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Abstract: Based on Jiles–Atherton theory and the quadratic law, a displacement model for giant
magnetostrictive actuators (GMA) has been developed. The Runge–Kutta method is used to solve the
nonlinear differential equation of the hysteresis model in a segmented magnetic field. Aiming at the
problem that the model parameters are coupled with each other and difficult to estimate, a heuristic
intelligent search algorithm-differential evolution algorithm (DE) is employed to implement parame-
ter identification. In order to verify the effectiveness of the algorithm, comparative studies with the
genetic algorithm (GA) and the particle swarm optimization (PSO) applied in parameter identification
are performed. The simulation results demonstrate that the algorithm has the advantages of requiring
few control variables, fast convergence speed, stable identified results, and excellent repeatability.
Furthermore, the experimental results demonstrate that the output displacements calculated from
the identified model are in great agreement with the measured values. Accordingly, the DE can
identify the parameters of a displacement model for giant magnetostrictive actuators with satisfactory
accuracy and reliability.

Keywords: giant magnetostrictive actuator; differential evolution algorithm; parameter identification;
Runge–Kutta method; segmented magnetic field

1. Introduction

The giant magnetostrictive actuator (GMA), which has the properties of compact
size, high force, large strain, and fast response, has been widely applied in ultra-precision
machining, micro-machining, micro-vibration control, and precision positioning, etc. [1–3].
However, the physical model parameters of GMA are related to the magnetization process.
The relation between the generated displacement and input magnetic field exhibits domi-
nant hysteresis and nonlinearity. Therefore, it is crucial to establish an effective hysteresis
nonlinear model to achieve accurate displacement control. According to ferromagnetic
magnetization theory, the Jiles–Atherton model is developed [4,5]. Under the condition of
constant magnetic field change, the model has promising performance in describing the
magnetization process of giant magnetostrictive material. Furthermore, it is a common
low-order differential equation, which can clearly describe the nonlinearity between the
magnetic field intensity and magnetization, and is easy to implement in practical applica-
tion. Calkins and Dapino et al. [6,7] established the displacement hysteresis nonlinearity
model for GMA by combing the Jiles–Atherton model with a quadratic moment domain ro-
tation model [8]. However, because six physical parameters of the displacement model are
coupled with each other, it is difficult and complicated to realize parameter identification
in practical application.

Jiles et al. calculated hysteresis model parameters from experimental measurements
of the coercivity, remanence, saturation magnetization, initial normal susceptibility, and the
maximum differential susceptibility [9]. Calkins et al. optimized the model parameters by
using a constrained optimization algorithm based upon sequential quadratic programming
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updates and a least squares fit with displacement data [6]. In order to avoid unconvergence
of the identification, Lederer et al. adopted a simulated annealing optimization method
to identify the hysteresis parameters [10]. Cao et al. optimized the hysteresis parameters
using a genetic algorithm (GA) and then established a hybrid intelligent algorithm to solve
the weak capacity of climbing hill of the genetic algorithm [11,12]. Kis et al. accomplished
parameter identification of the Jiles–Atherton model with a nonlinear least-square method
based on the measurement data [13]. Zheng et al. developed a hybrid genetic algorithm
combining a gradient algorithm with a conventional genetic algorithm to accomplish pa-
rameter identification [2]. To prevent the premature convergence of the genetic algorithm
and avoid slowness of convergence rate of the simulated annealing algorithm, Liu et al.
proposed an improved genetic simulated annealing algorithm [14]. Knypinski et al. pre-
sented the particle swarm optimization (PSO) [15]. Further, Yang et al. improved PSO with
a dynamically-adjusting inertia weighting, study factors, and genetic variation to overcome
premature convergence and easily falling into local optimum in later iterations of PSO [16].
In addition, Yang et al. employed the PSO with a time-varying weight and an adaptive
mutation stage to improve the global convergence performance [17]. Toman et al. utilized
differential evolution (DE) to realize parameter identification of the hysteresis model [18].

