
Citation: Chen, B.; Zhang, L.; Cheng,

G.; Liu, Y.; Chen, J. A Novel

Approach for Train Tracking in

Virtual Coupling Based on Soft

Actor-Critic. Actuators 2023, 12, 447.

https://doi.org/10.3390/act12120447

Academic Editor: Keigo Watanabe

Received: 30 October 2023

Revised: 22 November 2023

Accepted: 28 November 2023

Published: 1 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

A Novel Approach for Train Tracking in Virtual Coupling Based
on Soft Actor-Critic
Bin Chen 1,2,3,* , Lei Zhang 1,2,3, Gaoyun Cheng 2,3, Yiqing Liu 2,3 and Junjie Chen 4

1 School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China;
20111082@bjtu.edu.cn

2 Traffic Control Technology Co., Ltd., Beijing 100070, China; gaoyun.cheng@bj-tct.com (G.C.);
yiqing.liu@bj-tct.com (Y.L.)

3 National Engineering Research Center of Rail Transportation Operational and Control System,
Beijing 100044, China

4 School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China; junjiec@tsinghua.edu.cn
* Correspondence: chenbin@bjtu.edu.cn

Abstract: The development of virtual coupling technology provides solutions to the challenges faced
by urban rail transit systems. Train tracking control is a crucial component in the operation of virtual
coupling, which plays a pivotal role in ensuring the safe and efficient movement of trains within the
train and along the rail network. In order to ensure the high efficiency and safety of train tracking
control in virtual coupling, this paper proposes an optimization algorithm based on Soft Actor-Critic
for train tracking control in virtual coupling. Firstly, we construct the train tracking model under
the reinforcement learning architecture using the operation states of the train, Proportional Integral
Derivative (PID) controller output, and train tracking spacing and speed difference as elements
of reinforcement learning. The train tracking control reward function is designed. Then, the Soft
Actor-Critic (SAC) algorithm is used to train the virtual coupling train tracking reinforcement learning
model. Finally, we took the Deep Deterministic Policy Gradient as the comparison algorithm to verify
the superiority of the algorithm proposed in this paper.

Keywords: train tracking; virtual coupling; reinforcement learning; Soft Actor-Critic

1. Introduction

Urban transit systems are a cornerstone of modern urban planning and development.
They make cities more livable, equitable, and economically vibrant places by improving the
environment and overall urban sustainability. As the size of cities increases, subway lines
become more complex, and train operation control tasks are arduous. This will lead to a
waste of resources. Virtual coupling in urban subway systems provides solutions to a wide
range of challenges, including optimizing train formation, reducing energy consumption,
enhancing passenger experience, adapting to variable demand, and ensuring safety. It offers
a more responsive and adaptable approach to subway operations, ultimately benefiting
both passengers and subway operators. Train tracking control is a crucial component in
the operation of virtual coupling trains. It plays a pivotal role in ensuring the safe and
efficient movement of trains within the train and along the rail network, and ensures that
trains are accurately positioned, aligned, and coordinated during coupling and throughout
their journey.

Train tracking control is a crucial component in the operation of virtual coupling
trains. It plays a pivotal role in ensuring the safe and efficient movement of trains within
the train and along the rail network and ensures that trains are accurately positioned,
aligned, and coordinated during coupling and throughout their journey. In virtual coupling,
multiple trains form a train formation in which back trains track front trains and there
should be a method used to control back trains to front ones. At present, many traditional
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methods, such as Model Predictive Control (MPC) and Proportional Integral Derivative
(PID) control, are used in the train tracking problems in virtual coupling. However, the
control performance of these methods relies on the manual setting of feedback parameters
and has the disadvantage of too frequent acceleration and deceleration switching, which
cannot guarantee the comfort of passengers. If we can find a method so that the parameters
of the control method can be adjusted according to the control effect, the existing train
tracking control method can have a better control performance.

In this study, we proposed a novel approach for train tracking in virtual coupling
based on Soft Actor-Critic (SAC), which belongs to the reinforcement learning (RL) area.
The SAC tends to be sample-efficient, meaning it can learn high-quality policies with
relatively fewer samples. And, it is based on the maximum entropy reinforcement learning
framework. It employs a maximum entropy policy to balance exploration and exploitation,
enhancing the algorithm’s robustness and performance. The SAC is used to optimize the
parameters of PID by taking the output of PID and the train motion status as the states
and the parameters of PID as actions. Then, PID controls the operation of the back train.
It is the first time that the SAC has been used in the Virtual Coupling of urban railway
transportation. We set up two trains in the Virtual Coupling in this study.

