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Abstract: As the main transportation equipment in ore mining, the wheel drive system of mining
trucks plays a crucial role in the transportation capacity of mining trucks. The internal components
of the hub drive system are mainly composed of bearings, gears, etc. The vibration signals caused
during operation are nonlinear and nonstationary complex signals, and there may be more than one
factor that causes faults, which causes certain difficulties for the fault diagnosis of the hub drive
system. A fault diagnosis method based on local mean decomposition (LMD) multi-component
sample entropy fusion and LS-SVM is proposed to address this issue. Firstly, the LMD method is used
to decompose the vibration signals in different states to obtain a finite number of PF components.
Then, based on the typical correlation analysis method, the distribution characteristics and correlation
coefficients of vibration signals in the frequency domain under different states are calculated, and
effective PF multi-component sample entropy features are constructed. Finally, the LS-SVM multi-
fault classifier is used to train and test the extracted multi-component sample entropy features to
verify the effectiveness of the method. The experimental results show that, even in small-sample
data, the LMD multi-component sample entropy fusion and LS-SVM method can accurately extract
fault features of vibration signals and complete classification, achieving fault diagnosis of wheel
drive systems.

Keywords: local mean decomposition (LMD); sample entropy; fault diagnosis; mine truck hub
drive system

1. Introduction

Mining trucks are important equipment for mining production and transportation,
undertaking the transportation of coal and 90% of iron ore open-pit mining in the world.
Mining trucks often need to work continuously in harsh environments full of noise, floating
dust, and turbulence [1,2]. The noise, vibration, high temperature, high humidity, and other
factors existing in the working environment cause great harm to the health of these giant
pieces of mining equipment. In order to ensure safe and efficient mining, it is necessary
to carry out intelligent monitoring on the hub of a mining truck and use data information
depth mining to achieve fault diagnosis [3,4]. The failures in the hub drive system of mining
trucks mainly include bearing failures, gear failures, and other failures, among which the
failure probability of bearing and gear failures is up to 90%. When the wheel hub drive
system fails, the vibration signal caused by either the bearing or the gear is nonlinear and
nonstationary, so it is necessary to use corresponding methods to extract the characteristics
of the vibration signal. Common fault feature extraction methods include time domain
analysis, wavelet transform, and empirical mode decomposition. However, these methods
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have their own limitations in signal processing, especially in the adaptive effect of wheel
drive vibration signal analysis with large data amplitude.

