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Abstract: Mechanical system reliability analysis constitutes a primary research focus in the field of
engineering. This study aims to address the issue of complex mechanical systems with intricate
mechanisms and nonlinear reliability equations that are challenging to solve. To this end, we present
a reliability analysis and optimization methodology that merges the response surface and sensitivity
analysis methods. A comprehensive formation of reliability assessment and optimization of complex
mechanical systems is achieved by creating a response surface model to fit the complex state function
and solving the reliability parameters, followed by an error sensitivity analysis to determine the
mechanical system’s reliability adjustment strategy. Finally, these methods are applied to a cylindrical
material transport device to preliminarily realize the reliability assessment and average reliability
optimization goals. The study’s findings may offer a theoretical framework and research opportunities
to evaluate and enhance the reliability of intricate mechanical systems.

Keywords: impact load; complex mechanical system; response surface method; sensitivity analysis;
reliability analysis

1. Introduction

The mechanical system comprises various sub-systems that coordinate through con-
tinuous and intermittent movements to execute related operations. Institutional move-
ment errors gradually accumulate during the continuous working process and become
interdependent, diminishing the overall reliability level. Hence, the accuracy of a single
institutional movement significantly impacts the system’s reliability. Reliability analysis
and optimization of mechanical systems has long been a key research topic in engineering.
As science and technology continue to advance and the market demands higher product
quality, the reliability of mechanical systems has become a crucial measure for assessing
performance, cutting down the incidence of failures, and minimizing maintenance ex-
penses. However, the presence of numerous uncertainties in mechanical systems, including
variations in material properties, manufacturing process errors, and fluctuations in the
working environment, has made it a daunting task to locate effective and reliable means
for optimizing reliability based on mechanical equipment’s features.

Traditional reliability analysis methods, such as failure mode and effects analysis
(FMEA) and the reliability block diagram (RBD), can evaluate the reliability of mechan-
ical systems to a certain extent. However, analyzing and optimizing complex systems
for reliability can often present challenges. For the analysis of the reliability of complex
systems, numerous methods have been widely employed by researchers: An et al. per-
formed a validation of a first-order reliability method for suspension analysis to determine
the uncertainty features that have the most significant influence on suspension structure
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reliability [1]. Lee presented a method for second-order reliability analysis using a non-
central generalized chi-square distribution to address the limitations of the current SORM
techniques [2]. Meanwhile, Chang developed a hierarchical response surface modeling
and reliability analysis method based on composite functions [3], capable of precisely
characterizing complex mechanical system performance and assessing system reliability
and fault distribution. Tang developed a technique utilizing graph theory and Boolean
functions to evaluate the dependability of mechanical systems [4]. Li et al. presented
standby tasks and hybrid redundancy strategies in their analysis and optimization of multi-
stage mission systems (PMS) to effectively enhance the reliability and efficiency of mission
systems in the aerospace industry [5]. Echard et al. introduced an on-implementation
active learning and Kriging-based importance sampling method, AK-IS, to address the
challenge of computing reliability models for intricate structures. The AK-IS method is
founded on the previously proposed AK-MCS algorithm [6,7]. Depina et al. introduced a
metamodel line sampling (MLS) reliability analysis method for reducing the computational
requirements associated with the reliability analysis of engineering structures, providing
an effective way to analyze the reliability of engineering structures [8]. The works cited
above have contributed various methods for analyzing the reliability of complex structures.
However, these works are primarily concerned with static reliability analysis and overlook
the kinematics and dynamic behavior of the structure. Therefore, they are not suitable
for dynamic reliability analysis and optimization of the structure. Numerous analytical
techniques have been developed by researchers to perform structural dynamic reliability
analysis. For instance, Yang and colleagues presented a method for calculating and evaluat-
ing the kinematic reliability of industrial robots through motion function modules (MFMs)
in response to the limitations of existing robot kinematic reliability analysis methods in
terms of accuracy and efficiency [9]. Chen developed a practical method for evaluating the
kinematic reliability of gear mechanisms over time using a sequential decoupling strategy
and a saddle point approximation method [10]. Zhang et al. proposed a new approach
to assess the reliability of kinematic trajectory accuracy in industrial robots by combining
the sparse mesh technique, saddle point approximation method, and copula function [11].
Huang et al. proposed a reliability analysis method for localization accuracy based on dif-
ferential kinematics and saddle point approximation for evaluating the effect of kinematic
parameter uncertainty on robot motion [12]. Zhuang proposed an efficient wear prediction
method in the framework of multi-body dynamics and combined it with Monte Carlo hair
to analyze the kinematic reliability of a two-axis actuator mechanism with non-uniform
joint clearance over time [13]. Zhao et al. developed a discrete optimization model with
two objectives based on support vector machine training and error model computation
and proposed an enhancement method for quantitatively adjusting the size of the support
links of a planar closed-loop over-constrained expandable structure [14]. Weng et al. pro-
posed an efficient post-processing simulation method for the stochastic structural reliability
analysis: the conditional extreme value distribution (CEVD) method [15]. These methods
have made many contributions in performing structural dynamic reliability analysis and
provided a guiding direction for the reliability assessment of complex mechanical systems,
but there is no corresponding reliability analysis or optimization method for specific com-
plex mechanical systems. Marek Lampart and his colleagues examined the correlation
between mechanism collisions and kinematic properties by integrating and contrasting
the empirical outcomes of conveyor chaos with computer-aided simulation findings [16].
Qiang Tian et al. offer a thorough exploration of the literature pertaining to the analytical,
numerical, and experimental methods applicable to studying the kinematics and dynamics
of multi-body mechanical systems with gap joints. Furthermore, they provide a detailed
analytical comparison of the most frequently used approaches for modeling gap joints in
both planar and spatial multi-body mechanical systems [17]. Francesco Villecco presents a
technique based on the maximum entropy in metric space (MEMS) that is useful in virtual
prototyping and optimizing the design of mechanical systems [18]. These studies unveil
numerous novel methodologies in mechanical system dynamics, kinematics simulation
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techniques, and analytical methods. They offer a technical foundation and research con-
cepts for experimental and simulation-based investigation in the reliability assessment and
optimization analysis of intricate mechanical systems.