Based on the above analysis, parameter identification of a hysteresis nonlinear model
for GMA generally uses GA and PSO. However, the GA easily falls into prematurity and
its convergence speed is too slow. The PSO is unstable, and the final optimized results are
easily influenced by the number of parameters and the initial population. Even though
other scholars apply differential evolution to identify hysteresis parameters, the method
is only limited to the Jiles–Atherton model. Compared with the GA and PSO, the DE has
faster convergence speed, fewer adjustable parameters, and lower probability in falling
into local optimum. In this paper, the differential evolution (DE) algorithm is employed to
implement parameter identification of a displacement model for GMA accordingly.

2. Displacement Model for Giant Magnetostrictive Actuator
2.1. Structure and Working Principle of Giant Magnetostrictive Actuator

The structure of a GMA made of giant magnetostrictive material (e.g., Terfenol-D) is
shown in Figure 1. The axial dimension of a Terfenol-D rod changes under the action of
the magnetic field generated from the drive current of the coil. In order to obtain different
displacement, the current in the drive coil can be changed. As shown in Figure 1, a disk
spring provides an adjustable prestress which can improve the output characteristic of the
Terfenol-D rod by adjusting the thread fit distance between the preload nut and head cover.
A closed magnetic circuit is formed by connecting the Terfenol-D rod, magnetizer, and
magnetic yoke. The pickup coil is employed to obtain the magnetic field change caused by
inverse magnetostrictive effect when the output shaft has external mechanical constraints.

2.2. Establishment of Displacement Model

The establishment of a displacement model for GMA is performed in two steps. Firstly,
a magnetic hysteresis model is established under the Jiles–Atherton theory. The second
step mainly concerns the magnetomechanical model which is established according to the
quadratic law. The Jiles–Atherton model has been used to describe the relationship between
the applied magnetic field H and magnetization intensity M. The hysteresis model based
on the domain wall theory of ferromagnetic material is determined from Equation (1) to
Equation (5). The equations discuss the relationships among the effective applied magnetic
field He, the anhysteretic magnetization Man, the irreversible magnetization Mirr, the
reversible magnetization Mrev, and the total magnetization M [19]:

He = H + αM (1)

Man = Ms[coth(He/a)− a/He] (2)

dMirr/dH = (Man −Mirr)/(δk− α(Man −Mirr)) (3)
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Mrev = c(Man −Mirr) (4)

M = (Mirr + Mrev) (5)

where α is the quantifies domain interactions parameter, a is the shape parameter for Man,
Ms is saturation magnetization, k is the irreversible loss coefficient, and c is the reversibility
coefficient. In addition, δ ensures that the pinning process always impedes magnetization,
i.e., δ is +1 when the magnetic field H increases and −1 when the H decreases. As in
Equation (1), He is the sum of the external applied magnetic field H and long range
magnetic coupling αM, and the value of H is determined by the current of the drive coil.
That is, H = NI/L (N is the coil turns, L is the axial length of the drive coil).
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The magnetostriction coefficient λ = ∆l/l indicates the relative change in length of the
giant magnetostrictive material from the ordered to the state in which domains are aligned,
where l represents the length of the Terfenol-D rod and ∆l represents the displacement
change of GMA. The absolute value of λ is proportional to the change of the magnetic
field. When the magnetic field intensity increases to a critical value, the magnetostriction
coefficient no longer changes and finally reaches a saturation value. Under a specific
prestress and magnetic field, λ is shown to be an even function of the magnetization M for
isotropic material. In the view of energy analysis, the magnetomechanical model form is
given by Equation (6) to Equation (7):

λ = 3λs M2/2M2
s = γ1M2 (6)

∆l = λl = γ1M2l (7)

where λs denotes the saturation magnetostriction, Ms denotes the saturation magnetization,
and γ1 denotes the secondary magnetostriction coefficient.

