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Abstract: The single-track two-wheeled (STTW) robot has the advantages of small size and flexibility,
and it is suitable for traveling in narrow terrains of mountains and jungles. In this article, a reinforce-
ment learning control method for STTW robots is proposed for driving fast in narrow terrain with
limited visibility and line-of-sight occlusions. The proposed control scheme integrates path planning,
trajectory tracking, and balancing control in a single framework. Based on this method, the state,
action, and reward function are defined for narrow terrain passing tasks. At the same time, we design
the actor network and the critic network structures and use the twin delayed deep deterministic
policy gradient (TD3) to train these neural networks to construct a controller. Next, a simulation
platform is formulated to test the performances of the proposed control method. The simulation
results show that the obtained controller allows the STTW robot to effectively pass the training terrain,
as well as the four test terrains. In addition, this article conducts a simulation comparison to prove
the advantages of the integrated framework over traditional methods and the effectiveness of the
reward function.

Keywords: single-track two-wheeled robot; reinforcement learning; narrow terrain

1. Introduction

A single-track two-wheeled (STTW) robot is an autonomous mobile robot with the
structure of an unmanned bicycle or motorcycle. It is called an STTW robot due to the
overlap of the driving trajectories of the front and rear wheels. It is characterized by a
speed block, small size, simple structure, and strong off-road capability, with potential
future applications. The STTW robot is an underactuated system, with static instability and
dynamic stability. Therefore, over the years, some researchers have studied the balance
control of STTW robots at normal driving speeds [1–3]. As the related research has pro-
gressed, scholars have explored the balance control of STTW robots in a high-speed state [4],
low-speed state [5], zero-speed state [6–8], and in the situation of avoiding obstacles [9].
However, these previous works are not thorough regarding the problem of STTW robots
driving in unstructured terrain.

Passing through narrow terrain is an advantage of STTW robots, and studying this
task can exert the high adaptability of such robots. Narrow terrain is more common in
mountainous and jungle terrain, which includes stones and trees, produces fog during the
day, and lacks lights at night. These complex situations create low visibility and line-of-sight
occlusions. In low visibility conditions, STTW robots can only detect limited geographical
information, which cannot support global path planning, and line-of-sight occlusions mean
that the robot cannot obtain comprehensive geographic information, so it needs to be
more cautious and robust in making decisions. Therefore, this article studies the control
of STTW robots in narrow terrain with limited visibility and line-of-sight occlusions. In
narrow terrain passing tasks, the path planning, tracking control, and balancing control
of STTW robots are highly coupled, which makes the control task more complicated. For
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instance, the path planned by STTW robot tracking needs to meet the kinematic and
dynamic characteristics, and the balance of the robots needs to be considered in the process
of trajectory tracking. Therefore, the STTW robot control method proposed in this paper
integrates the local path planning, the trajectory tracking, and the balance control in a single
framework, which enables this challenging coupled problem to be solved.

Compared to traditional path planning and control methods, using deep reinforcement
learning to achieve narrow terrain passing tasks has certain advantages. First, the deep
reinforcement learning can integrate path planning and control under a single framework.
In this way, planning and control algorithms do not need to be designed separately. Second,
this article uses a model-free reinforcement learning algorithm to solve the problem, which
avoids building a dynamic model for the STTW robot. In addition, the reinforcement
learning is more advantageous in the handling control problem with a sophisticated state
space. Our solution for the STTW robot’s narrow terrain passing task can be summarized
as shown in Figure 1.
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The primary contributions of this article are as follows:

1. This article proposes a deep reinforcement learning-based STTW robot control method,
which integrates local path planning, trajectory tracking, and balance control in a
single framework.

2. The proposed control method is applied to realize STTW robot driving in narrow ter-
rain with line-of-sight occlusions and limited visibility. To the best of our knowledge,
this paper is the first to study STTW robots in such an environment.