2. Literature Analysis

Vibration signal analysis is a commonly used monitoring technology in mechanical
systems. It contains a great deal of fault information and has a wide range of applications
in the field of fault diagnosis of rotating machinery such as bearings and gears. Because of
the nonlinear and nonstationary characteristics of the vibration signals of the bearings and
gears in the hub drive system, the traditional time domain analysis methods cannot meet the
needs of the fault diagnosis of the hub drive system. The time–frequency analysis methods
represented by empirical mode decomposition (EMD) [5], empirical wavelet transform
(EWT) [6], and local mean decomposition (LMD) [7] have been widely used in the field of
bearing and gear fault diagnosis. Debiao Meng [8] proposed a fault analysis method of
wind power rolling bearing based on EMD feature extraction and achieved ideal results.
To solve the problem of feature extraction of a weak fault of a rolling bearing, Yin Chen [9]
combined empirical mode decomposition and adaptive threshold denoising (ATD) to
automatically extract the inherent noise hidden in the original signal, providing support
for weak fault features of rolling bearings. For the gearbox running under nonstationary
working conditions, Ridha Ziani [10] used EMD, TKEO, and Shock Detector to realize the
damage detection of a helical gearbox running under variable load and speed. Although
the EMD method can extract the fault features of bearing and gear vibration signals, the
EMD method has some shortcomings [11], such as mode aliasing and endpoint effect,
which affects the effect of fault feature extraction. Empirical wavelet transform (EWT) [12]
is a combination of wavelet transform and EMD. Chegini [13] used an EWT denoising
method to carry out fault vibration of rolling bearings. The results show that the EWT
denoising method is superior to EMD denoising technology. Hu Mantang [14] optimized
EWT and solved the problem that the failure samples of early bearing vibration signals
were overwhelmed by normal samples. Although EWT is better than EMD to some extent,
EWT vibration signal decomposition is affected by the adaptive and robust boundary of
EWT, and the filtered signal still contains residual noise, which covers the fault feature
signal and affects the feature extraction effect [15,16]. Local mean decomposition (LMD)
is a signal analysis method proposed by Smith S [17] for the first time. It can adaptively
decompose complex multi-component signals into the sum of several product functions
(PF) [18]. This method has strong adaptability to nonlinear and nonstationary signal
analysis [19]. Minghong Han [20] used the combination method of LMD and multi-scale
symbolic dynamic information entropy (MSDE) to diagnose and analyze the fault type
and degree of rolling bearing and achieved good results. Song Enzhe [21] improved
LMD, combined with composite multi-scale weighted permutation entropy (CMWPE) and
support vector machine (SVM), and accurately distinguished various fault types of rolling
bearings under the same fault degree, with more reliable diagnosis results. Compared
with the EMD method, the LMD method can effectively suppress the end effect and solve
the problems of under-envelope and over-envelope [22,23]. Compared with the EWT
method [24], the LMD method has fewer iterations in the signal analysis process, avoiding
the generation of multiple false components in the decomposition process. However, there
is a slight error between the local mean function and the envelope estimation function in
the LMD decomposition process and the actual situation, which will also lead to mode
confusion, reducing the accuracy of LMD diagnosis [25,26]. Entropy [27,28] is a quantity
used to describe the uncertainty in a data distribution in a system, which can measure the
degree of data distribution disorder and effectively represent the distribution of internal
quantities of the system. Sample entropy (SE) is a method proposed by Richman [29] to
measure the complexity of signal sequences based on approximate entropy. When the
signal sequence is complex, its own signal similarity is low, and the corresponding sample
entropy is large. When the signal sequence is not complex, its own signal similarity is
high, and the corresponding sample entropy is small [30,31]. Li Xuguang [32] extracted
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fault features from the processed rolling bearing signals through MEEMD sample entropy
and realized rolling bearing fault diagnosis. Zhang Decai [33] extracted gearbox fault
features using Euclidean matrix sample entropy and realized gearbox composite fault
diagnosis with a one-dimensional convolutional neural network. After a failure of the
wheel hub drive system, the vibration signal caused by its operation will change, and the
time series represented by the vibration signal will change with the failure. Therefore, the
fault characteristics of the wheel hub drive system vibration signal can be extracted by
using the sample entropy feature. In practice, the effect of fault feature extraction using
single-sample entropy of a vibration signal is not ideal, and there is still a certain gap in the
accuracy of diagnosis. Therefore, this paper proposes a multi-scale sample entropy method,
which combines the PF component after LMD processing and typical correlation analysis
to achieve fault feature extraction.

As it is difficult to accurately diagnose a fault of the nonlinear and nonstationary
vibration signal of the wheel hub drive system, the LMD method is used to analyze the
vibration signal of the wheel hub drive system, and several PF components are obtained.
Through canonical correlation analysis, the sub-signals with high correlation coefficients
are analyzed and the sample entropy value is calculated and the multi-component sample
entropy feature vector is constructed to realize the fault feature extraction of the wheel
hub drive system. At the same time, in response to the small amount of vibration signal
acquisition in the hub drive system, this paper uses LS-SVM to train and test the fault
features extracted from the vibration signal of the hub drive system using LMD multi-
component sample entropy fusion, achieving fault recognition and classification of the hub
drive system. The contributions of this article are as follows:

(1) A feature extraction method based on LMD multi-component sample entropy fusion
is proposed. Aiming at the problems of mode confusion and poor accuracy in LMD
decomposition, canonical correlation analysis (CCA) [34,35] is used to discriminate
the true and false components of the decomposed PF, and then the multi-component
sample entropy fusion sample entropy feature is constructed.