In combination, the output displacement model for GMA is described by Equation (1)
to Equation (7). The displacement change ∆l can be calculated according to the applied
magnetic field generated by the current in the drive coil. However, to obtain the output
displacement, the parameters θ = (a, Ms, α, c, k, γ1) of the displacement model need to
be identified.
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2.3. Solution of Nonlinear Differential Equation

In order to implement the parameter identification, it is essential to solve the nonlinear
differential equation in the Jiles–Atherton hysteresis model. As in Equation (3), it is a
nonlinear differential equation of the first order. We assume that the anhysteretic magneti-
zation Man is an invariant constant. A nonlinear ordinary differential equation of the first
order is derived from Equation (3). Then the Runge–Kutta method, as a numerical solution
of differential equations, is employed to solve the equation. Since the parameter Man is
mutually coupled with other variables, the value of Man is constantly changing. If the
magnetic field is in a wide range, a large error can be generated by using the Runge–Kutta
method to solve the equation with a fixed Man. To obtain accurate solutions, we solve the
nonlinear differential equation in a segmented magnetic field as follows:

(1) The magnetic field range [Hmin Hmax] is divided into N small intervals with the length
∆H = (Hmax − Hmin)/N.

(2) The effective magnetic field He is calculated by substituting the lower limit Hmin +
m ∗ (Hmax − Hmin)/N into (1) and obtaining the approximate Man from Equation (2);
here m is an integer belonging to [0 N]

(3) Substituting Man into Equation (3), we obtain a nonlinear ordinary differential equa-
tion of the first order. Normalization processing is performed by introducing variable
t. The fourth-order Runge–Kutta method is used to solve the differential equation in
the range of small intervals.

(4) We calculate the approximate magnetization M by substituting Man and Mirr obtained
in the previous step into Equations (4) and (5).

(5) If the whole solution procedure is not completed, the next loop continues with the
loop variable being modified.

The Runge–Kutta method is a numerical algorithm for the initial value problem of a
differential equation. Using this method, we can find approximate discrete solutions for
a differential equation with a given initial value. The fourth-order Runge–Kutta method,
which meets the accuracy requirements in most applications, has been widely used. As
shown in Equations (8)–(10), the calculation is to predict the function value y(xn + h) (i.e.,
yn+1) with y(xn) (i.e., yn) in the interval [xn xn + h]; here h is the step size [20]. The differential
equation and initial value can be expressed as{

dy/dx = f (x, y)
y(x0) = y0

(8)

The fourth-order Runge–Kutta method is given by the equation

yn+1 = yn + (K1 + 2K2 + 2K3 + K4)/6 (9)

where 
K1 = h f (xn, yn)

K2 = h f (xn + h/2, yn + K1/2)
K3 = h f (xn + h/2, yn + K2/2)

K4 = h f (xn + h, yn + K3)

(10)

Using the above Runge–Kutta method to solve the nonlinear differential equation in
the hysteresis model of GMA, we yield the differential equation and initial value as follows:{

dMirr/dH = (Man −Mirr)/(δk− α(Man −Mirr))
Mirr(H = 0) = 0

(11)

In order to ensure convergence in the solving process, the value of the step size should
be between 0 and 1. Accordingly t is introduced to replace the original variable H in the
interval ∆H = (Hmax − Hmin)/N. The normalization processing is given by:

t = H/∆H = H ∗ N/(Hmax − Hmin), H ∈ (0 ∆H) (12)
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dt/dH = N/(Hmax − Hmin) (13)

dMirr/dH = (dMirr/dt) ∗ (dt/dH) (14)

As shown in Equation (15), the differential equation and initial value are derived from
Equation (11) to Equation (14) after the normalization of the hysteresis nonlinear model.{

dMirr/dt = ((Man −Mirr) ∗ (Hmax − Hmin))/(N ∗ (δk− α(Man −Mirr)))
Mirr(t = 0) = 0

(15)

Clearly, the initial value of each interval is constantly changing in the loop of solutions.
The range of the magnetic field is divided into N intervals. In each interval, the Runge–
Kutta method is used to solve the nonlinear differential equation with updated Man and
initial value. Finally, we obtain N magnetization values corresponding with N discrete
magnetic field values.