This study is organized as follows: Section 2 presents a literature review about train
tracking control problems for railway train operation, especially in Virtual Coupling.
Section 3 introduces the train tracking control algorithm in virtual coupling based on the
SAC. Section 4 carries out the simulation of the train tracking methods based on SAC
proposed in this paper and discusses the results based on real data. Section 5 summarizes
the work in this paper and introduces the research work to be performed in the future.

2. Literature Review

In 1999, virtual coupling was first proposed by Bock et al. [1] as well as the new
train operation mode, and in 2000, Bock et al. [2] introduced the methods to design and
develop the virtual coupling system, which uses train-to-train communication to replace
the physical coupler links between train carriages, so that adjacent trains can operate
cooperatively and shorten the train tracking interval. Other technical details such as system
framework, communication, positioning, etc., are explained in detail in references [3], [4],
and [5], respectively.

With the continuous development of train-to-train communication, train positioning,
and other technologies, more and more scholars carry out research on the virtual coupling
operation mode and train tracking control. Cao et al. [6] proposed a train operation control
method based on local leader–follower to establish the virtual coupling implementation
scheme, and then a controller used for train tracking was proposed on the basis of parameter
identification of the nonlinear virtual coupled train operation process [7]. Lin et al. [8]
studied the velocity and constrained tracking control problem to propose a distributed
cooperative tracking control algorithm for virtual coupling trains. For high-speed railway
virtual coupling, Liu et al. [9] designed a method based on Pontryagin’s maximum principle
to solve the optimal control problem considering constraints of safe spacing, operation
limits, and train dynamic performance. Luo et al. [10] presented a distributed adaptive
model predictive control system to coordinate the driving of each unit train in Virtual
coupling. Wang et al. [11] illustrated the virtual coupling by a cooperative game model and
solved it based on the particle swarm optimization algorithm. Chen et al. [12] proposed an
iterative learning control scheme aiming to track the desired reference displacement and
velocity in which more general nonlinear uncertainties are imposed on the dynamic model
of the train, and that would be closer to reality. Felez et al. [13] proposed a robust MPC
method by defining a robust controller into the MPC to control train tracking. A similar
work is proposed by Su [14].

The reinforcement learning methods provide a new way for optimized control in many
other areas. Wu et al. [15] first investigated the problems of optimal false data injection
attack scheduling and countermeasure design for car-like robots in the framework of deep



Actuators 2023, 12, 447 3 of 12

reinforcement learning. In the area of data-based secure control, the Soft Actor-Critic is
used to solve the secure control problem [16]. As for the urban railway, He et al. [17]
combined the convolutional neural network with long short-term memory to construct the
CNN-LSTM hybrid model from the perspective of trajectory prediction, which can obtain
the features both in space and time from measurement data at the same time. They also
combined LSTM with the Kalman filter to obtain the long-term dependencies [18]. Huang
et al. [19] proposed a cooperative tracking control based on a consensus algorithm and
artificial potential field theory to realize the train tracking within a distance range. For the
displacement-speed trajectory tracking of the automatic train control system with unknown
parametric/nonparametric uncertainties and speed constraints, Li et al. [20] proposed a
constrained spatial adaptive iterative learning controller. Zhou et al. [21] proposed an
improved disturbance observer-based control method to ensure that the automatic train
control (ATC) system can operate safely and control accurately even when the train is
affected by uncertainties. Wang et al. [22] introduced deep learning into train tracking to
calculate the reference speed trajectory according to the real-time driving condition.

3. Methodology

In this section, we introduce the basic principle of the SAC method used in this article.
Then, the train tracking dynamic model is built, which is used as the environment for the
reinforcement learning architecture. At last, the train tracking control algorithm based on
SAC is illustrated.

3.1. Soft Actor-Critic

SAC [23] is a RL algorithm developed based on the idea of maximum entropy. It uses
a randomly distributed policy function (Stochastic Policy) and is an off-policy, Actor-Critic
algorithm. It is most similar to other RL algorithms. The difference is that while SAC
optimizes the strategy to obtain higher cumulative returns, it also maximizes the entropy
of the strategy. SAC has excellent performance in various commonly used benchmarks and
real robot control tasks, and its performance is stable and has strong anti-interference ability.

The purpose of standard reinforcement learning is to find the policy that maximizes
the expected sum of rewards:

π∗ = arg max
π

∑
t
E(st ,at)∼ρπ

[r(st, at)] (1)

where π is the policy in the SAC, st is the state at time t, at is the action at time t, r(st, at) is
the reward gained by action at under state st, and ρpi is the distribution of agent’s state st
and action at under policy π.

