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Abstract: The claw-pole motor, known for its simple structure, is widely used in various fields due
to its cost competitiveness. However, a drawback of the fixed-stator-type claw-pole motor is its
vulnerability to eddy current losses. Therefore, this paper presents a single-phase claw-pole motor
applied as a motor for cooling fans, with the aim of reducing eddy current losses and improving
performance based on shape optimization, ultimately resulting in a single-phase claw-pole motor that
meets the desired performance. The validity of this approach is verified through 3D finite element
analysis (FEA).

Keywords: claw-pole; single-phase; eddy current loss

1. Introduction

Considering recent fossil fuel depletion and energy regulations, the importance of en-
ergy conservation is becoming increasingly prominent. As a result, motor development has
also been increasingly focused on high efficiency. High-performance rare-earth permanent
magnets, which can enhance the performance of motors in terms of torque, output density,
and efficiency, have emerged. This has led to active research in the field of permanent
magnet synchronous motors [1]. However, due to rising material costs caused by inflation,
an increase in the price of motors has become necessary. As a result, research efforts are
actively underway worldwide to produce cost-competitive products by various companies.
Because single-phase Drive ICs are more cost-competitive compared to three-phase Drive
ICs, many motor applications in household appliances frequently utilize single-phase
motors [2]. In pursuit of cost competitiveness, in addition to traditional radial flux motors,
claw-pole motors, which employ ring-type permanent magnets, are being researched due
to their simple and economical structure.

Motors that offer cost competitiveness often emphasize the importance of streamlining
the manufacturing process and reducing material costs. Claw-pole motors, for instance,
do not require laminated core plates, and their straightforward structure simplifies the
manufacturing process, making them suitable for cost savings [3,4]. Claw-pole motors
are fundamentally shaped like claws, and their classification is based on the position of
the “claw,” leading to a basic categorization into rotor-type and stator-type, reflecting the
attached name according to their core structure. In the case of the rotor-type, it features
a structure where the rotor contains coils or permanent magnets that are surrounded by
the claws, resembling the shape of the claw enveloping them. On the other hand, the
stator-type replaces the traditional motor’s shoes and teeth with the claws. In other words,
the claw surrounds the stator coils in this structure. In this context, the advantage is that
the coils surrounded by the claw can utilize a ring-type winding configuration based on
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the shape characteristics of the claw. Specifically, the claw-pole in the rotor is advantageous
for making multipolar configurations depending on the number of claws coupled to it,
using the slinky lamination method to increase the utilization of electrical steel sheets when
manufacturing the stator. However, due to the centrifugal force in the rotor, there is a
maintenance drawback, making it necessary to use permanent magnets in the rotor. The
brush and commutator structure has a cost disadvantage in maintenance. The materials
used in the fixed-type claw-pole motor widely used in alternators for automobiles can be
broadly classified into fixed and rotating parts. The stator consists of windings made of
copper and a core made of SPCC, while the rotor comprises permanent magnets and a
rotor core made of SPCC. Examining the core, a single-phase claw-pole motor does not
use laminated steel sheets. This means that when manufacturing the core, there is no need
for interlocking and welding for laminating, reducing the costs incurred in the lamination
process. Additionally, simplifying the winding structure of the claw-pole motor, which
can be seen as concentrating the teeth into one, simplifies the winding process, reducing
winding process costs. The fixed-type claw-pole motor is more economical and has a
structurally advantageous design for compact lightweight applications, making it suitable
for various applications such as optical drives, hard disks, motors for computer peripherals,
and drive motors. However, due to the structural characteristics in manufacturing the
claw and stator, laminated steel sheets cannot be used, making it highly susceptible to
eddy current losses. Recently, there has been active research in applying Soft Magnetic
Composite (SMC) materials and 3D printing technology to motors to reduce eddy current
losses. However, utilizing 3D printing technology can increase the manufacturing cost
of claw-pole, and if claw-pole is produced based on SMC material, it has a significant
drawback in terms of stiffness vulnerability. Therefore, a proposed approach is to mitigate
eddy current losses by shaping a claw-pole motor without stacking SPCC steel plates,
preserving the robust mechanical structure, which is an inherent advantage of claw-pole
motors. Therefore, this paper proposes a shape for reducing eddy current losses in a
single-phase fixed-type claw-pole motor, targeting its application for cooling the fan motor
in microwave ovens. This paper is composed of three main parts. In Section 1, the paper
provides an explanation of the operating principles and manufacturing methods of the
stator-type claw-pole motor. Section 2 describes the specifications of existing motors used
in microwave ovens and conventional ovens and discusses the characteristics of these
motors when converted to stator-type claw-pole motors. Section 3 presents a formula for
eddy current losses and proposes a shape for reducing eddy current losses through the
analysis of the magnetic path and saturation in claw-pole motors. Furthermore, claw-pole
motors have a shape that is not constant in the axial direction, unlike typical motors, and
the magnetic paths generated in the rotor and stator of claw-pole motors occur in both
radial and axial directions. Therefore, the validity of the proposed model was verified
using 3D finite element analysis (FEA) [5].