3. Parameter Identification of Displacement Model
3.1. Principle of Model Parameter Identification

Model parameter identification is to estimate a set of parameters which ensure that the
prediction model can best match the actual model. Based on large numbers of experimental
data and the established theoretical model, the parameter identification is performed, i.e.,
calculation results are derived from the theoretical model with estimated parameters that
can agree well with the experimental measurement. As a result, an accurate theoretical
model according with actual process is determined. The parameter identification principle
of a displacement model for GMA is shown in Figure 2. Firstly, the value range of parameter
θ = (a, Ms, α, c, k, γ1) is determined and a prediction model is obtained through selecting
a random θ in this range. Under the action of the input current, theoretical displacement
∆l̂(θ, n) is calculated from the prediction model. Meanwhile, actual displacement ∆l(n)
of GMA is obtained from the sensor. Then, model parameters are modified by using a
differential evolution algorithm on the basis of error e(θ, n) = ∆l(n)− ∆l̂(θ, n). Finally, the
values of θ are optimized through minimization of the objective function, as in (16): E(θ) = 1/K ∗

K
∑

n=1
(∆l(n)− ∆l̂(θ, n))

2

dj ≤ θj ≤ bj, j = 1, 2, 3 · · · 6
(16)

where E(θ) denotes the objective function, K is the number of total samples, n denotes the
nth time sample, j is the number of parameters to be identified, θj is the jth element of the
parameter θ, and dj and bj respectively denote the lower limit and upper limit of θj.
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3.2. Parameter Identification Using Differential Evolution Algorithm

Differential evolution (DE), proposed by Rainer Storn and Kenneth Price, is a heuristic
method for global optimization based on population. The method is based on real number
encoding, requires few control variables, and is stronger in robustness, easy to use, faster in
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convergence, and easily realizes parallel computation. Accordingly, it is suitable for solving
optimization problems in a complex environment [21,22].

The DE mainly contains three operations: mutation, crossover, and selection. The crux
of the algorithm is to start from a randomly generated initial population which should cover
the entire parameter space. On the assumption that a preliminary solution is available, the
initial population might be generated by adding normally distributed random deviations to
the nominal solution. In accordance with certain rules, DE generates new mutated vectors
by adding the weighted difference between two population vectors to a third vector. Next,
we yield the so-called trial vector by mixing the mutated vectors with the parameters of
another predetermined vector, the target vector. If the trial vector yields a better fitness
value than the target vector, the trial vector replaces the target vector in the following
generation. Otherwise, the target vector is preserved. The basic strategy of DE can be
described as follows.

(1) Generating an initial population. In the feasible solution space, the initial popula-
tion is generated randomly according to Equation (17):{

xij(0) = randlij(0, 1)
(

xU
ij − xL

ij

)
+ xL

ij

i = 1, 2 · · · , NP, j ∈ [1 D]
(17)

where D denotes the dimension of estimated parameters, NP is the population size, xU
ij and

xL
ij respectively denote the upper and lower bound of the jth chromosome, and randlij(0, 1)

is a random decimal between 0 and 1.
(2) Mutation. The basic mutation strategy randomly selects three individuals xp1 , xp2 ,

xp3 , and i 6= p1 6= p2 6= p3; the operation is given by

hij(t + 1) = xp1 j(t) + F
(
xp2 j(t)− xp3 j(t)

)
(18)

where (xp2 j(t)− (xp3 j(t) is the differential variation, F is the mutation factor which controls
the amplification of the differential variation, and p1, p2, p3 are the individual sequence
numbers in the population. Note that differential operation is the key step of DE. In the
absence of local optimization problems, xp1 j(t) can be replaced by the best individual xbj(t)
in the current generation to improve the convergence speed. Thus, from Equation (18) we
can obtain:

hij(t + 1) = xbj(t) + F
(
xp2 j(t)− xp3 j(t)

)
(19)

(3) Crossover. In order to increase the diversity of the perturbed parameter vectors,
the crossover is introduced as in (20).

vij(t + 1) =
{

hij(t + 1), randlij ≤ CR
xij(t), randlij ≥ CR

(20)

In Equation (20), randlij is a uniform random generator with outcome between 0 and
1. CR is the crossover probability between 0 and 1, which has to be determined by the user.