3. The proposed method offers good generalization to terrain other than that used
during training.

The rest of this paper is organized as follows. In Section 2, some related research
activities are offered. Section 3 presents the design of the control method for STTW robots.
Simulation settings are provided in Section 4. In Section 5, the training results and some
comparative simulations are given. The final section provides the conclusion of this article.
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2. Related Work
2.1. Reinforcement Learning

Reinforcement learning (RL) is a type of machine learning that learns the Markov
decision process (MDP) of the optimal strategy by allowing the agent to continuously
interact with the environment through a “trial and error” approach. Mnih et al. [10] used
deep learning [11] combined with Q-learning [12] and proposed a deep Q-network (DQN).
The DQN uses the experience replay mechanism [13] and target network technology to solve
the problem of unstable training. However, Q-learning has the problem of overestimating
the action-value function. Hasselt et al. [14] proposed a double DQN (DDQN) algorithm
based on the DQN and double Q-learning algorithm to solve this problem. Combining
the ideas of the deterministic policy gradient [15], the actor-critic (AC) [16–18] algorithm,
and DQN, Lillicrap et al. proposed the deep deterministic policy gradient (DDPG) [19] to
realize the robot control task in continuous action space. Many scholars have improved the
DDPG [20–22], of which the most influential is the twin delayed deep deterministic policy
gradient (TD3) [23]. To ensure that policy optimization is performed in a non-deteriorating
direction, Schulman et al. proposed trust region policy optimization (TRPO) [24]. To
address the fact that the optimization problem in TRPO is challenging to solve and has
high computational complexity, the proximity policy optimization (PPO) method [25] uses
pruning technology to approximate the TRPO’s objective function. Furthermore, Haarnoja
et al. combined the AC and maximum entropy model to propose the soft actor-critic
method (SAC) [26]. In recent years, many studies have also applied reinforcement learning
to STTW robots [27,28], but these works do not involve the path planning and trajectory
tracking of STTW robots.

2.2. STTW Robots

The STTW robots have a variety of solutions for maintaining balance. Sun et al. [3]
proposed a fuzzy state space model of STTW robots with different velocities and designed
a fuzzy controller optimized by an improved particle swarm optimization algorithm with
two stages. Suryanarayanan et al. [4] present automated roll-rate control for high-speed
STTW robots. Guo et al. [29] modeled the robot dynamics based on feature selection
and RHONN and designed a controller to realize the balance control of uneven terrain.
Furthermore, many scholars have added additional actuators to solve the underactuated
problem of the robot system. The authors of [30] and [31] used the gyro effect of the control
moment gyroscope (CMG) to keep the robot balanced. Seekhaoa et al. [32] achieved the
balance control of the robot by applying a pendulum mass through a linear–quadratic
regulator. Hwang et al. [33] added a pendulum balance to the robot and designed a fuzzy
sliding-mode underactuated controller to maintain balance by improving the sliding-mode
control [34]. In addition, the authors of [35] and [36] used reaction wheels to keep the robot
balanced. However, none of these studies involved path planning.

The problem of obstacle avoidance and path planning for mobile robots has been
extensively studied over the decades. The artificial potential field (APF) [37] guides the
robot to the goal position by building a potential virtual field, and this method can adapt
to low visibility environments. However, the APF has a significant weakness in that APF
may be trapped in local optima or oscillate in narrow spaces. Rapidly exploring random
trees star (RRT*) and probabilistic roadmap (PRM) are sample-based algorithms [38] that
are probabilistically complete and highly efficient, especially if the constraints are complex.
According to the unique characteristics of STTW robots, Zhao et al. [39] proposed a detection
model to detect obstacles, including those with line-of-sight occlusion conditions, and a
local path planning method to avoid detected obstacles by using four phases to re-plan the
path. Although the above approaches for path planning involve line-of-sight occlusions or
limited visibility, these studies do not use reinforcement learning.

In order to solve the trajectory tracking problem of STTW robots, Keo et al. [7] carried
out the trajectory tracking control of STTW robots using the input-output linearization
approach. This work is the first systematic study of the joint control of balance and
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trajectory tracking for an STTW robot with a pendulum. The authors of [40] presented a
trajectory tracking and balance controller built on the attractive external-internal convertible
property of the STTW robot dynamics. In [41], an STTW robot without additional actuators
achieved trajectory tracking and control through model predictive control and proportion
integral differential (PID). For the uncertainty of the road environment in trajectory tracking,
He et al. [42] used the Gaussian process and disturbance cancellation to limit the tracking
error to a small range, given by design.