(2) Combining the vibration signal characteristics of the wheel drive system, the LMD
multi-component sample entropy fusion feature is introduced into the fault diagnosis
of nonstationary and nonlinear vibration signals in the wheel drive system, better
characterizing the fault feature information.

(3) In response to the difficulty in obtaining vibration signals from the wheel drive system
and the small number of samples, LS-SVM is proposed to classify fault features using
LMD multi-component sample entropy fusion features extracted from the vibration
signals of the wheel drive system, which improves the accuracy of the algorithm.

(4) The effectiveness of this method has been verified through experiments.

3. Theory
3.1. Local Mean Decomposition

LMD is a complex signal adaptive decomposition process, which adaptively decom-
poses nonlinear and nonstationary signals into several PF components. Each PF component
is obtained by multiplying the corresponding envelope signal and pure frequency mod-
ulation signal. When LMD algorithm is used for signal decomposition to obtain K PF
components, the corresponding adaptive decomposition model is as follows [17]:

Mark all extreme points ni (i = 1, 2, 3. . .) of signal x(t), and calculate the mean value mi
between adjacent extreme points ni and ni+1 and their envelope estimation value ai.

mi =
ni + ni+1

2
(1)

ai =
|ni − ni+1|

2
(2)
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Connect all the calculated mean values mi and envelope estimation values ai in turn
and use the moving average method to process them respectively to obtain the local mean
function m11(t) and envelope estimation function a11(t).

The local mean function m11(t) is separated from the original signal x(t) to obtain

h11(t) = x(t)− m11(t) (3)

The envelope function a11(t) is used to demodulate the obtained h11(t) to obtain the
frequency modulation signal s11(t).

s11(t) =
h11(t)
a11(t)

(4)

In an ideal state, s11(t) is a pure frequency modulation signal, so its corresponding
envelope estimation function a12(t) = 1. If the envelope estimation function a12(t) ̸= 1, treat
s11(t) as the original signal and repeat the above iterative steps until the pure frequency
modulation signal s1n(t) is obtained, and then −1 ≤ s1n(t) ≤ 1 can be satisfied, and the
corresponding envelope estimation function a1(n+1)(t) = 1. The specific steps are as follows:

h11(t) = x(t)− m11(t)
h12(t) = s11(t)− m12(t)
· · ·
h1n(t) = s1(n−1)(t)− m1n(t)

(5)


s11(t) =

h11(t)
a11(t)

s12(t) =
h12(t)
a12(t)

· · ·
s1n(t) =

h1n(t)
a1n(t)

(6)

Theoretically, a1(n+1)(t) = 1 is the ideal state for obtaining pure frequency modulation
signal s1n(t). In practice, in order to reduce the number of iterations and improve the
calculation efficiency, a small deviation ∆ (∆ > 0) is introduced without changing the
decomposition results. When 1 − ∆ ≤ a1(n+1)(t) ≤ 1+ ∆, s1n(t) is considered to be a relatively
ideal pure frequency modulation signal. With reference to the literature and a large amount
of experimental data, deviation ∆ is the most appropriate value in the range of [0.001, 0.1].
In this paper, under the condition that the iteration results are correct and meet the needs
of feature extraction, deviation ∆ is taken as 0.05. Then, the above iteration termination
condition is as follows:

0.95 ≤ a1(n+1)(t) ≤ 1.05 (7)

The envelope signal a1(t) can be obtained by multiplying all envelope functions
obtained before the end of iteration.

a1(t) = a11(t)a12(t) · · · a1n(t) =
n

∏
i=1

a1i(t) (8)

The first PF component decomposed by x(t) can be obtained by multiplying a1(t)
and s1n(t).