The main objective of this study is to explore an effective means for reliability opti-
mization, i.e., a reliability analysis and optimization method based on the response surface
method and sensitivity analysis method (RSM-SAM). The approach combines the response
surface method (RSM) with the sensitivity analysis method (SAM). Second-order poly-
nomials are used to fit the mechanical system reliability state function. Subsequently, a
simulation example is combined with the SAM to analyze the effects of motion errors in the
mechanism. We employ the SAM to examine the impact of motion errors on mechanical
system reliability and then determine the optimal approach to improve system reliability
using sensitivity analysis and simulation results. Using a cylindrical material transfer
system exposed to shock vibration as an illustration, this approach analyzes the transfer
system’s reliability in a specific working condition. The accuracy of the mechanism’s
motion error is adjusted iteratively based on sensitivity analysis results to ensure that the
mechanical system’s reliability meets requirements. As a demonstration and verification
of this methodology, this study serves as a valuable reference for researching reliability
analysis and optimization of intricate mechanical systems. Additionally, it offers reference
value for quantifying the level of reliability related to complex mechanical systems in
diverse working conditions.

2. Basic Theories

Mechanical systems rely on the coordinated operation of multiple mechanisms, and
the handover error between the mechanisms is the main factor affecting the reliability,
which is the basis used to assess the reliability of mechanical systems. In order to address
the difficult problem of reliability assessment of complex mechanical systems, the reliability
of mechanical systems can be characterized by establishing a reliability state function on
the basis of kinematics and dynamics error analysis, reducing the difficulty of solving the
highly nonlinear reliability equations of complex mechanical systems using the response
surface method, and calculating the reliability parameter using the primary second-order
method of moments, to achieve the purpose of reliability assessment. In addition, with
the help of sensitivity analysis to obtain the degree of influence of each error quantity
on the reliability of the system, combined with the response surface method, reliability
optimization can be achieved by adjusting the parameters one by one.

2.1. Reliability State Function

According to the definition of mechanical system reliability in [19], it pertains to the
ability to perform the specified function under the specified conditions and within the
specified time. Consequently, the primary problem in studying the reliability of mechanical
systems is to determine the limit state of the mechanism, i.e., whether the positional error
of the mechanism after transmission meets the allowable error requirements.

Taking a transport device as an example, the transport carrier position error accumu-
lates gradually along the transport path, and the mode of its center-of-mass position error
can be expressed as:

‖e‖ =
√

ex + ey + ez (1)

where the error vector of the transit system is represented by e, while ex, ey, and ez denote
the error components of the transport system in the x-, y-, and z-directions, respectively.

Define the maximum allowable error of the transit accuracy as I0, and the state function
of the reliability of the transport system is expressed as:

H = I0 − ‖e‖ = g(u) (2)
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where g(·) is the functional, u is a combination vector of various error vectors generated
during the operation of the mechanical system, and the system operating state can be
characterized as: 

H = g(u) > 0 Reliable state
H = g(u) < 0 Failure state
H = g(u) = 0 Critical state

(3)

H in Equation (3) is the system reliability state function, which contains all the random
error components in u. H = g(u) = 0 is the limit state equation and the reliability index
is defined as β, which shows how many times the functional’s mean value’s standard
deviation is away from the failure point. Statistically, the standard deviation is used to
gauge the “distance” between the functional function’s mean value and the failure limit.
The greater the “distance”, the less likely a failure will occur, resulting in a more dependable
system [20]. Therefore, there are

β =
µH
σH

=
E[g(u)]√
Var[g(u)]

(4)

in Equation (4), µH represents the mean value of H, while σH represents the root-mean-
square value of H.

Assuming that each of the random variables follows a normal distribution, the system
failure probability Pf and reliability R can be expressed as Equations (5) and (6), where
Pf is the system failure probability, R is the reliability, and Φ(·) is the standard normal
distribution function.

Pf = Φ(−β) (5)

R = Φ(β) (6)

2.2. First-Order Second-Moment (FOSM) Method

The first-order second-moment (FOSM) method is a computational technique utilized
when the functional of a failure mode is explicitly defined. The fundamental concept
behind the FOSM [21,22] involves using Taylor’s formula to linearly expand the functional
at the mean point. It also utilizes data from the first- and second-order moments of the
underlying random variable to derive the reliability index. The nonlinear state function is
expanded using the Taylor series up to the primary term based on the first- and second-
order moments of the underlying random variable. Subsequently, the mean and standard
deviation of the state function are approximated.