This paper aims to design a control method that integrates path planning, trajectory
tracking, and balance control, realizing the robot’s task in narrow terrain with low visibility
and line-of-sight occlusions. The relationship between the contents of the references and
the proposition of this paper is shown in Table 1. As can be seen from Table 1, the emphasis
of the literature mentioned above is different, and there is no direct solution for narrow
terrain passing tasks.

Table 1. Relationship between the contents of the references and the proposition of this paper.

Content
Literature

Refs. [1,3–6,8,27,31–33,36] Refs. [2,7,30,35,40–42] Refs. [37,38] Refs. [9,39] Refs. [28,29]

Path planning × ×
√ √

×
Trajectory tracking ×

√
×

√
×

Balance control
√ √

×
√ √

Consider narrow roads? × ×
√

× ×
Consider uneven roads? × × × ×

√

Consider low visibility? × × × × ×
Consider line-of-sight

occlusions? × × ×
√

×

3. STTW Robots Control Method for Narrow Terrain

The STTW robot control method proposed in this article is developed for narrow
terrain, with limited visibility and line-of-sight occlusions. STTW robot path planning needs
terrain information for the terrain ahead, trajectory tracking needs the planned path and
attitude information, and balance control also needs attitude information. The deep neural
network can be used as the controller of the robot to process complex terrain information
and attitude information, and then output the signals required by the robot’s actuator. In
this way, local path planning, trajectory tracking, and balance control are integrated under
a single framework. At the same time, reinforcement learning can train and optimize the
neural network controller. Therefore, this article employs deep reinforcement learning as a
control method to achieve the narrow terrain passing task. In this section, we define the
state, action, and reward function. Second, the neural network structure inside the agent is
designed. Finally, we design an algorithm to train the agent. Then, this agent can be used
as the controller for the STTW robot and realize the task of passing through narrow terrain.

3.1. State

We define the state of the robot as s:

s = [sA, sB] (1)

The first component, sA, is the information regarding the terrain ahead within D1
meters. The geographic information of the front can be obtained by lidar and by camera,
then transformed into passable and non-passable areas by the perception system. The
terrain information needs to be discretized. First, the geographic information located D1
meters in front of the STTW robot and D2 meters on the left and right are sampled. One
point is sampled every D1/40 meter in the front, and one point is sampled every D2/20
meter in the lateral direction. The sampling point records the condition of passability at
the location. The passable area is marked as 1, and the impassable area is marked as −1.
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Finally, these data can form a 41 × 41 matrix. This process is shown in Figure 2. (The
primary purpose of Figure 2 is to illustrate the process, and the number of sampling points
is not consistent with the number used in the method.)
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The second component, sB, is a ten-dimensional vector representing the robot’s attitude
and action information as follow:

sB =
[

ak−1, vp, θ,
.
θ,ψY, ψR,

.
ψY,

.
ψR ,

..
ψY,

..
ψR

]
(2)

where ak−1 represents the action at the previous moment, and vp indicates the speed of the

robot. θ and
.
θ represent the angle and angular velocity of the robot’s front wheel steering.

ψY,
.
ψY, and

..
ψY represent the robot’s yaw angle, yaw angular velocity, and yaw angular

acceleration, and ψR,
.
ψR, and

..
ψR represent the robot’s roll angle, roll angular velocity, and

roll angular acceleration. The system coordinates for the STTW robot are shown in Figure 3.
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3.2. Action

In this paper, the task of passing through narrow terrain is assumed to be a fixed-speed
driving task. The robot needs to maintain balance and steer through the steering, so the
action a taken by the agent is the steering torque. a = [Fst]; Fst represent the rotational
torque needed by the robot’s steering motor.
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3.3. Reward Shaping

To successfully pass through narrow terrain, we construct an efficient reward function:
r = C1 − C2, where C1 represents the reward obtained by the STTW robot during the
driving process. (The longer the distance traveled, the higher the reward obtained.) C2
represents the penalty assigned when the robot falls into a canyon or hits an obstacle. The
mathematical description of C1 and C2 depends on the training terrain parameters, which
will be given in Section 4. This paper aims to allow the robot to pass through narrow terrain
safely, so we do not seek the shortest path or smaller steering torque when designing the
reward function.