2. Characteristics of Single-Phase Stator Claw-Pole Motor and Driving Principle

Figure 1 provides an explanation of the shape of the stator-type claw-pole motor. In
Figure 1a, you can see the structure that includes the rotor, and in Figure 1b, the shape of the
stator core is visible. As evident from the figure above, the rotor exhibits a shape similar to
that of a surface permanent magnet synchronous motor (SPMSM) with permanent magnets
attached to the back yoke. The stator core consists of components resembling claws and
a stator back yoke, creating a slotted structure. Within these slots, there is a ring-type
winding, and the number of stacked stator cores determines the phase count, resembling a
configuration where cans are stacked, hence the term “can stack motor”. In this paper, as it
is based on single-phase motors, there is only one stator, as shown in Figure 1b.
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motor using the deep drawing method. A part of the stator core is bent and extended 
using a punch to create the claw shape. However, SPCC is a material that is susceptible to 
magnetic saturation due to its lower permeability and saturation level compared to elec-
trical steel sheets. In addition, for the non-laminated steel plates, performance varies sig-
nificantly depending on the thickness. To interpret eddy current losses more accurately, 
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Figure 1. Shape of the single-phase stator-type claw-pole motor: (a) overall shape; (b) stator core shape.

The structure of the stator is notably different from the typical core-type motor, and
because of these characteristics, laminated core plates cannot be used. In the manufacturing
of claw-pole motor stators, the deep drawing method is employed. Deep drawing is a
process that essentially involves pressing a punch onto the sheet metal surface to shape
it according to the mold’s form. The process of deep drawing is categorized as “deep” if
the depths of pressing reach a diameter of the part which is to be formed [6,7]. Due to this
manufacturing process, laminated core plates cannot be used for the stator core. Instead, a
material with excellent machinability and formability is required, which is why steel plate
cold commercial (SPCC), a type of cold-rolled steel product, is chosen as the material for
the stator core. Figure 2 illustrates the stator manufacturing process of a claw-pole motor
using the deep drawing method. A part of the stator core is bent and extended using a
punch to create the claw shape. However, SPCC is a material that is susceptible to magnetic
saturation due to its lower permeability and saturation level compared to electrical steel
sheets. In addition, for the non-laminated steel plates, performance varies significantly
depending on the thickness. To interpret eddy current losses more accurately, the analysis
is conducted based on the fill factor, and to ensure convergence, the analysis is carried out
for a minimum of two cycles. The electromagnetic field analysis software used in this paper
is Jmag version 22.
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Figure 2. The concept of manufacturing the claw using deep drawing processing.

In the case of a single-phase motor, it differs from a three-phase motor by employing
a commutator system. While the three-phase motor rotates in accordance with the rotor
system during operation, the single-phase motor follows the commutator system. How-
ever, the single-phase motor encounters starting issues due to the commutator system.
Overcoming the initial counter-torque and rotating in line with the commutator system
pose challenges to the starting characteristics compared to the three-phase motor. Even if
it successfully generates a torque greater than the counter-torque and starts, the reverse
magnetic flux from the commutator system causes the single-phase motor to initially ro-
tate in one direction and then vibrate without ultimately achieving stable operation. To
compensate for these starting characteristics, a special structure is required. In this paper,
an asymmetric air gap structure is proposed to mitigate the dead point by introducing a
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phase difference between the cogging torque and the torque. When there is only one pole
of permanent magnets on the claw, the magnetic path is as follows: permanent magnet
(N)—claw (N)—stator yoke—claw (S)—permanent magnet (S). The magnetic flux entering
from the permanent magnet’s south pole exits through the internal path to the permanent
magnet’s north pole. When the rotor has moved by half a pitch, and there are permanent
magnets with opposite poles on the claw, the magnetic path follows this route: permanent
magnet (N)—claw (N)—permanent magnet (S) [8–12] (Figure 3). In this case, it is evident
that the magnetic path has a shorter route compared to when one pole of a permanent
magnet faces the claw. As a result, due to the ever-changing magnetic path based on the
rotor’s position in the claw-pole motor, fluctuations in magnetic stored energy occur. These
differences in magnetic stored energy drive the operation of the claw-pole motor.
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3. Basic Design of Single-Phase Stator-Type Claw-Pole Motor