Assuming that the design acceptance point is u∗ and there exists u∗ = [u1
∗, u2

∗, · · · , un
∗]T,

the limit state equation can be acquired by linearizing the expansion.

H ≈ g(u1
∗, u2

∗, · · · , un
∗) +

n

∑
i=1

(ui − ui
∗)

∂H
∂ui
|u∗ (7)

since u∗ is on the critical surface of the limit state function, there is g(u1
∗, u2

∗, · · · , un
∗) = 0.

When the individual random error components are correlated with each other, the mean
and root-mean-square values of H can be obtained:

µH =
n

∑
i=1

(µui − ui
∗)

∂H
∂ui
|u∗ (8)

σH =

[
n

∑
i=1

n

∑
j=1

(
∂H
∂ui

∂H
∂uj

)
u∗

ρijσui σuj

] 1
2

=
n

∑
j=1

αi

(
∂H
∂ui

)
u∗

σui (9)
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αi =

n
∑

j=1

(
∂H
∂uj

)
u∗

ρijσuj[
n
∑

i=1

n
∑

j=1

(
∂H
∂ui

∂H
∂uj

)
u∗

ρijσui σuj

] 1
2

(10)

When each random error component is independent of the others, the mean and
root-mean-square values of H are:

σH =

[
n

∑
i=1

(
∂H
∂ui
|u∗ · σui

)2
] 1

2

=
n

∑
i=1

αi

(
∂H
∂ui

)
u∗

σui (11)

αi =

∂H
∂ui
|u∗ ·σui[

n
∑

i=1

(
∂H
∂ui
|u∗ · σui

)2
] 1

2
(12)

the sensitivity coefficient, denoted by αi, represents the degree of influence of the i-th
random error component ui on the root-mean-square value of the state function in the
equation above. Additionally, ρij denotes the correlation coefficient between ui and uj,
while σui and σuj are representative of the root-mean-square values of ui and uj, respectively.
Substitute Equations (11) and (12) into Equation (4) to obtain:

β =
µH
σH

=

n
∑

i=1
(µui − ui

∗) ∂H
∂ui
|u∗

n
∑

j=1
αi

(
∂H
∂ui

)
u∗

σui

(13)

there is
ui
∗ = µui − βαiσui (14)

the µui and σui in the equation represent the mean and root-mean-square of the random
error components, respectively.

In general, the calculation of the reliability index for complex mechanical systems can
use the average value of the random error components as the initial value, represented as
ui

(0)∗ = µui , with |β(k) − β(k−1)| ≤ ε as the condition for convergence, and ε typically set at
1%. Please refer to Figure 1 for the iterative solution process.

During the iterative solution process, since u∗ does not fall on the critical surface
H = 0, there are

g(u1
∗, u2

∗, · · · , un
∗) 6= 0 (15)

and

µH = g(u1
∗, u2

∗, · · · , un
∗) +

n

∑
i=1

(ui − ui
∗)

∂H
∂ui
|u∗ (16)

This returns the value β(k) for the iterative process:

β(k) =
µH
σH

=

g
(

u1
(k)∗, u2

(k)∗, · · · , un
(k)∗
)
+

n
∑

i=1

(
ui − ui

(k)∗
)

∂H
∂ui

∣∣
u(k)∗

n
∑

i=1
αi

(
∂H
∂ui

)
u(k)∗

σui

(17)
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2.3. Response Surface Method (RSM)

The main idea behind the response surface method (RSM) is to utilize a simple polyno-
mial function approximation to solve in place of a complicated state function or to present
an approximate representation of an implicit state function [23]. To employ the response
surface method, three essential aspects must be considered: Firstly, the polynomial form
should be selected, and typically, the linear response surface function suffices to simplify
calculations. Secondly, polynomials for the test point must be chosen, and in this study, the
sample space is constructed using the classic Bucher sampling method. Finally, the itera-
tion strategy should be devised, incorporating a reliable index to determine the solution’s
accuracy, and the algorithm should terminate upon meeting the iteration condition.

In this study, we utilized a second-order polynomial to model the state function of
the transport system. The classical Bucher sampling method was applied to construct the
sample space [24]. Then, the unknown coefficients in the polynomials were determined
using the least-squares method, resulting in an approximate expression of the state function.
Finally, the reliability index of the system was calculated by applying the checkpoint
method. The computational flow is illustrated in Figure 2.

On the basis of the reliability state function H = g(u), a second-order polynomial ĝ(u)
without cross terms is selected to obtain an approximate fit of the state function.

ĝ(u) = b0 +
n

∑
i=1

biui +
n

∑
j=1

bn+juj
2 (18)

the bi(i = 0, 1, · · · , 2n) in Equation (18) denotes the 2n + 1 fit coefficients that require
determination.