3.4. Network Structure

The control method adopted in this article has two critic networks with the same
structure and one actor network. The structures of the networks are shown in Figure 4.
Figure 4a depicts the actor network, with two inputs: terrain information sA and robot
attitude information sB. Since the terrain information is a 41 × 41 matrix, it is processed
by the convolutional neural network and then plugged into fully connected layer 1. The
networks designed in this paper use the cross-channel normalization layer to enhance the
generalization ability of the controller. The layer uses each input element e to compute the
normalized element e′, as follow:

e′ =
e

(Kc +
αc ·sc
Wc

)η (3)

where Kc, αc, and η are the hyperparameters, and sc represents the sum of squares of the
elements in the normalization. Wc is the window channel size.
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The attitude information sB is directly plugged into fully connected layer 2, and then,
together with the output vector from fully connected layer 1, the information is input into
fully connected layer 3 through the ReLU layer. After several layers, the 2-dimensional
actions are obtained. Compared with the actor network, the critic network must add an
action input. The critic network’s output is also a one-dimensional action value that is used
to evaluate the quality of the actor network’s output action value.

3.5. Training Algorithm

This article uses a reinforcement learning algorithm, TD3, as the training algorithm.
The overall training framework is shown in Figure 5. The agent has six neural networks:
critic network 1 Q1(s, a), critic network 2 Q2(s, a), actor network µ(s), target critic network
1 Q′1(s, a), target critic network 2 Q′2(s, a), and target actor network µ′(s). During the
training process, the actor network generates an action input for the information processing
module. Then, the information processing module converts the action into the STTW
robot’s steering torque and plugs it into the dynamic model. The dynamic model is solved
according to the input, and then the solved robot position and attitude data are transmitted
to the information processing module. The information processing module calculates the
states sA, sB, and the reward value r, according to these data, and transmits them to the
agent. The agent uses the data in the replay buffer to update the network. The training
algorithm is described as follows:

Firstly, the replay buffer β is initialized. The critic network parameters θQk and actor
network parameters θµ are randomly initialized, and the target critic network and actor
network are then initialized with the same parameter: θQ′ k = θQk and θµ′ = θµ, where k = 1
is the first critic network, and k = 2 is the second critic network.
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For each training time step:

1. According to the current observation s, select action a = µ(s) + N, where N is stochas-
tic noise, using Gaussian noise with variance decay.

2. Execute action a to interact with the dynamic model and return the reward r and the
next observation s′ to the agent.

3. Store the obtained data (s, a, r, s′) in the replay buffer β.
4. From the replay buffer, select a random mini-batch of K samples (si, ai, ri, s′ i), i = 1, 2, . . . K.
5. The critic network θQk is updated by minimizing the loss L:

L =
1
K

K

∑
i=1

(
yi −Qk

(
si, ai

∣∣θQk
))2

(4)

where

yi =

{
ri

ri + γ ·min
k

(
Q′k
(
s′ i, clip

(
µ′
(
s′ i
∣∣θµ

)
+ ε, amin, amax

)∣∣θQ′k
)) If s′ i is a terminal state

else
(5)

and γ is a discount factor that determines the priority for short-term rewards. amin
and amax represent the action’s minimum and maximum values. ε is stochastic noise,
using Gaussian noise with variance decay; and the clip function is used to clip the
action based on amin and amax, which keeps the target close to the original action.