After introducing the maximum entropy, the target policy of the reinforcement learning
can be written as Equation (2):

π∗ = arg max
π

∑
t
E(st ,at)∼ρπ

[r(st, at) + αH(π(·|st))] (2)

where α is a hyperparameter called the temperature parameter, which determines the rela-
tive importance of the entropy term against the reward, and thus controls the stochasticity
of the optimal policy; H(π(·|st)) is the entropy of π(·|st) calculated by Equation (3).

H(π(·|st)) = E[− log π(·|st)] (3)

The action value function of SAC is defined by Equation (4).

Q(st, at) = Est+1∼D [r(st, at) + γVπ(st+1)] (4)

where D is the distribution of previously sampled states and actions or a replay buffer.



Actuators 2023, 12, 447 4 of 12

The state value function is defined by Equation (5).

V(st) = Eat∼π [Q(st, at)− α log π(·|st)] = Eat∼π [Q(st, at) + H(π(·|st))] (5)

The loss function of the two q-critic networks can be calculated as Equation (6).

JQ(θ) = E(st ,at ,st+1)∼D,at+1∼πφ[
1
2
(Qθ(st, at)− (r(st, at) + γ(Qθ(st+1, at+1)− α log(πφ(at+1|st+1)))))

2
] (6)

The loss function of the actor-network can be calculated as Equation (7).

Jπ(φ) = Est∼D,ε∼N
[
α log πφ

(
fφ(εt; st) | st

)
−Qθ

(
st, fφ(εt; st)

)]
(7)

where N is the standard normal distribution and f is the probability density function of
policy π.

And lastly, the loss function of the temperature parameter α is shown as Equation (8).

J(α) = Eat∼πt [−α log πt(at | πt)− αH0] (8)

The process of the SAC algorithm is shown as Algorithm A1 in Appendix A.

3.2. Train Tracking Model Based on Reinforcement Learning

For train tracking in the virtual coupling, it is necessary to ensure that the distance
between the two trains is not too large, otherwise the transportation efficiency of the virtual
coupling will become low. It is also necessary to ensure that there is a sufficient safe distance
between the two trains to ensure the safe operation of the trains in the virtual coupling.

Figure 1 shows the scenario of train tracking in the virtual coupling. In the virtual
coupling, the back train (Train 2 shown in Figure 1) changes its position pt,2 and speed
vt,2 at time t by controlling the output of its traction system based on the position pt,1 and
speed vt,1 of the front train (Train 1 shown in Figure 1), which makes the distance ∆pt
between Train 2 and Train 1 within a reasonable range. The positions and speeds of Train 1
and Train 2 have the following relationship.

∆p = p1 − p2 − L (9)

∆v = v2 − v1 (10)

where L is the length of Train 1.

        

p L

1 1( , )p v2 2( , )p v
Train 2 Train 1

Figure 1. The scenario of train tracking in virtual coupling.

Since the position and speed of Train 1 is the reference target of Train 2, we take
Train 2 as the control object and here give its dynamic model as described in our previous
paper [24].

PID control is widely used in urban rail transit train operation control due to its simple,
real-time, robust, and adjustable characteristics. At the beginning of the operation, there is
an initial distance ∆p0 between train 2 and train 1. If the speed of train 2 is controlled to
be as close as possible to the speed of train 1, ∆p will remain close to ∆p0. Therefore, the
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speed of train 2 can be the control target of PID control. Set ∆vt as the difference between
v1 and v2 at time t (vi = vt,i, for i ∈ {1, 2}).

∆vt = vt,2 − vt,1 (11)

The PID control variable ∆u at time t can be calculated by Equation (12) [25].

∆u = KP(∆vt − ∆vt−1) + KI∆vt + KD(∆vt − 2∆vt−1 + ∆vt−2) (12)

where KP, KI , and KD denote the coefficients for the proportional, integral, and derivative
terms, respectively.

Although the PID algorithm is widely used, its parameters need to be finely ad-
justed. Reinforcement learning learns how to make optimal decisions in different situations
through the continuous interaction between the agent and the environment. This article
uses the reinforcement learning method to learn the three coefficients of the PID algorithm.

The elements of the RL architecture are described as follows.
Agent: we take the PID controller as the agent of the RL structure, because it can

change the operation states of the train by changing the traction or breaking forces of
the train.