To undertake the basic design of a single-phase claw-pole motor, it is essential to
examine the shape and specifications of an existing cooling fan motor, as shown in Figure 4.
Figure 4a represents the mass-produced model of the existing cooling fan motor, while
Figure 4b is the three-phase model developed for cost savings. In the case of conventional
induction motors, the difficulty in speed control led to the use of 11 different motors,
resulting in disadvantages for maintenance and upkeep (Table 1). As a solution, research
has been conducted to transition to permanent magnet (PM) motors. Therefore, for size
constraints, the stacking is 15 mm, the same as the existing inductor, the outer diameter is
39 mm for a motor with a circular shape considering the shaft, and the target power is 5.5 W,
the same as the existing cooling fan motor. In this case, the target motor is a three-phase
SPMSM (surface permanent magnet synchronous motor) that uses the same permanent
magnet as a reference, so we will change it to a single-phase claw-pole motor.

Actuators 2023, 12, x FOR PEER REVIEW 4 of 19 
 

 

compensate for these starting characteristics, a special structure is required. In this paper, 
an asymmetric air gap structure is proposed to mitigate the dead point by introducing a 
phase difference between the cogging torque and the torque. When there is only one pole 
of permanent magnets on the claw, the magnetic path is as follows: permanent magnet 
(N)— claw (N)— stator yoke—claw (S)— permanent magnet (S). The magnetic flux enter-
ing from the permanent magnet’s south pole exits through the internal path to the perma-
nent magnet’s north pole. When the rotor has moved by half a pitch, and there are perma-
nent magnets with opposite poles on the claw, the magnetic path follows this route: per-
manent magnet (N)— claw (N)— permanent magnet (S) [8–12] (Figure 3). In this case, it 
is evident that the magnetic path has a shorter route compared to when one pole of a 
permanent magnet faces the claw. As a result, due to the ever-changing magnetic path 
based on the rotor’s position in the claw-pole motor, fluctuations in magnetic stored en-
ergy occur. These differences in magnetic stored energy drive the operation of the claw-
pole motor. 

 
(a) (b) 

Figure 3. Claw polarity and magnetic field direction in a stator-type claw-pole motor based on the 
current direction: (a) clockwise current input; (b) counterclockwise current input. 

3. Basic Design of Single-Phase Stator-Type Claw-Pole Motor 
To undertake the basic design of a single-phase claw-pole motor, it is essential to 

examine the shape and specifications of an existing cooling fan motor, as shown in Figure 4. 
Figure 4a represents the mass-produced model of the existing cooling fan motor, while 
Figure 4b is the three-phase model developed for cost savings. In the case of conventional 
induction motors, the difficulty in speed control led to the use of 11 different motors, re-
sulting in disadvantages for maintenance and upkeep (Table 1). As a solution, research 
has been conducted to transition to permanent magnet (PM) motors. Therefore, for size 
constraints, the stacking is 15 mm, the same as the existing inductor, the outer diameter is 
39 mm for a motor with a circular shape considering the shaft, and the target power is 5.5 
W, the same as the existing cooling fan motor. In this case, the target motor is a three-
phase SPMSM (surface permanent magnet synchronous motor) that uses the same per-
manent magnet as a reference, so we will change it to a single-phase claw-pole motor. 

  
(a) (b) 

Figure 4. Existing cooling fan motor shape and size specifications: (a) single-phase induction motor
shape; (b) 3-phase motor shape.