(4) Selection. In order to determine whether or not xij(t) should become a member
of the following generation, the trial vector vi(t + 1) is compared to the target vector xi(t)
using the evaluation function. If the vector vi(t + 1) yields a smaller evaluation function
value than xi(t), then vi(t + 1) is selected as the offspring; otherwise, the vector xi(t) is
retained. The operation can be expressed as:

xij(t + 1) =
{

vi(t + 1), f (vi1(t + 1), · · · , vin(t + 1)) < f (xi1(t), · · · , xin(t))
xi(t), f (vi1(t + 1), · · · , vin(t + 1)) ≥ f (xi1(t), · · · , xin(t))

(21)

where f is the evaluation function which is determined by Equation (16), and f (vi(t + 1) is
the evaluation function value corresponding to the trial vector. In the displacement model,
as discussed in the previous section, the parameter θ = (a, Ms, α, c, k, γ1) is estimated by
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combining model parameter identification with the DE. The implementation procedures
of the parameter identification using the DE is shown in Figure 3. The implementation
procedures of the parameter identification using the DE are described as follows:

Actuators 2023, 12, x FOR PEER REVIEW 7 of 15 
 

 

(3) Crossover. In order to increase the diversity of the perturbed parameter vectors, 
the crossover is introduced as in (20). 𝑣 (𝑡 + 1) = ℎ (𝑡 + 1), 𝑟𝑎𝑛𝑑𝑙 ≤ 𝐶𝑅𝑥 (𝑡), 𝑟𝑎𝑛𝑑𝑙 ≥ 𝐶𝑅         (20)

In Equation (20), 𝑟𝑎𝑛𝑑𝑙  is a uniform random generator with outcome between 0 
and 1. 𝐶𝑅 is the crossover probability between 0 and 1, which has to be determined by 
the user. 

(4) Selection. In order to determine whether or not 𝑥 (𝑡) should become a member 
of the following generation, the trial vector 𝑣 (𝑡 + 1) is compared to the target vector 𝑥 (𝑡) using the evaluation function. If the vector 𝑣 (𝑡 + 1) yields a smaller evaluation 
function value than 𝑥 (𝑡), then 𝑣 (𝑡 + 1) is selected as the offspring; otherwise, the vector 𝑥 (𝑡) is retained. The operation can be expressed as: 𝑥 (𝑡 + 1) = 𝑣 (𝑡 + 1), 𝑓(𝑣 (𝑡 + 1), ⋯ , 𝑣 (𝑡 + 1)) < 𝑓(𝑥 (𝑡), ⋯ , 𝑥 (𝑡))𝑥 (𝑡), 𝑓(𝑣 (𝑡 + 1), ⋯ , 𝑣 (𝑡 + 1)) ≥ 𝑓(𝑥 (𝑡), ⋯ , 𝑥 (𝑡))         (21)

where 𝑓 is the evaluation function which is determined by Equation (16), and 𝑓(𝑣 (𝑡 +1) is the evaluation function value corresponding to the trial vector. In the displacement 
model, as discussed in the previous section, the parameter 𝜃 = (𝑎, 𝑀 , 𝛼, 𝑐, 𝑘, 𝛾 ) is esti-
mated by combining model parameter identification with the DE. The implementation 
procedures of the parameter identification using the DE is shown in Figure 3. The imple-
mentation procedures of the parameter identification using the DE are described as fol-
lows: 

 
Figure 3. Flow chart of parameter identification using DE. Figure 3. Flow chart of parameter identification using DE.

Step 1: The search range of the identification parameter θ for the displacement model
is determined. Meanwhile, the population size, the iteration number, mutation factor and
crossover probability of the DE are initialized.