Action space: Since the RL method is used to learn the three coefficients of the PID
algorithm, the action at of the RL should be a three-tuple representing the three coefficients.

a = {aP, aI , aD} (13)

It is better to limit the value of action to [−1, 1] as shown in Equation (14), and we
transfer aP, aI , aD to KP, KI , KD by Equation (15).

aj ∈ [−1, 1], f or j ∈ {P, I, D} (14)

Kj = Kj,min +
(aj + 1)(Kj,max − Kj,min)

2
, f or j ∈ {P, I, D} (15)

where Kj,max is the maximum of Kj and Kj,min is the minimum of Kj for j ∈ {P, I, D}.
State space: We take the output u of the PID controller as one of the state elements. The

speed vt, acceleration acct, and position pt of the back train at time t are also elements of the
state, since they represent the operation characteristics of the train. The differences of the
speed ∆vt and the difference of the position ∆pt between the trains in virtual coupling at
time t are also in the state of the RL structure. With the limitations on actual train operation
conditions shown in Equation (17), the state at time t can be described as Equation (16).

st = (ut, acct, vt, pt, ∆vt, ∆pt) (16)



ut ∈ [0, 1]
acct ∈ [accmin, accmax]

vt ∈ [0, vmax(t)]
pt ∈ [0, PL]

∆vt ∈ [∆vmin, ∆vmax]
∆p ∈ (0, PL]

(17)

where the range of the acceleration of the train is [accmin, accmax], and PL is the length of
the whole railway.

Environment: The agent outputs an action and then the environment returns a new
state as well as a reward. In this work, the environment should construct the relevance of
the output of the PID controller, the state of train’s operation and the distance between the
two trains in virtual coupling. So, we take the train dynamics model and the train tracking
model as the environment of the RL architecture.
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Reward: The purpose of train tracking is to keep the distance and the difference of
speed between the two trains in virtual coupling in a small range, which means that the
distance and the difference of speed should be smaller. Then, we can define the reward
r(t) at time t as Equation (18). As ∆vt and ∆pt decrease, r(t) will increase. Therefore,
reinforcement learning will learn in the direction where both ∆vt and ∆pt decrease.

r(t) =
1

1 + η1|∆vt|
+

1
1 + η2|∆pt|

(18)

where η1 and η2 are the adjusting coefficients that prevent the reward value from being
too large.

Note that ∆pt should always be a positive number since the trains can not collide. The
penalty item of the reward is shown as Equation (19).

r(t) = −C i f ∆pt < 0 (19)

where C is a large positive number.

3.3. The Train Tracking Control Method Based on SAC

Figure 2 illustrates the architecture of the train tracking control method based on
SAC. The SAC generates action at and transfers it to (KP, KI , KD). Then, the PID controller
generates u by receiving (KP, KI , KD) and derives the train movement under its dynamics.
After every step is executed, the operation data are stored in the Replay Memory for the
training of SAC. Also, the Replay Memory will be gradually updated by the operation data.

PID Controller

PID 

Controller

Agent

EnvironmentAlgorithm

Dynamics of 

the train

SAC 

algorithm

Replay 

memory

Samples

Training

( , , )
P I DK K K

u

1{ , , , , }t t t ts r Done a s +

Figure 2. The architecture of the train tracking control method based on SAC.

4. Case Study

To verify the superiority of this work, we took the DDPG algorithm as the comparison
algorithm applied to the virtual coupling train tracking control along with the SAC, which
is based on the real subway in Beijing. The parameters of the train and the information of
the track are similar to our previous paper [24]. Other parameters used in this paper are
shown in Table 1.

For the two reinforcement learning methods, we conducted 10,000 episodes of training,
respectively. The changing trend of the rewards, the loss, and the train tracking states of
virtual coupling are used to illustrate the simulation.
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Table 1. Parameters of the PID control and virtual coupling.

Parameter Names Parameters

L /m 92
∆p0/m 5.92{

KP,min, KP,max
}

{0, 5}{
KI,min, KI,max

}
{0, 1.5}{

KD,min, KD,max
}

{0, 1.5}
η1 1000
η2 1000
C 100

Figures 3 and 4 illustrate the changing trend of rewards in two algorithms. Figure 3
shows that the reward of SAC changes a lot before the 4000th episode, and after that, the
fluctuation of the original curve decreases and the smoothed curve becomes flat. However,
the reward of DDPG shows a downward trend as the training episodes increase, and there
is no sign of convergence as shown in Figure 4. The SAC has better performance in this
paper than DDPG from the aspect of changing trend of the rewards.
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60
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Figure 3. Rewards of SAC.
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Figure 4. Rewards of DDPG.