6. Every 2 steps, update the actor network θµ using the deterministic policy gradient to
maximize the expected discounted reward J, as follows:

∇θµ
J ≈ 1

K

K

∑
i=1

GaiGµi (6)

where Gai = ∇amin
k

(
Qk
(
si, a

∣∣θQ
))

a = µ
(
si
∣∣θµ

)
and Gµi = ∇θµ

µ
(
si
∣∣θµ

)
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7. Every 2 steps, target actor network θµ′ and target critic network θQ′ k are updated
using a soft-updating technique with smoothing factor τ, as follows:

θµ′ ← τθµ + (1− τ)θµ′ (7)

θQ′ ← τθQ + (1− τ)θQ′ (8)

4. Simulation Settings
4.1. Simulation Platform

In this study, we used MATLAB/Simulink and BikeSim as the simulation platform,
as shown in Figure 6. BikeSim [43] is a multi-body dynamics simulation software widely
used in the dynamic researches of STTW vehicles [44,45]. BikeSim used VehicleSim (VS)
technology to provide ordinary differential equations for a multibody dynamic model.
Meanwhile, BikeSim and Simulink have a communication interface. Therefore, BikeSim can
transmit the STTW robot’s (motorcycle’s) position and attitude information to Simulink,
and Simulink processes these data and generates the state s, reward value r, and termination
signal. Simulink then transmits the generated data to the agent, which is simulated in MAT-
LAB. In addition, in MATLAB, the agent generates actions and transmits them to Simulink.
Simulink converts the action into steering torque and transmits it to BikeSim. From the
agent’s point of view, Simulink and BikeSim are equivalent to the reinforcement learning
environment. From the STTW robot’s point of view, MATLAB/Simulink is equivalent to
a controller.
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4.2. Training Terrain Structure

The terrain structure map used for training is shown in Figure 7. The total length of
the runway was 100 m, the width of the narrow section was 1 m, and the runway was 3 m
above the ground. There was a platform of the runway 8 m long and 2 m wide at 15 and
35 m, and there was a platform of the runway 10 m long and 3 m wide at 55 m. There
were two obstacles on both sides of the runway at 63 m, and the road width between the
obstacles was 0.8 m.
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4.3. Simulation Parameter Settings

Regarding the relevant parameters of reinforcement learning, the control frequency
was 25 Hz. The maximum duration of each episode was 11 s, and the discount factor
γ used in Equation (5) was 0.998. The noise variance of the output action and the noise
variance decay rate were 0.35 and 10−6. The size of random experience mini-batch K used
in Equations (4) and (6) was 250. The target network update smoothing factor τ used in
Equations (7) and (8) was 10−3. The learning rate of the actor network was 10−4, and the
learning rates of the critic networks were 10−3 and 1.5 × 10−3. To set the sampling points,
D1 was set to 10 m, and D2 was set to 2.5 m. For the STTW robot’s parameter settings, the
distance between the two wheels was 1.468 m, the tire width was 0.1 m, the radius of the
front wheel was 0.333 m, and the rear wheel’s radius was 0.33 m. The front fork angle was
27.8 degrees, the mass was 211 kg, and the driving speed was set to 25 km/h. The robot can
only perceive the terrain information 10 m ahead, meaning there were only 1.44 s during
which the robot could react and adjust its attitude. Therefore, this high-speed driving task
is relatively difficult. The reward function was set as follows:

r = C1 − C2 (9)

where C1 =



0
0.2
0.4
0.6
1.2
1.4
2

2.5

d ≤ 5
5 < d ≤ 10

10 < d ≤ 15
15 < d ≤ 23.5
23.5 < d ≤ 35
35 < d ≤ 43.5

43.5 < d ≤ 63.5
d ≥ 63.5

and C2 =


3
4
0

if the robot falls off
if the robot collides

else
where d is the position of the robot in the X direction.

5. Results
5.1. Results after Training

After training, we constructed an STTW robot controller for narrow terrain. The
trajectory of the STTW robot on the training terrain is shown in Figure 8a. When the
STTW robot was 13.5 m in front of the runway, it drove in the middle of the road as much
as possible and maintained its body balance. When the robot reached 13.5 m (point A),
it observed that the terrain 10 m ahead may require it to turn left; therefore, it took the
appropriate action of turning the front wheel to the left. As seen in Figure 8b, the front
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wheel began to deflect to the left at the 1.9th second. At the same time, it can be seen from
Figure 8c that the body began to lean to the left. When the STTW robot had driven to 24 m
(point B), the received information indicated a narrow road section with a width of one
meter, so it began to adjust the angle of the front wheel. When it had driven to 31 m (point
C), the robot considered that the front should turn right and adjusted the steering to deflect
to the right. It can be seen from Figure 8c,d that at 4.6 s, the body leaned to the left, and the
yaw angle began to gradually decrease. When the STTW robot drove to 58 m (point D), it
perceived a narrower road of 0.8 m wide ahead. Therefore, it adjusted the steering angle to
pass this road smoothly. Finally, the STTW robot again drove onto a narrow road with a
width of 1 m and successfully completed the task of passing through all the narrow terrain.
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In addition, we tested the ability of the STTW robot to achieve stable driving on
straight-line terrain. The results after training are shown in Figure 9. It can be seen from
the figure that the robot can maintain relatively stable straight-line driving in the case of
limited sensor accuracy (0.25 m longitudinal accuracy and 0.125 m lateral accuracy).
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5.2. Robustness Test