Step 2: The initial population of six parameters in θ = (a, Ms, α, c, k, γ1) is generated
according to population size and Equation (17).

Step 3: The fitness value of each individual is evaluated according to Equation (16),
and the best individual BestS is selected based on the fitness value.

Step 4: Using the mutation strategy DE/best/1 proposed by Price and Storn, the
mutated individual hij(t + 1) generates after the operation in Equation (19).

Step 5: Based on Equation (20), the new individual vij(t + 1) is obtained through the
crossover operation between the current individual xij(t) and the mutation individual
hij(t + 1).

Step 6: In view of the greedy strategy from Equation (21), the best individual xij(t + 1)
which can be retained to the following generation is selected.

Step 7: The objective function value of the ith time individual is calculated and
compared to that of the best individual BestS. Next, it is decided whether or not the best
individual BestS is to be updated according to the objective function value.

Step 8: If the iteration number exceeds the maximum generation number, then the
search for model parameter θ should be terminated and the best individual BestS be
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considered as the final identified parameter θ. Otherwise, go to step 4 and repeat the
above operations.

4. Identification Results and Experimental Analysis
4.1. Design of Experimental System

The experimental measurement system designed for parameter identification of GMA
is shown in Figure 4. The system mainly consists of a GMA, a digital controlled current
source, a laser displacement sensor, a data acquisition module, a control system, and
a cooling system. In the experimental system, the Digital Controlled Current Source
controls the drive coil of the GMA and causes the GMA to output different displacement by
adjusting the output current. The system obtains the GMA output displacement collected
by the Laser Displacement Sensor through the Data Acquisition Module. The stabilized
voltage supply provides power for the Laser Displacement Sensor. A membrane air dryer,
gas manometer, and air compressor comprise a cooling system to stabilize the temperature
of the GMA drive coil and reduce the error caused by temperature rise. The coil and
the Terfenol-D rod are the core components of the GMA, and their physical parameters
are described as follows: the number of coil turns is N = 3800, the axial length of the
coil is Lc = 210 mm, the diameter of the Terfenol-D rod is φ = 20 mm, and the length
of the rod is Lr = 200 mm. The digital controlled current source YL2410 is a bipolar
programmable power supply whose output accuracy is ±0.001 A. The laser sensor LK-031
with a measuring range of ±5 mm and repeatability 1 µm2 is used to measure GMA’s
output displacement in real time. The data acquisition USB-4711A-AE with 16 channels,
12 bits resolution and 150 ks/s sampling rates is adopted. With current 1 A as the maximum
value Imax and 0 A as the minimum value Imin, the displacement measurement process is
repeated ten times under the action of the current from Imin to Imax. In the operation of
single time measurement, the total measurement data are 6300 with a current change step
of 0.01 A, a current change frequency of 1 Hz, and a data acquisition rate of 63 bits/s (i.e.,
output displacement is sampled 63 times under the action of the same current). Therefore,
the average of 63 displacements should be calculated as the output value corresponding
to the same current. Then, 100 groups of data I(n) and ∆l(n) are obtained to be applied in
parameter identification.
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4.2. Parameter Identification Results

In the identification experiment, the population size is initialized to 100, the total
iteration number is set to 500, and the objective function is as in Equation (16). Taking the
measured data as the sample, we respectively use the GA, PSO, and DE to identify the
displacement model parameters for the GMA. Here the GA’s parameters are crossover
probability Pc = 0.8 and mutation probability Pm = 0.1. The learning factors of the PSO are
c1 = 1.3 and c2 = 1.7, and in addition, its inertia weight becomes smaller in linearity from
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wmax = 0.9 to wmin = 0.1. The DE’s parameters are mutation factor F = 0.8 and crossover
probability CR = 0.9 [23–25]. Parameter identification of evolution processes are shown in
Figure 5a–c through repeating the identification five times randomly. The results obtained
from different optimization algorithms are summarized in Tables 1–3.
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Table 1. Repeated identification results of the GA.