The second-order response surface function of Equation (18) requires the determi-
nation of 2n + 1 coefficients, which can be accomplished by selecting 2n + 1 sample
points. Bucher’s design of experiments method is used to extract sample points and
u∗ =

(
u∗1 , · · · , u∗i , · · · , u∗n

)
is first selected as the sample center. As shown in Figure 3,

2n sample points
(
u∗1 , · · · , u∗i ± fiσui , · · · , u∗n

)
(i = 1, · · · , n) are selected at the position of
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deviation from the coordinate axis distance fiσui , fi is the deviation coefficient, which is
generally taken as 1~3, and σui is for the root-mean-square of the error component ui.
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The initial sampling center u∗ for the first iteration is selected as the mean value of each
variable. The sampling center u(k+1)∗

M for the (k + 1)th iteration is obtained via interpolation.

The ith coordinate of u(k+1)∗
M can be expressed as:

u(k+1)∗
Mi = µui +

(
u(k)∗

Di − µui

) g(µ)

g(µ)− g
(

u(k)∗
D

) (19)

in Equation (19), u(k)∗
D represents the design checkpoint for the kth iteration, u(k)∗

Di cor-
responds to the ith coordinate of the design checkpoint, and µ represents the mean
value vector.
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Using the primary second-order method of moments to compute the functional values
corresponding to the 2n + 1 sample points, a vector of these values can be obtained.

y = (g(u1), g(u2), · · · , g(u2n+1))
T (20)

the 2n + 1 coefficients are to be determined through the least-squares method and are
expressed as:

b = (b0, b1, · · · , bn)
T =

(
VTV

)−1
VTy (21)

the V in Equation (21) denotes the interpolation matrix consisting of 2n + 1 sample points
ut(ut1, ut2, · · · , utn)(t = 1, 2, · · · , 2n + 1).

V =


1 u11 u12 · · · u1n u2

11 u2
12 · · · u2

1n
1 u21 u22 · · · u2n u2

21 u2
22 · · · u2

2n
...

...
...

. . .
...

...
...

. . .
...

1 ut1 ut2 · · · utn u2
t1 u2

t2 · · · u2
tn


(2n+1)×(2n+1)

(22)

Calculate the reliability index β(k+1) for the (k + 1)th iteration using the checkpoint
method. Compare it with the reliability index β(k) calculated in the kth iteration. If the
condition |β(k+1) − β(k)| < ε is satisfied, the iterative calculations have converged, and the
reliability index β(k) serves as the final calculation result. Otherwise, repeat the iterative
calculations until the results converge.

2.4. Sensitivity Analysis of Errors

The transport system has multiple actuators that enable the precise positioning and
alteration of the target carrier’s attitude. However, this intricate structure affects the
system’s dependability, as it is subject to various influencing factors. To enhance the
dependability of the transportation system, it is vital to assess the system’s reliability
sensitivity to the variation of error components. Depending on the magnitude of sensitivity,
the error components with a more significant impact must be suitably adjusted, and
the ones with a lesser impact can be deemed definite values, mitigating the intricacy of
sensitivity analysis. This sensitivity analysis-based optimization study establishes a reliable
foundation for designing, processing, manufacturing, and maintaining the transport system.
The method involves acquiring the sensitivity of error variable means and variances to
reliability using the response surface approximation model of the reliability state function.
Additionally, the sensitivity of error variable means and variances to reliability is obtained
via partial derivation of the means and variances of the geometrical error variables present
in the model [25–27].

According to probability theory, if a random variable X has a mathematical expectation
E(X− EX)2, then its variance E(X− EX)2 is denoted as DX or VarX and can be calculated
using the expression:

DX = E(X− EX)2 (23)

if a random variable X follows a normal distribution X ∼ N
(
µ, σ2), there exists:

EX = µ (24)

DX = E(X− EX)2 = σ2 (25)

there is E
(
X2) = DX + (EX)2.

Assuming that the random error components are independent of one another, the
mean and variance of the reliability state function for the complex mechanical system are
as follows:

DX = E(X− EX)2 = σ2 (26)
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Take the partial derivatives of Equations (26) and (27) for µui and σui , respectively:
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From Equation (4), the reliability of the transportation system follows a normal distri-
bution with E and T as parameters. The reliability can be expressed as:

R = Φ(β) =
1

σ̂H
√

2π

∫ β

−∞
e
(t−µ̂H )2

2σ̂H
2 dt (29)

taking partial derivatives of Equation (29) yields:

∂R
∂β

= φ(β) =
1

σ̂H
√

2π
e
(t−µ̂H )2

2σ̂H
2 (30)

β =
µ̂H
σ̂H

(31)

φ(β) in Equation (30) represents the probability density function of the normal distribution.
β has partial derivatives with respect to parameters µ̂H and µ̂H , respectively:

∂β

∂µ̂H
=

1
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(32)

Taking partial derivatives of Equation (29) provides the sensitivity of the error compo-
nent mean R and root-mean-square T to the reliability:
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3. Random Errors of Transport System

A transport system consists of a frame, a vertical conveyor system, a rotary storage
silo, an oscillating conveyor, a rotating conveyor, and a push conveyor, as shown in Figure 4.
The transport system makes a pitching and azimuthal rotary motion under the control of a
follower system. The oscillating conveyor system relies on the upper connecting disk of a
frame to be connected with the rotary portion of the frame, and it carries out an azimuthal
motion together with the frame. The schematic diagram of the target carrier transfer is
shown in Figure 5.
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The transport system’s target carrier transportation process includes five main steps as
per its transit path: A, silo rotary transportation; B, carrier uplift; C, carrier swing; D, carrier
rotation; and E, carrier forward push. These steps are clearly depicted in Figure 5. Figure 6
illustrates the transformation relationships of the target carrier coordinate system while in
transit. An error analysis of the working process of the transport system is performed:

(1) The coordinate systems are the geodetic coordinate system (central coordinate
system), the frame coordinate system, and the center of mass coordinate system of the
carrier. The rotation angle indicates the relative rotation angle between the two coordinate
systems; for example, from the initial position, the rotation angle of the frame coordinate
system relative to the geodetic coordinate system is called the azimuthal angle, which is
expressed by η;

(2) In transit process A, the target carrier in the rotary storage silos rotates around the
oz axis of the silos via a designated angle ϕ, resulting in the carrier moving one position
along the transit route. As a result, the coordinate system of the carrier’s center of mass
transforms from o0x0y0z0 to o1x1y1z1 during the process;

(3) For transfer process B, the vertical conveyor system initiates movement from the
starting point of the carrier center of the mass coordinate system o1x1y1z1. The target carrier
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is clamped in the bracket and moved a h distance along the o1z1 direction. The carrier
center of the mass coordinate system moves from o1x1y1z1 to o2x2y2z2 during this process;

(4) Transfer process C: The oscillating conveyor swings in the x2o2y2 plane and starts
transferring from the oscillating arm’s carrier center of the mass coordinate system o2x2y2z2.
The carrier follows the oscillating arm around the θ angle rotation axis. During this process,
the carrier’s center of mass coordinate system changes from o2x2y2z2 to o3x3y3z3, and the
x3o3y3 plane coincides with the x2o2y2 plane;

(5) Transfer process D involves moving a carrier with a clamping frame on rotating
conveyors in the x3o3y3 plane. The movement starts from the coordinate system o3x3y3z3,
which is the center of gravity of the carrier on the rotating conveyor. The carrier then
rotates around the conveyor axis of rotation at angle φ. During this rotation, the carrier’s
center of gravity coordinate system moves from o3x3y3z3 to o4x4y4z4, and the x4o4y4 plane
ultimately overlaps with the x3o3y3 plane;

(6) Transit process E: The transit carrier is leveling conveyor thrust along the o4z4 axis,
the carrier center of mass coordinate system o4x4y4z4 as a starting point, along the o4z4
direction of movement of the S distance, the entire E process, the carrier center of mass
coordinate system from the o4x4y4z4 coordinate system into the o5x5y5z5 coordinate system,
before and after the process of the o5z5 axis coincides with the o4z4 axis.

Actuators 2023, 12, x FOR PEER REVIEW 11 of 21 
 

 

 

Figure 4. Composition of transfer system. 

 

Straight arrow (green) : translational motion 

Curved arrow (orange) : rotational motion 

Figure 5. Target carrier transportation process. 

The transport system’s target carrier transportation process includes five main steps 

as per its transit path: A, silo rotary transportation; B, carrier uplift; C, carrier swing; D, 

carrier rotation; and E, carrier forward push. These steps are clearly depicted in Figure 5. 

Figure 6 illustrates the transformation relationships of the target carrier coordinate system 

while in transit. An error analysis of the working process of the transport system is per-

formed: 

(1) The coordinate systems are the geodetic coordinate system (central coordinate 

system), the frame coordinate system, and the center of mass coordinate system of the 

carrier. The rotation angle indicates the relative rotation angle between the two coordinate 

systems; for example, from the initial position, the rotation angle of the frame coordinate 

Figure 5. Target carrier transportation process.

Comprehensively analyzing the operational process of the transportation system
yields 12 primary random error components, which are displayed in Table 1.
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Table 1. Mean square error of error component.

No. Error Error Item No. Error Error Item

1 ∆η Azimuth angle error 7 δy(z1) Rotational error around y-axis
2 δx(z) Rotational error around x-axis 8 δy(y2) Rotary error around y-axis
3 dy(z) Displacement error in y-direction 9 δz(y2) Slewing error around z-axis
5 δx(z1) Rotational error around x-axis 10 dz(y2) Displacement error in z-direction
6 ∆h Travel Error of vertical conveyor system 11 ∆θ Up-swing angle error of oscillating conveyor
4 ∆ϕ Storage silos with rotary motion rotation error 12 ∆φ Angle error of rotating conveyors rotating

δn(z) denote the rotation error around the n-axis for a carrier translating or rotating around the z-axis; dn(z)
denote the displacement error in the n-direction for a carrier translating or rotating along the z-axis.
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4. Reliability Analysis and Optimization of Transport Systems
4.1. Reliability Assessment of Transport Systems under Shock Effects

Shock vibration serves as the mechanical environment for analyzing the reliability of
the transportation system. The vertical motion phase and the swing phase are the two stages
in the transportation process that experience the most significant impact from the shock. The
mechanical system’s geometric error can be assumed to follow a normal distribution [28,29].
This study considers 12 normally distributed error components, where ∆η, ∆ϕ, ∆h, ∆θ, and
∆φ relate to the mechanism’s dynamic characteristics, and the remaining 7 are influenced
by the modulus of elasticity, contact stiffness, and shock vibration environment. The
shock vibration test data were collected from a specific transfer mechanism test bench,
and the corresponding test equipment is depicted in Figure 7. A shock response test was
conducted under the condition of a shock excitation amplitude of 4 g. The resulting vertical
motion error was 5.23 mm, which is the initial calculation condition for the swing. The
angular displacement error of the upper pendulum at 0◦ of the height angle was 6.75 mrad,
according to the kinetic simulation. This value represents the mean value of the up and
down translations as well as the swinging error. The mean value of the rest of the error
components was 0. The mean square deviation is shown in Table 2. The mean values of
oscillation errors at various height angles were obtained through dynamic simulations, and
the oscillation mechanism’s dynamic model is presented in Figure 8.
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Figure 7. Transfer system test bench.

