures 2–13 represent the proposed controller and the backstepping method from
[33]. The system parameters used for the simulation are M = 0.05 kg, R = 0.01 m,
J = 0.02 kg·m2, Jb = 2× 10−6 kg·m2 and g = 9.81 m/s2, which are taken from [28]. The
simulation results are shown in Figures 2–13.

Case 1: The initial conditions are chosen as [q, q̇] = [0, 20◦, 0, 0] and
[
β̂1, β̂2, β̂3, β̂4

]
=

[0.02, 0, 0, 0]. The controller parameters are set to γ1 = 0.001, γ2 = 0.1, γ3 = 0.5, γ4 = 0.001,
kp = 1 and kv = 1. Figures 2–7 show the results under Case 1. It can be obviously seen
from Figure 2 that using the proposed adaptive controller ((20) and (41)), the ball reaches
the expected position in about 5 s. However, under the backstepping method, the ball
gradually stabilizes to the expected position after 50 s. As shown in Figure 3, the beam
keeps swinging in a range of (−16◦, 20◦) from 0 to 0.5 s with the backstepping method.
However, under the proposed adaptive controller, the beam reaches −5◦ in 0.2 s and then
gradually converges to the equilibrium position. It can be clearly seen from Figures 4 and 5
that under the action of the proposed adaptive controller, the acceleration of the ball and
the angular acceleration of the beam are obviously smaller than under the backstepping
method. The acceleration of the ball reaches a maximum value of 1 m/s2 in 0.2 s, and then
decays to 0 gradually. In addition, it can be observed from Figure 6 that the control signal
of the proposed adaptive controller is much smaller and settles down faster than for the
backstepping method. As depicted in Figure 7, the estimated values of parameters are
all bounded.

Case 2: The initial conditions are selected as [q, q̇] = [1m, 0◦, 0, 0] and
[
β̂1, β̂2, β̂3, β̂4

]
=

[0.02, 0, 0, 0]. The controller parameters are given as γ1 = 0.001, γ2 = 0.1, γ3 = 0.5,
γ4 = 0.001, kp = 0.8 and kv = 30. From Figure 8, it can be seen that the swing amplitude
of the ball is very small and reaches equilibrium position in about 5 s under the action of
the proposed adaptive controller, while under the backstepping method, the ball oscillates
more from 0 to 10 s. The angle of the beam reaches a maximum value of 45◦ at 0.5 s
then decreases sharply and stabilizes at the equilibrium position in Figure 9. Using the
backstepping method, the beam swings back and forth between −15◦ and 31◦ with a large
amplitude. From Figures 10 and 11, the acceleration of the ball and the angular acceleration
of the beam are significantly smaller than for the backstepping method, and the proposed
adaptive controller can better control the position of the ball and the swing angle of the
beam. Compared with the backstepping method, the vibration amplitude of the control
signal is significantly smaller under the application of the proposed adaptive controller,
as shown in Figure 12. It can be seen from Figure 13 that the estimated parameters
are bounded.

Remark 1. It is worth noting that the acceleration, q̈2, is required to implement the proposed
controller when there is an unknown term, ∆M, in the inertial matrix, M, which limits the
applications of the proposed controller. The drawback of the proposed controller design method is
that it is more complicated compared with the traditional linear controller design methods, such as
pole placement, linear quadratic regulator, proportional integral derivative, etc., and the nonlinear
controller design methods, such as backstepping, sliding mode control, approximate linearization
and so on.
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Figure 3. The angle of the bar. (Case 1).
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Figure 4. The acceleration of the ball. (Case 1).



Actuators 2023, 12, 408 14 of 18

0 10 20 30 40 50

Time (sec)

-5

-4

-3

-2

-1

0

1

2

3

4
10

5

0 0.1 0.2 0.3 0.4 0.5 0.6

-4

-2

0

2

105

Figure 5. The angular acceleration of the beam. (Case 1).
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Figure 7. The estimated parameters. (Case 1).
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Figure 10. The acceleration of the ball. (Case 2).



Actuators 2023, 12, 408 16 of 18

0 10 20 30 40 50

Time (sec)

-6000

-4000

-2000

0

2000

4000

6000

8000

0 0.2 0.4 0.6 0.8

-5000

0

5000

Figure 11. The angular acceleration of the beam. (Case 2).
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Figure 13. The estimated parameters. (Case 2).

5. Conclusions

In this paper, an adaptive control law was designed for a class of underactuated
mechanical systems with matched and unmatched uncertainties. With this controller,
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the locally asymptotic stability of the underactuated mechanical system is ensured under
uncertainties. The estimate values of the unknown terms are placed in the damping
injection controller udi, which simplifies the design of the controller. In order to verify
the effectiveness of the proposed controller, it is applied to the ball and beam system.
The locally asymptotic stability of the ball and beam system is proved by using LaSalle’s
invariance principle and approximate linearization. The numerical simulation results show
the effectiveness of the control strategy. The proposed adaptive controller can better control
the position of the ball and the swing angle of the beam than the backstepping method.
Compared with other methods, the proposed adaptive controller is more complicated.
Future work will include considering external disturbances and more uncertainties, making
this method more general and trying to apply it to underactuated systems such as bridge
cranes.
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