The trained controller described above was used for the STTW robot, which was tested
on four additional terrains. The four test terrains are shown in Figure 10, and the execution
time for each terrain is shown in Table A1. Even though the types of road conditions on
the training terrains were relatively limited, the trained controllers still passed through
narrower roads and more complex test terrain. On test terrain 1, there was a 5.7–11.3 degree
inclination angle on the narrow terrain, and one of the platforms required that the STTW
robot turn within 4 m. The STTW robot still passed over the road smoothly. On test terrain
2, an obstacle with a height of 2.5 m appeared at 18 m and blocked the robot’s sight. The
obstacles that block the line-of-sight have been marked in red. When an obstacle that blocks
the visibility of the robot appears, the passable areas behind obstacles are recognized as
impassable areas and marked as −1 in the state sA matrix. The process is illustrated in
Figure 11. At the same time, there is a raised road surface at 4 m. However, the robot was
able to keep driving normally. On test terrain 3, there was considerable terrain that differed
from the training terrain. In particular, there was a 0.4 m slit at 10 m, but the STTW robot
successfully passed through the test terrain. On test terrain 4, we designed some narrow
roads, with widths different from those in the training terrain, but they did not affect the
STTW robot’s ability to pass through the terrain.
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Figure 11. The process of line-of-sight occlusions in state sA.

To verify the robustness of the control method proposed in this paper, we use the
following three scenarios for testing:

(1) Scenario I: The actuator is disturbed. We add Gaussian noise with a mean of zero and
a variance 0.01 to the action signal. The trajectories of the STTW robot on the training
terrain and four test terrains are shown in Figure 12.
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(2) Scenario II: The main frame is disturbed by force. We added a disturbing force in the
robot center, and the disturbing force obeys Gaussian noise with a mean of zero and a
variance 100. We have verified it five times in training terrain and testing terrain, and
the results show that the robot can overcome these disturbances and successfully pass
through narrow terrain. The trajectory of the robot is shown in Figure 13.
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Figure 13. Trajectories of the STTW robot in test scenario II: (a) training terrain; (b) test terrain 1;
(c) test terrain 2; (d) test terrain 3; (e) test terrain 4.

(3) Scenario III: The perception system has errors. Considering that the perception
system is not completely reliable, we assume that there is a certain error in the
obtained geographic information. In the state sA matrix, there is a 2.5% probability
that the value of any row or column is set to 1 or −1. Likewise, we conducted five
verifications in training terrain and testing terrain. The simulation results are shown
in Figure 14. As can be seen from the figure, the robot successfully passed through
these narrow terrains.
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5.3. Comparison with Traditional Path Planning and Control Methods

The STTW robots pass through narrow terrain, which not only tests the ability of the
control algorithm, but also the path planning ability. For the narrow terrain used in this
paper, we used several traditional path planning and control methods to compare with the
method in this paper. The path planning algorithms used are as follows.

1. The artificial potential field (APF) [37]. The artificial potential field method is used to
design an artificial potential field U to guide the robot to move in an environment full
of obstacles. In this method, the target point generates an attractive potential Uatt to
the mobile robot, and the obstacles generate a repulsive potential Urep to the mobile
robot. Finally, the motion of the mobile robot is controlled by seeking the resultant
force as follows:

U = Uatt + Urep (10)

2. The path planning method for the intermediate step [46]. This method transforms
terrain with obstacles into a simple polygon, and decomposes free space into polygons.
According to the generated face graph, the method finds the sequence of polygons.
Finally, this sequence is used for the planned path.