Actuators 2023, 12, 451 5 of 18

Table 1. Performance specifications by type of existing motor.

Parameter Value Unit

Model Single-phase inductor 3phase BLDC -
Size 61 × 60 × 15 34 × 11.2 mm

Power 5 5 W
Speed 2950 2950 r/min
Torque 15 15 mN·m

Current density 7.96 7.96 Arms/mm2

To select the number of poles for the single-phase claw-pole motor, a comparative
analysis is carried out for unloaded eddy current losses and back electromotive force
(EMF) from 4 poles to 10 poles. For the single-phase claw-pole motor, considering a 1:1 ratio
between the poles of permanent magnets and claws, the comparative analysis starts from four
poles. It is important to consider that motors with more than 12 poles at the current size face
manufacturing challenges, so a comparison of back electromotive force (EMF) is carried out
for up to 10 poles under unloaded conditions. In this case, the back electromotive force (EMF)
increases up to 10 poles, which is advantageous for performance. However, it is essential to
note that the eddy current losses also increase. Based on the results in Figures 5 and 6, models
with eight poles or fewer are selected to balance performance and eddy current losses.
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To derive the optimal size of the claw, the no-load performance is analyzed by decreas-
ing and increasing the pole pitch angle by 4 [deg] from 45 [deg], which is the maximum
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angle of one pole of a permanent magnet on an eight-pole basis. The claw top angle is
defined as half of the claw bottom angle; the claw top and claw bottom are shown in
Figure 7, and the no-load electromotive force and eddy current losses are shown in Figure 8.
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Figure 8 shows that at a pole pitch angle of 45 [deg], the no-load eddy current loss
has a sharp change in slope, and the eddy current loss has an inflection point. Based on
this, when analyzing based on 45 [deg], the no-load electromotive force decreases by 2 [%],
and eddy current loss increases by 3.2 [%] for 41 [deg], which is a decrease of 4 [deg].
For 49 [deg], an increase of 4 [deg], the no-load electromotive force increases by 1.5 [%]
and eddy current losses increase by 4.19 [%], so the pole pitch angle of all single-phase
claw-pole motor models is selected as the claw bottom angle. In addition, in the case of
a motor with a laminated steel plate, the loss characteristics are very different depending
on the structure and thickness of the core. Therefore, it should be considered as an eddy
current loss calculated based on the conductivity, and the analysis time is very long, so the
eddy current loss and air gap asymmetry structure are not considered when performing
the tendency analysis. The basic design of a single-phase claw-pole motor within the same
size limit as the conventional motor is shown in Figure 9, and the performance is shown in
Table 2.
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Table 2. Performance of a claw-pole motor with the same specifications as a conventional three-phase
BLDC motor.

Parameter Value Unit

Power 3.63 W
Speed 2950 r/min
Torque 12.38 mN·m
Current 0.486 Arms

Current density 7.96 Arms/mm2

Voltage 13.57 V
Number of turns 129 -
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When the motor is the same size as the existing model, it does not meet the target
torque of 15 [mN·m]. Therefore, a design is needed to increase the total magnetic loading
and total electric loading for torque enhancement. The equation related to total magnetic
loading is the same as Equation (1), and the equation related to total electric loading is
expressed in Equation (2).

Total magnetic loading = 2pφg [T] (1)

Total electric loading = IaZ [Ampere Conductor] (2)

In Equation (1), p represents the pole pair number, and φg denotes the average gap
flux per pole, and in Equation (2), Ia represents the phase current, while Z represents the
total number of conductors in the stator. As can be seen from the equations, increasing
the electrical and magnetic loadings requires an increase in size. Therefore, an analysis of
performance characteristics in relation to the increase in stack length and outer diameter
is conducted. The shape characteristics are analyzed by adjusting the stack length and
outer diameter based on the same volume and magnet usage to design a single-phase
claw-pole motor that meets the target performance (Table 3). Figure 10 shows the shapes
and magnetic saturation densities of each model, with the extent of size increase expressed
as a percentage. Figure 8a increased the stack length by 2.3 mm, and Figure 8b increased
the outer diameter by 3.32 mm compared to the base model.

Table 3. Performance comparison of the increased stack length model and increased outer diame-
ter model.