Table 2. Values of mean square deviation.

No. Symbol of Mean
Square Deviation

Numerical
Value No. Symbol of Mean

Square Deviation
Numerical

Value

1 σ∆η 0.75 mrad 7 σ∆h 1.5 mm
2 σδx(z) 0.05 mrad 8 σδy(y2) 0.15 mrad
3 σdy(z) 0.5 mm 9 σδz(y2) 0.15 mrad
4 σ∆ϕ 3.5 mrad 10 σdz(y2) 0.25 mm
5 σδx(z1) 0.25 mrad 11 σ∆θ 2.5 mrad
6 σδy(z1) 0.25 mrad 12 σ∆φ 1.5 mrad
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Figure 8. Dynamic model of swing mechanism.

Using the orthogonal sampling method, we collected data samples consisting of
25 groups by selecting five points each from the range of high and low shooting angles (−7◦

to 78◦) and the range of azimuthal shooting angles (−144◦ to 144◦). These five points were
−7◦, 0◦, 30◦, 45◦, and 60◦ for high and low shooting angles and −120◦, −60◦, 0◦, 60◦, and
120◦ for azimuthal shooting angles. We then computed the state function acceptance points
using the one-time second-order moment method. The analysis compares the reliability
of the transport system with the results obtained under the inertial system, revealing
the reliability indexes of the transport system under varied firing environments. This
information is displayed in Figure 9, while Table 3 presents the calculation results of
organizing 25 data sample groups.



Actuators 2023, 12, 465 14 of 20Actuators 2023, 12, x FOR PEER REVIEW 15 of 21 
 

 

  

Red dot indicates the reliability index under the corresponding working condition 

(a) Inertial frame. (b) Impact stimulus. 

Figure 9. Reliability index under different firing environments. 

Table 3. Reliability parameters of the transfer system under different working conditions. 

No. Azimuth Angle/rad Elevation Angle/rad 
Inertial Frame Impact Stimulus 

β R β R 

1 −2.0944 −0.1222 1.7923 96.35% 1.3716 91.49% 

2 −2.0944 0 2.1205 98.30% 1.6254 94.80% 

3 −2.0944 0.5236 1.5854 94.36% 1.4156 92.15% 

4 −2.0944 0.7854 1.8649 96.89% 1.7815 96.26% 

5 −2.0944 1.0472 1.9955 97.70% 1.4874 93.15% 

6 −1.0472 −0.1222 1.6290 94.83% 1.5594 94.05% 

7 −1.0472 0 1.8101 96.49% 1.5904 94.41% 

8 −1.0472 0.5236 2.2733 98.85% 1.8031 96.43% 

9 −1.0472 0.7854 2.2643 98.82% 1.9943 97.69% 

10 −1.0472 1.0472 2.5762 99.50% 1.4770 93.02% 

11 0 −0.1222 1.6437 94.98% 1.4992 93.31% 

12 0 0 2.2865 98.89% 1.3476 91.11% 

13 0 0.5236 1.8808 97.01% 1.3820 91.65% 

14 0 0.7854 2.0945 98.19% 1.8872 97.04% 

15 0 1.0472 2.2766 98.86% 1.5993 94.51% 

16 1.0472 −0.1222 1.6290 94.83% 1.5594 94.05% 

17 1.0472 0 1.8101 96.49% 1.5904 94.41% 

18 1.0472 0.5236 2.2733 98.85% 1.4696 92.92% 

19 1.0472 0.7854 2.2643 98.82% 1.9943 97.69% 

20 1.0472 1.0472 2.5762 99.50% 1.4770 93.02% 

21 2.0944 −0.1222 1.7923 96.35% 1.3716 91.49% 

22 2.0944 0 2.1205 98.30% 1.6254 94.80% 

23 2.0944 0.5236 1.5854 94.36% 1.4156 92.15% 

24 2.0944 0.7854 1.8649 96.89% 1.7815 96.26% 

25 2.0944 1.0472 1.9955 97.70% 1.4874 93.15% 

Min — — 1.5854 94.36% 1.3476 91.11% 

Average — — 2.0017 97.73% 1.5837 94.34% 

(—) in the table indicates blank spac. 

Analyzing Figure 9 reveals that the reliability index can be solved for any height and 

azimuthal shooting angle by fitting the state function using the response surface method. 

The transport system’s reliability is higher when functioning in an inertial system 

Figure 9. Reliability index under different firing environments.

Table 3. Reliability parameters of the transfer system under different working conditions.