PF1(t) = a1(t)s1n(t) (9)

PF1(t) is separated from x(t), and the remaining signals are recorded as u1(t). Repeat
the above steps with signal u1(t) as a new signal for k times until uk(t) is a monotone
function, and then the extreme point uk(t) ≤ 1.

u1(t) = x(t)− PF1(t)
u2(t) = u1(t)− PF2(t)
· · ·
uk(t) = uk−1(t)− PFk(t)

(10)
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After completing the above steps, the signal x(t) will be decomposed into k PF compo-
nents and a residual value uk(t), which is shown as follows:

x(t) =
k

∑
i=1

PFi(t) + uk(t) (11)

3.2. Sample Entropy

Entropy is a quantity used to describe the uncertainty in the data distribution in
a system, which can measure the degree of data distribution disorder and effectively
represent the distribution of internal quantities of the system. Sample entropy is a method
to measure the complexity of signal sequence. When the signal sequence is complex, its
own signal similarity is low, and the corresponding sample entropy is large. When the
signal sequence is not complex, its own signal similarity is high, and the corresponding
sample entropy is small.

For the known time series x(N) = {x(1), x(2),. . ., x(n)}, the sample entropy calculation
method is as follows [29]:

The m-dimensional matrix sequence Xm(i) is constructed according to the serial num-
ber.

Xm(i) = [x(i), x(i + 1), · · · , x(i + m − 1)] i = 1, 2, · · · , n − m + 1 (12)

Define d[Xm(i), Xm(j)] as the maximum difference between the two vectors Xm(i)
and Xm(j).

d[Xm(i), Xm(j)] = max
k=0→m−1

|x(i + k)− x(j + k)| (13)

For Xm(i), the number of d[Xm(i), Xm(j)] less than r is recorded as Bi, where r is the
similarity threshold. Record the ratio of Bi to the number of vectors as Bm

i (r).

Bm
i (r) =

Bi
n − m + 1

1 ≤ i ≤ n − m (14)

Bm(r) =
1

n − m + 1

n−m+1

∑
i=1

Bm
i (r) (15)

Find the mean Bm(r) of Bm
i (r).

By increasing the matrix to m + 1 dimension and repeating steps (1) to (4) above,
Bm+1(r) can be obtained.

In actual calculation, N is taken as a limited quantity, and the corresponding sample
entropy is calculated as follows:

SampEn(m, r, N) = − ln
Bm+1(r)

Bm(r)
(16)

The sample entropy calculation results have a great relationship with the values of
m and r in the above steps. In this paper, according to the research results and research
objects, when m = 2, r = 0.15 Std is selected, the sample entropy value calculated is the most
appropriate (Std is the standard deviation of the signal sequence).

3.3. Canonical Correlation Analysis

The CCA algorithm aims to find the projection vector of two data volumes, which can
maximize the correlation between the two data. CCA algorithm is described as follows [35]:

Given two sets of random datasets X = [x1, x2, · · · , xN ] and Y = [y1, y2, · · · , yN ] ∈
Rdy×N , find two projection vectors ωx ∈ Rdx and ωy ∈ Rdy to maximize the correlation
coefficient between ωT

x X and ωT
y Y.

max
ωx ,ωy

ωT
x Cxyωy√

(ωT
x Cxxωx)

(
ωT

y Cyyωy

) (17)
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In the above equation 
Cxx = 1

N−1
(
XXT)

Cxy = 1
N−1

(
XYT)

Cyy = 1
N−1

(
YYT) (18)

Because ωx and ωy are scale-invariant, the above equation can be written as follows:

max
ωx ,ωy

ωT
x Cxyωy

s.t. ωT
x Cxxωx = ωT

y Cyyωy = 1
(19)

3.4. LMD Multi-Component Sample Entropy Fusion

The frequency components of the vibration signals caused by the gears in the drive
system of the mine truck hub are different when they operate under normal and fault
conditions. Moreover, under different faults, the arrangement and distribution complexity
of frequency components will also change. In order to analyze the change in signal sequence
of vibration signals in different frequency domains and quantitatively present the degree
of distribution disorder in different frequency domains, LMD is used to decompose the
original signal, and typical correlation analysis is conducted between the decomposed
PF component and the original signal. The false components with small correlation are
discarded and the components with large correlation with the original signal are taken as
the analysis object. The sample entropy of signal sequences in different frequency domains
is calculated respectively to form multi-component sample entropy fusion vector, which
is used as the feature vector for fault feature extraction and classification. The specific
methods are as follows:

The collected vibration signal is decomposed by LMD to obtain k PF components
and residual value uk(t). The correlation between k PF components and the original signal
is analyzed by CCA method. The PF component with large correlation coefficient (the
real component in the effective frequency domain) is taken as the analysis object, and
then the sample entropy of the effective PF component is calculated. Since the original
signal contains false invalid signals, a single PF component can only characterize the fault
characteristics in the corresponding frequency domain. Therefore, the sample entropy
corresponding to the effective PF component of LMD decomposition is used to construct
a feature vector, and this vector is used as the fault feature for analysis. LMD multi-
component sample entropy fusion feature extraction model is shown in Figure 1.
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3.5. LS-SVM

Support vector machine (SVM) is a kernel-based machine learning method that does
not require a large number of training and testing samples. It has high accuracy in fault
classification and is very suitable for small-sample data analysis and processing. Least
squares support vector machine (LS-SVM) is a simplified version of SVM, which transforms
quadratic programming in SVM into solving a system of linear equations, reducing the
complexity of the solving process, shortening training time, and improving recognition
accuracy. LS-SVM can be expressed as follows [19]:

For dataset N = {(xi, yi) i = 1, 2, · · · , n}, the linear regression function is represented
as follows:

y(xi) = ωT φ(xi) + b (20)

The b is bias, ω is the weight coefficient vector, and φ(xi) is a nonlinear function.
The optimization function corresponding to LS-SVM is as follows:

min

(
1
2
∥ω∥2 +

1
2

γ
n

∑
i=1

ε2
i

)
(21)

The constraints are as follows:

yi = ωT φ(xi) + b + εi (i = 1, 2, · · · , n) (22)

The εi is the error variable and γ is the penalty factor.
The optimal solution can be calculated using the dual method, and the Lagrangian

function can be introduced based on the dual method as follows:

L =
1
2
∥ω∥2 +

1
2

γ
n

∑
i=1

ε2
i −

n

∑
i=1

αi

(
ωT φ(xi) + b + εi − yi

)
(23)

The αi is a Lagrange multiplier.
According to the Karush–Kuhn–Tucker condition, take the partial derivatives of ω, b,

εi, and αi in sequence and make them equal to 0.

∂L
∂ω = ω −

n
∑

i=1
αi φ(xi) = 0

∂L
∂b =

n
∑

i=1
αi = 0

∂L
∂εi

= αi − γεi = 0
∂L
∂αi

= yi −
(
ωT φ(xi) + b + εi

)
= 0

(24)

Eliminate ω and εi, and further process them according to Mercer’s theorem. The
kernel function is represented as follows:

K
(

xi, xj
)
= φ(xi)

T φ
(
xj
)

i, j = 1, 2, · · · , n (25)

The LS-SVM prediction function is represented as

y(x) =
n

∑
i=1

αiK
(
xi, xj

)
+ b (26)

The commonly used kernel functions include linear kernel function, polynomial kernel
function, and RBF kernel function.

4. Experimental Analysis
4.1. Data Collection

In order to simulate the fault characteristics of the internal rotating parts of the mine
truck hub drive system and analyze the extraction and diagnosis effect of the fault character-
istics based on the LMD multi-component sample entropy and fusion canonical correlation
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analysis method, the gearbox vibration signal acquisition is selected in the rotating machin-
ery fault simulation test bed, and its experimental device is shown in Figure 2.
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Figure 2. Rotating machinery fault simulation test bench.