Parameter Value Unit

Model Increased stack length Increased outer
diameter -

Power 5.55 5.5 W
Speed 2950 2950 r/min
Torque 18.6 18.43 mN·m
Current 0.486 0.486 Arms

Current density 7.96 7.96 Arms/mm2

Voltage 21.53 22.02 V
Number of turns 182 197 -

Increasing the stack length and outer diameter resulted in an increase in the slot
cross-sectional area, and, with a constant slot fill factor, the number of turns also increased.
While the model with increased stack length had 15 more turns compared to the model
with increased outer diameter, the increased stack length also led to an increase in the
effective cross-sectional area for generating torque, resulting in an overall torque increase.
Therefore, the design will proceed based on the model with increased stack length. In
the case of the single-phase claw-pole motor, there are performance losses due to eddy
current losses and uneven air gap, so the analysis will be carried out with performance
margins taken into account considering the maximum stack length within the same volume
and then analyzing the eddy current losses. Figure 11 shows the shape and magnetic flux
density distribution of the single-phase claw-pole motor with the same stack length as the
conventional induction motor. Table 4 displays the performance of the model with the
maximum stack length.
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Table 4. Performance of a single-phase claw-pole motor with maximum stacking length.

Parameter Value Unit

Model Maximum stacking length -
Power 1.79 W
Speed 2950 r/min
Torque 5.81 mN·m
Current 0.486 Arms

Current density 7.96 Arms/mm2

Voltage 20.54 V
Number of turns 216 -

Claw eddy current loss 1.35 W
Stator back yoke eddy current loss 2.41 W
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The model with the maximum stack length does not meet the target performance
when considering the eddy current loss. To achieve the desired performance, it is necessary
to design for an increase in the field strength. The sum of the magnetic flux from permanent
magnets and the demagnetizing effect caused by the stator current generates the eddy
current. To reduce the no-load saturation, electrical loading is maximized to consider the
eddy current loss. To maximize the electrical loading, the magnet thickness and the rotor
back yoke thickness are minimized. To improve the magnetic flux density, the stator back
yoke thickness is increased from the existing 1.5 mm to 1.8 mm. Performance comparisons
and analyses are conducted for models with up to eight poles (Figure 12). At this point, the
wider section of the claw is set to be equal to the pole pitch, while the narrower section is
configured to be half of the pole pitch.
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8-pole model.
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In Table 5, comparing the four poles with the least loss and the eight poles with the
most loss, it can be seen that the eddy current loss increases by 64.3%. However, in the
single-phase claw-pole motor of this paper, the claw occupies half of the pole pitch below
and the upper part as much as the pole pitch, so the smaller the number of poles, the
smaller the length of the physical claw. As the number of poles increases, the torque also
increases, but once the number of poles exceeds a certain point, the extent of leakage
between the poles increases, leading to a decrease in torque. Therefore, based on the
table, we can observe that the torque increases by 72.4% when comparing the four-pole
configuration. Considering the target performance and performance reduction due to the
asymmetric structure of the air gap, the eight-pole model appears to be the most suitable
choice. Therefore, we select the eight-pole model to reduce eddy current losses.

Table 5. Performance comparison of single-phase claw-pole motor by pole numbers.

Parameter Value Unit

Model 4 Poles 6 Poles 8 Poles -
Rotor and stator core SPCC -

Magnet HMG-12L -
Outer diameter 34 mm

Stack length 15 mm
Claw bottom angle 90 60 45 deg

Power 3.32 4.6 5.72 W
Speed 2950 2950 2950 r/min
Torque 10.74 14.89 18.52 mN·m
Current 0.486 0.486 0.486 Arms

Current density 7.96 7.96 7.96 Arms/mm2

Voltage 23.79 31.57 38.05 V
Number of turns 398 398 398 -

Claw eddy current loss 0.82 1.1 1.31 W
Stator back yoke eddy

current loss 1.62 2.12 2.7 W

4. Reduction in Eddy Current Loss in Single-Phase Stator-Type Claw-Pole
Motor Design
4.1. Reduction in Eddy Current Loss Based on the Rotor Under-Hang Model

Most single-phase claw-pole motors, as seen in Figure 13, exhibit a magnetic flux path
where magnetic resistance is relatively low, mainly occurring in the claw and the adjacent
stator back yoke.
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saturation flux density; (b) magnetic path.