3. Variation of rapidly exploring random trees (RRT*) [38]. The original RRT algo-
rithm uses an initial point as the root node and increases leaf nodes through random
sampling. A path composed of tree nodes from the initial point to the target point
can be found in the random tree. Based on the RRT algorithm, the RRT* algorithm
adds a search for the adjacent nodes of the newly generated node and the process
of rerouting.

In this section, the RRT* and the method in [46] were used for the global path planning
of the training terrain and the four test terrains. Among them, test terrain 2 did not consider
field occlusion.

Based on the planned path, we used pure pursuit as the STTW robot trajectory tracking
method [47]. Lean angle φref is the lateral error Ltar multiplied by the path follower control
gain Krid, as follows:

φref = −Ltar × Krid (11)

The steering torque is calculated by the lean angle controller using the PID controller.
The proportional gain was set to Kp = −140− 0.6875× vp, the integral gain was set to
Ki = −250 + 1.875 × vp, and the derivative gain was set to Kd = −40 + 0.6 × vp. vp
indicates the speed of the robot, and the unit is m/s. In order to prevent the robot from
losing its balance, we set the maximum lean angle of the robot to 40 degrees and the
maximum lean angle rate to 300 degrees per second.

In the choice of the control gain Krid, we could not find a control gain that is suitable
for all terrains and trajectory planning methods. Therefore, we used different control gains
according to different situations. The control gain settings are shown in Table 2. However,
in test terrain 3 and test terrain 4, we tried various control rates, but the STTW robot could
not pass these terrains, so we used the control rate that allowed the STTW robot to travel
as far as possible. The motion trajectory of the STTW robot using the above method is
shown in Figure 15. In Figure 15, We denote the path planning method for the intermediate
step [46] as “Ryou’s method”. Table 2 shows some terrains that cannot be passed using
the traditional planning method, even considering global planning. The method proposed
in this paper can only obtain terrain information 10 m in front of the robot and perform
local path planning, but this method can still allow the robot to pass through some complex
and narrow terrains. Although the trajectories of our method may not be perfect in some
terrains, the objective of this paper is to pass the terrains. From this point of view, our
method exhibits advantages in narrow terrain passing tasks.
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Table 2. Comparison with traditional planning and control methods.

Terrain
Our Method APF The Method in [46] RRT*

Completed Krid Completed Krid Completed Krid Completed

Training
Terrain

√
9

√
9

√
9

√

Test Terrain 1
√

6
√

5.5
√

5.5
√

Test Terrain 2
√

9
√

9
√

9
√

Test Terrain 3
√

2.5 × 4.5 × 5 ×
Test Terrain 4

√
7 × 7 × 7 ×
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Figure 15. Trajectories using traditional method: (a) training terrain; (b) test terrain 1; (c) test terrain
2; (d) test terrain 3; (e) test terrain 4.

5.4. Comparison between Different Reinforcement Learning Algorithms

This paper proposes a reinforcement learning-based framework of STTW robot path
planning, trajectory tracking, and balance control. The framework not only uses TD3 as
the training algorithm for the agent, but also other reinforcement learning algorithms. For
example, DDQN [14], DDPG [19], and SAC [26] can be used as training algorithms for
our framework. The DDQN is a reinforcement learning algorithm based on the value
function, which requires the action value output by the agent to be discrete. Therefore, we
define the output of the DDQN as 11 actions that range from −10 N to 10 N, and we set an
action every 2 N. The network used by the DDQN is consistent with the critic network in
this article, and the actor and critic networks used by the DDPG algorithm are consistent
with the network structure in our method. SAC is a reinforcement learning algorithm that
computes an optimal policy that maximizes the policy’s long-term expected reward, as
well as its entropy. Its critic networks are consistent with the networks used in this article,
and its actor network adds the soft plus layer. The comparison results of the simulation
are shown in Figure 16. As can be seen from Figure 16a, TD3 has the fastest training speed
and is relatively stable after convergence. From Figure 16b, it can be seen that after TD3′s
2805th training episode, the robot can pass the entire runway.