Install one acceleration sensor in the horizontal and vertical directions of the gearbox
cover and use ADA16-8/2 (LPCI) acquisition card to collect data. In the experiment, in
order to simulate faults in the mining truck hub drive system, in addition to collecting
normal gearbox vibration data, fault data were also collected by replacing different faulty
large and small gears, including three types of faults: small gear breakage, big gear wear,
small gear breakage + big gear wear. All four types of gears are standard spur gears, made
of S45C material, with a modulus of 2. The number of teeth for the large gear is 75, and the
number of teeth for the small gear is 55. The actual experimental gear is shown in Figure 3.
The experimental process is as follows:

Step 1: After installing the faulty gear on the experimental platform, start the testing
machine and check the following conditions: whether all bolts and screws are loose,
whether the insulation resistance of the motor is greater than 20 M Ω, whether there are
any errors in the wiring of each part, etc. After confirming that there are no errors, stop
the machine.

Step 2: Install the piezoelectric accelerometer on the gearbox base, and then connect
the two signal wires to the signal processor.

Step 3: Open the data acquisition software and set the sampling frequency to 5120 Hz
and the number of acquisition points to 2000. Start and run the machine. When the
operation is stable, click “Sampling” to obtain the vibration signal and save it. In order to
meet the requirements of small-sample data analysis (with no more than 30 samples in the
same group), 20 sets of vibration data were collected to obtain normal gear vibration data.

Step 4: Open the gearbox housing and replace the normal small gear with a broken
tooth small gear. In the same environment, repeat steps 1–3 to obtain 20 sets of broken
tooth fault vibration data.

Step 5: Open the gearbox housing and replace the normal large gear with a worn large
gear. In the same environment, repeat steps 1–3 to obtain 20 sets of broken teeth and wear
fault vibration data.

Step 6: Open the gearbox housing and replace the broken tooth small gear with a
normal small gear. In the same environment, repeat steps 1–3 to obtain 20 sets of wear fault
vibration data.
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4.2. Vibration Signal Analysis

Follow the above steps to perform LMD decomposition on each group of gearbox
vibration signals collected in sequence and obtain several PF components and one residual
after decomposition. Figure 4 takes a set of wear faults as an example, where the original
vibration signal is decomposed by LMD to obtain five PF components and one residual
component. From the decomposition results, it can be seen that the various PF components
after LMD decomposition separate the original signal in order of resolution from high to
low. The residual u5(t) fluctuates about three times and the amplitude is very weak and
can be regarded as a monotonic function when a small deviation of 0.05 ∆ is added.

In order to select the PF component that can reflect the main vibration characteristic
information from the components decomposed by LMD, canonical correlation analysis is
used to analyze each PF component and the original signal. The CCA coefficient value that
can reflect the real vibration characteristic component of the original signal is large, and the
CCA coefficient value that cannot truly reflect the false, noise, and other components of
the original signal vibration is small. Table 1 shows the canonical correlation coefficient
values between the original vibration signals of the gearbox in different states under the
same environment and the PF components after LMD decomposition.

From Table 1, it can be seen that the first three PF components of the original signal
decomposed by LMD under different states have relatively high correlation with the
original vibration signal, while the correlation coefficients of the last two PF components
and residual quantities with the original signal are relatively small (not exceeding 0.05).
By reviewing research materials and data analysis results, the first three PF components
are considered as true and usable components and used as analysis elements for fault
feature extraction.

Table 1. Correlation coefficient between each PF component and the original signal.

Gear Type Canonical Correlation
PF1 PF2 PF3 PF4 PF5 u5(t)

normal 0.685 0.593 0.186 0.019 0.00023 0.00011
broken teeth 0.792 0.526 0.238 0.021 0.00017 0.00006

wear 0.612 0.624 0.195 0.012 0.00030 0.00017
broken teeth + wear 0.801 0.496 0.156 0.024 0.00013 0.00014
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4.3. Fault Feature Extraction

Select the top 10 sets of vibration signals from four different states as LS-SVM training
samples. Figure 5 shows the entropy distribution of 40 sets of original vibration signal samples
for the four states, and Figure 6 shows the entropy distribution of the first three PF components
corresponding to the vibration signal after LMD decomposition. From the two graphs, it can
be seen that, although the sample entropy distribution of the original vibration signal and the
first three PF components can be maintained within a certain interval range, there is a jumping
phenomenon; that is, the sample entropy in different states intersects and overlaps between
intervals. However, from the distribution of LMD multi-component sample entropy fusion
corresponding to the 40 sets of vibration signals in Figure 7, it can be seen that, although the
entropy values of each PF component sample cross and jump, after fusing the sample entropy
of the first three PF components into feature vectors, they will be concentrated in a certain
spatial range, representing a relatively significant distribution pattern.
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4.4. Classification of Fault States