In other words, most of the eddy current losses are directly affected by changes in
magnetic flux over time, occurring primarily in the lower portion of the claw with relatively
low magnetic resistance and in the stator yoke adjacent to the claw. When considering the



Actuators 2023, 12, 451 12 of 18

reduction in eddy current losses in the single-phase claw-pole motor model, the formula
for reducing eddy current losses is similar to Equation (3).

Pe = KeB2
max f 2t2V [W] (3)

In Equation (3), Pe represents eddy current loss, Ke is the eddy current factor, Bmax
denotes the maximum magnetic flux density, f stands for frequency, t indicates material
thickness, and V represents volume. To reduce eddy current losses, the physical length
of the rotor’s permanent magnets is reduced to decrease the values of t and V in Equa-
tion (3). An under-hang structure is implemented to reduce the rotor’s lamination length
by the thickness of the stator back yoke, as illustrated in Figure 14, and the performance
specifications are provided in Table 6.
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Figure 14. The model shape and magnetic flux saturation density of the rotor under-hang application:
(a) rotor under-hang model shape; (b) rotor under-hang model magnetic flux saturation density.

Table 6. Specifications of the rotor under-hang application model performance.

Parameter Value Unit

Model Rotor under-hang application -
Power 5.61 W
Speed 2950 r/min
Torque 18.2 mN·m
Current 0.486 Arms

Current density 7.96 Arms/mm2

Voltage 37.66 V
Number of turns 398 -

Claw eddy current loss 1.3 W
Stator back yoke eddy current loss 2.49 W

When the rotor under-hang structure was applied, the torque decreased by 1.73%
compared to the conventional eight-pole model. However, it was found that total core loss
can be reduced by 5.49%. Therefore, using this model as a reference, an asymmetrical air
gap structure is applied to shift the cogging torque phase and secure the starting torque.
A single-phase motor, unlike a three-phase motor, utilizes a squirrel cage rotor. In the
case of a single-phase PM BLDC motor with a uniform air gap, a dead zone occurs where
the zero-torque positions of the pull-in torque and cogging torque coincide, rendering it
essentially incapable of self-starting [13–16]. Therefore, an asymmetric air gap shape is
applied to shift the zero-point position of the cogging torque and the zero-point torque,
allowing for self-starting. To meet voltage limitations, the wire density is increased based
on the same current density criterion. The shape and torque phase shift of the single-phase
claw-pole motor with an asymmetric air gap structure are depicted in Figure 15, and the
performance specifications are presented in Table 7.
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metrical air gap structure shape; (b) conventional torque waveform; (c) torque waveform when the
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Table 7. Performance specifications of the asymmetrical air gap applied model.

Parameter Value Unit

Model Asymmetrical air gap
Application -

Power 5.32 W
Speed 2950 r/min
Torque 17.21 mN·m
Current 1.76 Arms

Current density 7.96 Arms/mm2

Voltage 9.33 V
Number of turns 110 -

Claw eddy current loss 0.86 W
Stator back yoke eddy current loss 1.71 W

4.2. Reduction in Eddy Current Losses Based on Slit Structure

Through Equation (3), it can be observed that the eddy current losses are proportional
to the square of the conductor thickness. To reduce eddy current losses, we consider the
saturation and magnetic path of the single-phase claw-pole motor. As shown in Figure 16,
we insert air insulation into the stator core and reduce the conductor thickness. The eddy
current path of the single-phase claw-pole motor is illustrated in Figure 17, showing the
application of two air insulations to reduce the conductor thickness to 1/3.
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Figure 17. Eddy current path in the single-phase claw-pole motor.