Actuators 2023, 12, 109 17 of 21

Actuators 2023, 12, x FOR PEER REVIEW 19 of 23 
 

 

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80
TD3
DDQN
DDPG
SAC

The Number of Episodes
(a)

A
ve

ra
ge

 R
ew

ar
d

D
ist

an
ce

 (m
)

The Number of Episodes
(b)  

Figure 16. Comparison between different reinforcement learning control methods: (a) average re-
ward of the last 30 episodes in the training process; (b) average maximum distance of the last 30 
episodes. 

5.5. Comparison between Different Reward Functions 
This article proposes a reward function that allows STTW robots to complete narrow 

terrain passing tasks. To discuss the effect of this reward function, we conducted compar-
ative training on different reward functions. The reward function for the comparison is as 
follows: 

0 1 2r C C= − , (12)

1 1r C= , (13)

2 21r C= − , (14)

where C1 and C2 are the same as those in Section 4.3. The comparison results are shown in 
Figure 17, where r0 represents the reward function used in Section 4. It can be seen from 
Figure 17a that this reward function converges faster than other reward value functions. 
It can be seen from Figure 17b that r1 and r2 completed the task of passing through narrow 
terrain at the end of training. 

Figure 16. Comparison between different reinforcement learning control methods: (a) average reward
of the last 30 episodes in the training process; (b) average maximum distance of the last 30 episodes.

5.5. Comparison between Different Reward Functions

This article proposes a reward function that allows STTW robots to complete narrow
terrain passing tasks. To discuss the effect of this reward function, we conducted compara-
tive training on different reward functions. The reward function for the comparison is as
follows:

r0 = C1 − C2, (12)

r1 = C1, (13)

r2 = 1− C2, (14)

where C1 and C2 are the same as those in Section 4.3. The comparison results are shown in
Figure 17, where r0 represents the reward function used in Section 4. It can be seen from
Figure 17a that this reward function converges faster than other reward value functions. It
can be seen from Figure 17b that r1 and r2 completed the task of passing through narrow
terrain at the end of training.
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5.6. Comparison between Different Training Parameters

The discount factor γ is an important parameter in reinforcement learning. In our
research, different γs were compared, and the comparison results are shown in Figure 18.
When γ was set to 0.995, 0.998, and 0.999, the reward function could converge, but when γ
was 0.998, the reward function was more stable after convergence.
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6. Conclusions

In this article, we proposed an STTW robot control method to adapt to narrow terrain
with limited visibility and line-of-sight occlusions. This control method integrates STTW
robot path planning, trajectory tracking, and balance control in one framework. First, we
defined the state and action according to the framework of reinforcement learning and
designed a reward function that is effective for narrow terrain tasks. We also conducted
comparative training to verify the effectiveness of the reward function. Second, according
to the defined state, we designed the reward function, the actor network structure, and the
critic networks structure. Then, we used the TD3 algorithm to train these neural networks
and constructed a controller for the STTW robot. The comparative training results show that
using TD3 results in a faster training speed than other reinforcement learning algorithms.
Finally, we tested the trained controller and verified that it can perform well when tasked
with passing through different narrow terrains. This paper compares the proposed method
with traditional APF, RRT*, and the method in [46], and the results show that the proposed
method can adapt to more types of terrain. Our results cast a new light on control methods
for STTW robots.

STTW robots should be explored in future research. Firstly, the control method
proposed in this article can be applied on a wider scale, especially to more complex narrow
terrain. In addition, it can also be applied to the STTW robot ramp jump task. Secondly,
future research could improve the physical prototype for the STTW robot and combine the
reinforcement learning control method proposed in this article with transfer learning to
enhance the STTW robot’s performance.
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Appendix A

Table A1. Execution time for the evaluation process.

Terrain Completed Simulation Time Execution Time

Training Terrain
√

11 s 17.26 s
Test Terrain 1

√
20 s 44.99 s

Test Terrain 2
√

13 s 26.71 s
Test Terrain 3

√
16 s 36.29 s

Test Terrain 4
√

15 s 29.38 s
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