Parameter Range 1st 2nd 3rd 4th 5th Mean Variance

a × 103 [1, 8] 1.0000 2.1017 4.6266 1.1300 3.7097 2.5136 2.0541
Ms × 105 (A/m) [1, 8] 3.7507 5.1124 4.6129 4.3803 4.5650 4.4843 0.1933

α [−0.02, 0.01] −0.0176 −0.0100 −0.0009 −0.0042 −0.0074 −0.0080 3.2 × 10−5

c [0, 0.08] 0.0489 0.0187 0.0074 0.0560 0.0256 0.0313 0.0003
k × 103 [0, 8] 3.3548 2.2180 1.3627 6.6471 1.2190 2.9603 3.9767

γ1 × 10−15 [0, 6] 3.8592 2.2933 3.6246 3.2317 3.4721 3.2962 0.2931
E(θ) (µm2) —- 0.1567 0.2473 0.1828 0.1582 0.1581 0.1806 0.0012

T —- 125 240 324 252 60 200.2 8981

Table 2. Repeated identification results of the PSO.

Parameter Range 1st 2nd 3rd 4th 5th Mean Variance

a × 103 [1, 8] 1.0000 6.5682 6.6305 1.0000 1.0002 3.2398 7.5249
Ms × 105 (A/m) [1, 8] 3.0399 3.8559 4.0339 3.5648 3.9496 3.6888 0.1303

α [−0.02, 0.01] −0.0200 0.0100 0.0100 −0.0150 −0.0136 −0.0057 0.0002
c [0, 0.08] 0.0600 0.0600 0.0800 0.0603 0.0600 0.0652 0.0001

k × 103 [0, 8] 3.8118 1.0844 1.1075 4.3433 4.3168 2.9328 2.2852
γ1 × 10−15 [0, 6] 6.0000 6.0000 5.4899 4.4506 3.6191 5.1119 0.8772
E(θ) (µm2) —- 0.1477 0.1462 0.1771 0.1765 0.1462 0.1587 0.0002

T —- 169 188 356 335 320 273.6 6196

Table 3. Repeated identification results of the DE.

Parameter Range 1st 2rd 3nd 4th 5th Mean Variance

a × 103 [1, 8] 2.5279 2.5279 2.5279 2.5279 2.5279 2.5279 0
Ms × 105 (A/m) [1, 8] 5.5190 3.9120 5.1143 5.1143 4.5911 4.8501 0.3068

α [−0.02, 0.01] −0.0142 −0.0200 −0.0153 −0.0153 −0.0170 −0.0164 4.1 × 10−6

c [0, 0.08] 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0
k × 103 [0, 8] 0.7784 0.7784 0.7784 0.7784 0.7784 0.7784 0

γ1 × 10−15 [0, 6] 2.1690 4.3170 2.5259 2.5259 3.1344 2.9344 0.5742
E(θ) (µm2) —- 0.1352 0.1352 0.1352 0.1352 0.1352 0.1352 0

T —- 81 121 102 102 90 99.2 181.4
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The results obtained from running the GA are illustrated in Table 1. The final ob-
jective function values are different, and the minimum value is 0.1567 µm2. During the
identification procedure, the objective function is easy to converge to a certain value and
does not reduce any further. The algorithm falls into local convergence, and the premature
convergence occurs. Furthermore, the difference of five iteration times achieving the stable
convergence value is large, and the average iteration number is more than 200. As shown
in Table 2, the minimum objective function value of the PSO is 0.1462 µm2, which is sig-
nificantly less than that of the GA. However, the search ability becomes poor in the late
stage of the identification algorithm. The convergence is slow with the average of iteration
times being more than 250. Compared with the results using of GA and PSO, the variance
of repeated identification results for parameters a, α, c and k is approximate to zero and the
identified parameter change is stable by using DE. After about 100 iterations, the objective
function value converges to 0.1352 µm2. It is clear that the DE has the advantages of fast
convergence speed, accurate identification parameters, stable objective function value, and
excellent global convergence capability. In order to further verify the performance of the
DE, a simulation is performed by using identified parameters available in Table 3.