When applying air insulation and the slit structure, it is essential to ensure that it does
not interfere with the magnetic path of the stator and account for the core’s saturation. In
the claw-pole motor, the eddy current path, as described in Figure 17, is directly influenced
by the time rate of change in the magnetic field and is relatively larger in the cross-sectional
area, resulting in the highest magnetic resistance in the claw, stator back yoke, and stator
areas between the claws. Therefore, identical length and thickness slit structures are applied
to these regions. Based on the location of the applied slits for air insulation, different shapes
of the single-phase claw-pole motor are proposed, and the eddy current characteristics are
examined. Four types of slits, labeled as slit 1, 2, 3, and 4, are compared depending on their
application positions. Slit 1 is applied to the claw, slit 2 to the stator yoke adjacent to the
claw, slit 3 to the stator between the claws, and slit 4 combines the most effective slit, slit 1,
and slit 3 to reduce eddy current losses. By inserting air insulation, it generates the time
rate of change in the magnetic field, which is the source of the eddy current. This results
in an increase in electrical resistance per unit area, leading to a reduction in eddy current
losses. As a result, the stator core can be effectively stacked similar to a conventional radial
flux PM motor, and the saturation is depicted in Figure 18.
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Figure 18. Magnetic saturation of the single-phase claw-pole motor with air insulation applied in
different locations: (a) slit 1; (b) slit 2; (c) slit 3; (d) slit 4.

Through Table 8, it can be observed that the eddy current losses are reduced based on
the location of air insulation, resulting in an increase in torque. In the case of the claw-pole
model, the performance decrease due to eddy current losses is significant, so it is evident
that performance increases when eddy current losses are reduced. Comparing the slit 1,
2, 3, and 4 models to the models with asymmetrical air gaps and under-hang application
in Table 8, each of them show a reduction in eddy current losses by 1.17%, 6.61%, 15.95%,
and 7.39%, respectively, with an increase in torque by 1.88%, 2.44%, 4.53%, and 3.63%, as
illustrated in Figure 19.

Table 8. Performance specifications based on the air insulation location in the single-phase claw-
pole motor.

Parameter Value Unit

Model Slit 1 Slit 2 Slit 3 Slit 4 -
Power 5.41 5.45 5.56 5.51 W
Speed 2950 2950 2950 2950 r/min
Torque 17.53 17.63 17.99 17.83 mN·m

Torque increment ratio 1.88 2.44 4.53 3.36 %
Current 1.76 1.76 1.76 1.76 Arms

Current density 7.96 7.96 7.96 7.96 Arms/mm2

Voltage 9.54 9.41 9.5 9.44 V
Number of turns 110 110 110 110 -

Claw eddy current loss 0.71 0.84 0.86 0.68 W
Stator back yoke eddy

current loss 1.83 1.56 1.3 1.7 W
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Figure 19. Performance analysis based on the slit models: (a) eddy current loss comparison; (b) torque
comparison.

In the case of slit 4, even though it combines two of the most effective slit models, the
increase in the number of air insulations leads to an increase in stator saturation due to the
reduction in the cross-sectional area of the magnetic path. As a result, it is evident that the
eddy current losses increase compared to the slit 3 model. Therefore, when applying air
insulation, it is essential to consider the magnetic path and saturation. Furthermore, when
comparing the eddy current losses of the eight-pole model from Table 4 with the most
effective slit 3 model in reducing eddy current losses, it is confirmed that the slit 3 model
reduces eddy current losses by 46.15%. This has resulted in the derivation of a model that
satisfies the target output of 5.5 W based on 3D FEA.

5. Conclusions

In this paper, a motor for a three-phase cooling fan was changed to a single-phase
claw-pole motor to meet the size limitations of the existing inductor. To compensate for the
disadvantage of the difficult maintenance and repair of the inductor, it was replaced by a
three-phase BLDC, so a three-phase BLDC was selected as the target motor and the basic
design was carried out. Most of the eddy current losses occur in the lower part of the claw
and the stator yoke adjacent to the claw, where the magnetic resistance is relatively small
and directly receives the change in magnetic flux with respect to time, so in consideration of
this, the eddy current losses were reduced by relatively decreasing t and V in the equation
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of eddy current loss by applying a rotor under-hang structure. The eddy current reduction
rate was reduced by 5.49% compared to the torque reduction rate of 1.73%, and a reasonable
result was obtained. Air insulation was inserted to further reduce eddy current losses. In
the case of the slit 4 model, even though the slit 1 and slit 3 models were combined, the
eddy current loss increased due to the increase in stator saturation due to the decrease in
the cross-sectional area of the flux path as the number of slits increased. Therefore, the slit
3 model is the most effective in reducing eddy current losses as the torque increased by
4.53% and the eddy current losses were reduced by 15.95% compared to before inserting air
insulation. A model satisfying the target performance was derived and validated through
3D FEA.
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