No. Azimuth
Angle/rad

Elevation
Angle/rad

Inertial Frame Impact Stimulus

β R β R

1 −2.0944 −0.1222 1.7923 96.35% 1.3716 91.49%
2 −2.0944 0 2.1205 98.30% 1.6254 94.80%
3 −2.0944 0.5236 1.5854 94.36% 1.4156 92.15%
4 −2.0944 0.7854 1.8649 96.89% 1.7815 96.26%
5 −2.0944 1.0472 1.9955 97.70% 1.4874 93.15%
6 −1.0472 −0.1222 1.6290 94.83% 1.5594 94.05%
7 −1.0472 0 1.8101 96.49% 1.5904 94.41%
8 −1.0472 0.5236 2.2733 98.85% 1.8031 96.43%
9 −1.0472 0.7854 2.2643 98.82% 1.9943 97.69%

10 −1.0472 1.0472 2.5762 99.50% 1.4770 93.02%
11 0 −0.1222 1.6437 94.98% 1.4992 93.31%
12 0 0 2.2865 98.89% 1.3476 91.11%
13 0 0.5236 1.8808 97.01% 1.3820 91.65%
14 0 0.7854 2.0945 98.19% 1.8872 97.04%
15 0 1.0472 2.2766 98.86% 1.5993 94.51%
16 1.0472 −0.1222 1.6290 94.83% 1.5594 94.05%
17 1.0472 0 1.8101 96.49% 1.5904 94.41%
18 1.0472 0.5236 2.2733 98.85% 1.4696 92.92%
19 1.0472 0.7854 2.2643 98.82% 1.9943 97.69%
20 1.0472 1.0472 2.5762 99.50% 1.4770 93.02%
21 2.0944 −0.1222 1.7923 96.35% 1.3716 91.49%
22 2.0944 0 2.1205 98.30% 1.6254 94.80%
23 2.0944 0.5236 1.5854 94.36% 1.4156 92.15%
24 2.0944 0.7854 1.8649 96.89% 1.7815 96.26%
25 2.0944 1.0472 1.9955 97.70% 1.4874 93.15%

Min — — 1.5854 94.36% 1.3476 91.11%
Average — — 2.0017 97.73% 1.5837 94.34%

(—) in the table indicates blank spac.

Analyzing Figure 9 reveals that the reliability index can be solved for any height
and azimuthal shooting angle by fitting the state function using the response surface
method. The transport system’s reliability is higher when functioning in an inertial system
environment than in a shock vibration condition, as confirmed by simulation results that
are consistent with practical experience. Additionally, when the height angle is small or
negative, the pendulum motion error accumulates over a longer stroke, leading to a lower
overall reliability level of the transport system.
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According to Table 3, it is evident that the transport system’s minimum reliability
index value under the inertial system is 1.5854, the minimum reliability index value is
94.36%, the average reliability index value is 2.0017, and the average reliability index value
is 97.73%. The transport system’s reliability index under conditions of shock vibration has
a minimum value of 1.3476, with a corresponding reliability rate of 91.11%, the average
reliability index value is 1.5837, and the average reliability index value is 94.34%.

The simulation results reveal that the rise in the mean value of the transport system’s
motion error under shock vibration conditions is the primary causative factor behind the
target carrier’s reduced transport accuracy. To meet the technical index requirements, it is
essential to control both the mean and variance of the transport system’s motion error under
shock excitation. The following analyzes the adjustment strategy for the geometric error
component in conjunction with the sensitivity analysis method, with the aim of enhancing
the transport system’s reliability.

4.2. Reliability Optimization of a Transport System Based on Sensitivity Analysis

Determining the degree to which error components affect reliability is a crucial step
in optimizing the transport system’s reliability. Due to the high degree of nonlinearity
in the state function, sensitivity analysis poses some challenges. This study proposes
combining the second-order response surface function with the sensitivity analysis method
to determine the sensitivity of the error component’s mean and standard deviation. This
approach can assist in prioritizing adjustments to improve the system’s performance.
Combined with existing technical preparations and economic requirements, the adjustment
range of error components is limited to 30%. Error components with greater sensitivity are
adjusted step by step. After each adjustment, the reliability index is calculated using the
primary second-order method of moments and compared to the target reliability index βmin.
The iterative process stops when the adjustment result meets the requirements; however,
if it does not, the previously unadjusted error components are readjusted. The process of
calculating the reliability index is repeated until the average reliability of the transportation
system meets the requirements. See Figure 10 for the process of optimizing reliability.

The sensitivity analysis was performed under the working conditions of a height angle
of 0 degrees and an azimuth angle of 0 degrees. Table 4 displays the obtained sensitivity
results for each error component’s mean square. The optimization objective solely takes
into account the impact on the mean value of vertical and swing motion errors. The selected
working conditions outlined in Table 3 comprise 25 data sample sets for evaluating the
transport system’s average reliability level. The system’s target reliability under shock
vibration conditions is set at 97%, namely βmin = 97%, based on the results derived from
these 25 sample sets. Referring to Table 4’s sensitivity analysis results, we sequentially
adjust the mean values of error components µ∆h and µ∆θ , as well as the mean squared
deviations of error components σ∆h, σ∆η , σdy(z), σdz(y2)

, σ∆θ , and σ∆S, reducing parameter
values by up to 30%. Then, we calculate the reliability indices using the method of second-
order moments in one pass for the different working conditions, and the results are shown
in Figure 11.