Input the LMD multi-component sample entropy of the first 10 sets of vibration signals
in four different states into the LS-SVM classifier for training. Input the last 10 sets of vibration
signals in each state as test samples into the trained LS-SVM classifier for recognition and
classification. Train and classify the LMD multi-component sample entropy fusion features of
gearbox vibration signals in the above four states based on linear, polynomial, and RBF kernel
functions, respectively. The training and classification results are shown in Table 2.

Table 2. Diagnosis effects of multi-component sample entropy fusion and LS-SVM based on LMD.

Type Normal Broken Teeth Wear Broken Teeth + Wear

linear kernel function
training time 0.321 s 0.332 s 0.340 s 0.343 s

precision 90% 70% 80% 80%

Polynomial kernel function training time 0.364 s 0.373 s 0.387 s 0.382 s
precision 90% 80% 80% 90%

RBF kernel function
training time 0.431 s 0.457 s 0.463 s 0.475 s

precision 100% 100% 100% 100%

From the diagnostic results in Table 2, it can be seen that the training time based
on the three kernel functions is relatively close, with the shortest based on linear kernel
functions and the longest based on RBF kernel functions. However, in terms of recognition
and classification accuracy, the RBF kernel function is higher than the other two, and the
recognition accuracy for all four types of gearbox states reaches 100%.The main reason
for the above classification results is that linear kernel function is the simplest kernel
function, which can map data from low-dimensional space to high-dimensional space, but
its monetization power is limited and only applicable to linearly separable data. Polynomial
kernel functions can map data to higher dimensional spaces, but their expressive power
is also limited and only applicable to some simple nonlinear problems. The RBF kernel
function can map data to an infinite dimensional space and has strong expressive power,
making it suitable for complex nonlinear problems. However, its training time will be
slightly longer than the first two. The data collected in this experiment are nonlinear
and nonstationary vibration signals, so the effect of using the RBF kernel function will
be more significant. Due to the fact that the faulty gears used in the experiment were
artificially processed, the fault characteristics caused by vibration are more obvious, and the
experimental environment is relatively stable. Therefore, the collected data are idealized, and
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the test results are also idealized. In real environments, there may be certain differences in the
results due to various factors, such as fault type, degree of damage, and usage environment.

5. Conclusions

A fault diagnosis method based on LMD multi-component sample entropy fusion
and LS-SVM is proposed to address the difficulties caused by nonlinear and nonstationary
vibration signals inside the mining truck wheel drive system in fault diagnosis. This
method can provide reference for the fault diagnosis of rolling bearings and gears inside
the wheel drive system and is of great significance for improving the efficiency of mining
trucks and reducing operation and maintenance costs. The main conclusions are as follows:

(1) The proposed LMD multi-component sample entropy fusion can effectively extract
fault diagnosis features within the wheel drive system, which has significant advan-
tages compared to traditional methods.

(2) Introducing LS-SVM into the fault feature classification of wheel hub drive systems,
the RBF kernel function is analyzed to be more suitable for fault classification in this
study through two dimensions of training time and testing accuracy.

(3) The method was applied to gear experimental data and achieved good diagnostic results.
(4) The proposed method has been validated through experimental data analysis, but,

due to significant differences in vibration characteristics caused by complex working
conditions and varying degrees of component damage, further research is needed on
the diagnostic effectiveness in actual working environments.

Future work includes fault diagnosis experiments on other components of the wheel
drive system, as well as fault diagnosis of wheel drive systems under variable operating
conditions in real environments and selecting more multi-dimensional data vectors as
input objects for patterns to diagnose wheel drive system faults under imbalanced multi-
dimensional data.
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