The displacement-current characteristic curves are shown in Figure 6. It is noted that
the output displacements of the GMA, which are calculated from four groups of identified
parameters, are in great agreement. Thus, the DE algorithm has excellent repeatability
and stability.
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4.3. Experimental Results Analysis

As illustrated in Tables 1–3, the best parameters identified by using GA, PSO, and DE
are respectively put into the displacement model shown in Equations (1)–(7) and corre-
sponding models are obtained. Based on the identified models, the output displacements
are calculated and compared with the measurement data. The detailed comparisons be-
tween simulations and experiments are shown in Figure 7a–c. Figure 7d describes the
errors between theoretical values and measurement values with different optimization
algorithms. The average relative errors of the GA, PSO, and DE are 10.63%, 9.5%, and
5.02%, respectively. Experimental results indicate that the output displacements of the
model calculated according to the DE agree well with the measured values. Clearly, the
identification accuracy of the DE is higher than that of the other two algorithms.
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When the current changes from 0 A to 1 A with the step of 0.01 A, the average
relative errors are obtained, 4.87%, 5.02%, 5.24% and 5.16%, respectively, by comparing
simulation results calculated from the four groups of identified parameters available in
Table 3 with experimental results. In three current ranges such as 0–0.4 A, 0–0.7 A and
0–1 A, the output displacements of the GMA are calculated from the identified parameter
with the minimum relative error. As shown in Figure 8, the calculated results are basically
consistent with the measurement results. In addition, under the action of twelve different
current values which are selected randomly, the displacements are calculated by using
the identified parameters of the DE. The comparison results between actual values and
calculated values are summarized in Table 4. It is noticeable that the relative errors are
almost less than 5%, but at 0.24 A and 0.28 A. The reason is that the system error has a
great influence on the result when the current is relatively small. Further, experimental
results show that the DE has excellent optimization performance in model parameter
identification. Therefore, parameter identification of a displacement model for GMA using
DE is convenient and effective.
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Table 4. Experimental verification results.

Current
(A)

Measured Value
(µm)

Calculated Value
(µm) Error

0.24 4.47 4.00 10.51%
0.36 9.54 9.42 1.26%
0.48 16.87 16.18 4.09%
0.6 23.59 23.28 1.31%

0.72 30.16 29.85 1.03%
0.88 37.05 37.02 0.08%
0.96 40.3 39.88 1.04%
0.8 37.3 37.09 0.57%
0.6 28.31 27.7 2.15%

0.52 23.89 23.12 3.22%
0.4 16.39 15.85 3.29%

0.28 9.93 8.98 9.57%

5. Conclusions and Future Work

In this paper, the DE is firstly used to identify the parameters of a nonlinear displace-
ment model for giant magnetostrictive actuator. In order to solve the nonlinear differential
equation of the hysteresis model, the Runge–Kutta method is adopted in a segmented
magnetic field.

(1) The iteration evolution process and identified results indicate that the DE has better
performance compared with the GA and PSO in parameter identification. Using the
DE, we have obtained fast convergence speed, high identification accuracy, and excel-
lent global optimization ability. The algorithm itself requires few control variables and
the identified results are insensitive to parameter variations. Furthermore, parameter
identification of a displacement model for GMA using the DE only requires measuring
the input current and output displacement.

(2) Simulation and experimental study are performed based on the experimental test
platform of GMA. The results show that parameter identification using the DE has
excellent stability and repeatability. The output displacements calculated from the
identified model are in great agreement with the measured values and the relative
error is less than 5.3%. Therefore, it is effective to apply the DE to parameter identifi-
cation of a displacement model for GMA. The identified model has a significant value
for applications in practical engineering.

The standard DE algorithm is used to identify the parameters of GMA in this paper.
In the future, based on the experiments and simulations proposed, the DE algorithm will
be improved according to the characteristics of GMA to improve identification accuracy.
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