Table 4. Sensitivity of mean square error of error component.

No. Error Symbol Sensitivity/% No. Error Symbol Sensitivity/%

1 ∆η 0.1360 7 ∆h 0.1884
2 δx(z) 0.0042 8 δy(y2) 0.0166
3 dy(z) 0.1331 9 δz(y2) 0.0972
4 ∆ϕ 0.0522 10 dz(y2) 0.1296
5 δx(z1) 0.0497 11 ∆θ 0.0995
6 δy(z1) 0.0508 12 ∆φ 0.0427
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Figure 10. Reliability optimization process.

Through the reliability optimization process of the transportation system, the average
reliability of the system improved from 94.34% to 97.07% after adjusting the parameter
values six times, successfully achieving the optimization goal. As shown in Table 5, ad-
justing the parameters individually resulted in a notable decrease in the mean motion
error of the lifting machine µ∆h and pendulum machine µ∆θ . However, the effect of the
mean squared deviation of error components σ∆h, σ∆η , σdy(z), and σdz(y2)

on the transport
system’s average reliability was relatively minor. Continuing to fine-tune the mean squared
errors of the unrevised error components with greater sensitivities can enhance the average
reliability of the transportation system, although the impact of these adjustments will
diminish gradually due to the reduced influence of the less sensitive parameters on the
overall reliability level.

Table 5. Reliability optimization design results.

Name Adjusted
Parameters

Before
Adjustment

After
Adjustment

—
β

—
R

First optimization µ∆h 5.23 mm 3.66 mm 1.6839 95.39%
Second optimization µ∆θ 6.75 mrad 4.73 mrad 1.7708 96.17%
Third optimization σ∆h 1.5 mm 1.0 mm 1.8132 96.51%

Fourth optimization σ∆η 0.75 mrad 0.50 mrad 1.8494 96.78%
Fifth optimization σdy(z) 0.5 mm 0.3 mm 1.8735 96.95%
Sixth optimization σdz(y2) 0.25 mm 0.17 mm 1.8912 97.07%
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5. Discussion

Only the mean value of the motion error for the vertical conveyor system and oscillat-
ing conveyor is considered in this study. However, contact collisions, intermittent motion
impacts, and elastic deformation often impact transport systems, among other disturbing
factors. These factors result in a more complex distribution law for the mechanism’s motion
error, which necessitates numerous statistical tests to accurately obtain its value. Therefore,
it is necessary to take into account the influence of the mean value of other error compo-
nents in the parameter sensitivity analysis. Incorporating additional error parameters into
the state function of the transit system’s transit accuracy will result in a reduction in the
overall level of reliability, making the task of improving reliability more challenging. The
intricate state function and error distribution law of the mechanism indicate a gap between
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the mechanical reliability theory guiding engineering practice and the overall assessment
of transport system reliability under specific working conditions. Further study is needed.

6. Conclusions

This study analyzes the state function of target carrier transit accuracy based on the
transport system’s motion model. The response surface and sensitivity analysis methods
are integrated to determine the adjustment method and geometric error component steps.
Using the primary second-order method of moments, the research optimizes the reliability
index step by step. As a result, the average reliability of the transport system has been
improved. This research provides a theoretical foundation for the reliability evaluation of
the transport system. The study’s conclusion shows that:

(1) The reliability of a single mechanism has a different connotation than that of
system reliability. Evaluating the system’s level of reliability exclusively through a single
mechanism is not feasible. The assessment process is much more complex and is influenced
by the overall system’s error rate. By establishing a reliability model predicated on the
dynamic characteristics of the mechanism and error analysis, one can overcome challenges
such as testing difficulties in transport systems, lack of samples, and an inability to conduct
destructive tests. Furthermore, this provides a theoretical model and foundation for
reliability assessments. The reliability sensitivity model also indicates how to enhance
dependability by addressing the issue of decreased reliability due to error types determined
by distribution laws. By establishing a reliability model based on the mechanism’s dynamic
characteristics and error analysis, the difficulties in the transit system, including testing
challenges, sample shortages, and limitations in destructive testing, can be overcome. This
approach provides a theoretical model and foundation for reliability assessment;

(2) Using a specific transportation system as an example and disregarding the impact
of static deformation, this study presents a reliability assessment method that factors
in dynamic errors. Through numerical simulation, it was discovered that the transport
system’s reliability under the inertial system has a minimum value of 94.36% and an average
value of 97.73%. The transport system’s reliability under a shock vibration environment
has a minimum value of 91.11% and an average value of 94.34%. The mean reliability
of the transportation system declined by 3.39% as a result of shock oscillations. The
incorporation of a vibration-dampening design would promote increased reliability in the
transportation system;

(3) According to our study employing the second-order response surface function and
sensitivity analysis method, we determined the extent to which the distribution parameters
of the normally distributed error variables impact the system’s reliability. We then adjusted
the error mean and mean squared error in sequential order of sensitivity, from highest
to lowest, ultimately reaching an optimization goal of increasing average reliability from
94.34% to 97.07%. This validates the feasibility of our reliability optimization method for
the transport system.
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