Figure 5 shows the changing trend of training losses of SAC and Figure 6 shows that
of DDPG. The loss of SAC increases before the 2000th episode, and then decreases until it is
stable after the 5000th episode, as shown in Figure 5. It shows that the SAC algorithm keeps
learning before the 5000th episode, and then it reaches a stable result for the whole RL
progress. As shown in Figure 6, the loss of DDPG does not have a gradual trend. Instead, it
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suddenly changes dramatically after 8000 episodes of training. This shows that the learning
efficiency of DDPG is very low and its training is unstable.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
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Figure 5. Policy loss of SAC.
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Figure 6. Loss of DDPG.

We can conclude that the DDPG algorithm does not meet the demand of the train
tracking control, as its reward does not converge and it has lower learning efficiency than
SAC, the SAC performs better than DDPG, and the reward can reach a stable level through
the above analysis. For the virtual coupling, the distance and the difference of speed
between two trains in virtual coupling are crucial indicators, which are analyzed as follows.

Figure 7 shows the operation profiles of the front train (Train 1) and the back train
(Train 2). The trajectories of these two trains are almost similar to each other. The difference
in positions and speeds are shown in Figure 8 and Figure 9, respectively. The initial distance
between two trains is 5.92 m and from Figure 8 we can see that during the whole operation
process, the distance between two trains is between 5.88 m and 5.98 m, and the maximum
of ∆p is 0.6 m. The two trains in the Virtual Copuling did not collide, which ensures the
operation safety in train tracking. The distance between the two trains is not much different
from the initial distance. As for the difference of speed, known as ∆v, the maximum of |∆v|
is within 0.15 m/s, as shown in Figure 9, which means that the train tracking efficiency is
improved by this algorithm.



Actuators 2023, 12, 447 9 of 12

0 100 200 300 400 500 600 700 800 900 1000
Distance

0

2

4

6

8

10

12

14

16

Sp
ee

d

Train1
Train2

Figure 7. Operation profiles under SAC.
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Figure 8. Difference of positions under SAC.
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Figure 9. Difference of speeds under SAC.

From the above analysis, it can be seen that under the control method combining SAC
and PID, the operation of the two trains in the virtual coupling always maintains a highly
consistent state, and the trajectories of these two trains are almost similar to each other. The
difference in positions and speeds stays within a small range.
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5. Conclusions

The development of virtual coupling technology provides solutions to the challenges
faced by urban rail transit systems. Train tracking control is a crucial component in the
operation of virtual coupling which plays a pivotal role in ensuring the safe and efficient
movement of trains within the train and along the rail network. In order to ensure the
high efficiency and safety of train tracking control in virtual coupling, this paper proposes
an optimization algorithm based on Soft Actor-Critic for train tracking control in virtual
coupling. First, the train tracking model in virtual coupling is constructed including the
relationship between the position and speed among trains in virtual coupling, as well as
the PID controller. Then, the reinforcement learning model based on SAC for train tracking
control is constructed. The train tracking control reward function is designed through the
distance and speed difference of the trains. The SAC algorithm is used to train the train
tracking reinforcement learning model. The experimental results show that the proposed
train tracking control algorithm based on SAC can improve the train tracking efficiency
and ensure the safety of virtual coupling.

The proposed method in this article can provide a new way for train tracking control
technology in virtual coupling. Combining with traditional control methods can help adjust
parameters in traditional methods, making train tracking control more efficient and safer.
However, this article lacks research on the robustness of the train tracking process, which
can be studied in the author’s future research.
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Appendix A

The process of the SAC algorithm is shown as follows:

Algorithm A1: SAC algorithm
1. Initialization: iter = 1, Q-function parameters θ1 and θ2, policy weights φ, replay

buffer D = ∅ and target network weights θ̄1 = θ1, θ̄2 = θ2
while iter ≤ MAXiter do

2. st = s0, timestep = 1
while timestep ≤ MAXtimestep do

3. sample at from policy πφ, at ∼ πφ(at | st)
4. obtain rt and st+1 by inputting at into the environment
5. store (st, at, rt, st+1) into D = [(s0, a0, r0, s1), (s1, a1, r1, s2), ...]
6. st = st+1
7. timestep = timestep + 1

end
8. updactor = 1
while updactor ≤ MAXupdactor do

9. update the Q-function parameters θ1 and θ2 by Equation (6)
10. update policy weights φ by Equation (7)
11. update temperature parameter α by Equation (8)
12. update target network weights θ̄1 and θ̄2 by θ̄i = τθi + (1− τ)θ̄i, for

i ∈ 1, 2
13. updactor = updactor + 1

end
end
14. Output θ1, θ2, φ
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