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Abstract: To facilitate torsion testing in special environments, a noncontact torsion testing device,
where a noncontact torque can be transmitted to a specimen, was developed using magnetic levitation
technology. A permanent magnetic gear is used to produce noncontact torque. In addition, four
electromagnets and four attractive-type permanent magnetic bearings were employed to realize
levitation; in more detail, the four electromagnets actively stabilized two levitation degrees of freedom
(DoFs), while the four attractive-type permanent magnetic bearings passively stabilized four DoFs.
Furthermore, a plant model considering the effect caused by the four attractive-type permanent
magnetic bearings was built for the two levitation DoFs requiring active control. Based on the
plant model, two PD-controllers were designed. Moreover, a control simulation was conducted
to obtain appropriate PD-gains. Finally, experiments further validated the feasibility of the whole
scheme, and it was proven that the device can apply a 0.126 N·m torque to the specimen while
maintaining levitation.

Keywords: magnetic levitation; structure design; control design; dynamics

1. Introduction

Magnetic levitation (Maglev) technology has aroused extensive attention due to its ad-
vantages of being friction-free, lubrication-free, and maintenance-free, and it has been used
in many industrial applications, such as railway systems [1–6], rotating machinery [7–12],
ultra-clean assembly line, and artificial heart pumps [13,14], which are the typical appli-
cations of maglev. In addition to these, there are some novel applications of maglev, such
as maglev gyro [15], maglev globe [16], maglev lateral vibration attenuation system [17],
permanent maglev system [18,19], and zero-power maglev system [20,21]. Similarly, in our
previous research, to cater to the testing requirements for the parts and materials working
in special environments, we applied maglev to tension and bending testing devices [22,23].
Special environments include vacuum, special gases, and special liquids, as well as en-
vironments with abnormal air pressure or temperature, which may greatly influence the
mechanical performance of the parts or components; therefore, it is necessary to facilitate
the mechanical test in special environments. E.g., high-purity aluminum [24], which is
widely used in satellites, spacecraft, and other aerospace devices, has to work in vacuum
environments because, in normal air, a layer of oxide film will form on its surface, impairing
its mechanical performance, corrosion resistance, and adhesion. In addition, gas-lubricated
bearings [25] need to work in helium environments to reduce air resistance and better heat
dissipation during high-speed rotation because helium has a lower viscosity and higher
thermal conductivity compared with ordinary air. Furthermore, silicon-based photonic
chips [26], which are typically used in optical communication and sensing, need to work in
nitrogen environments because nitrogen can help silicon-based photonic chips maintain
optical performance and stability. Previously, if we wanted to test these parts or materials’
mechanical properties in their original working environment, the entire material testing
device had to be placed in a container in which the special environment was. On the

Actuators 2023, 12, 174. https://doi.org/10.3390/act12040174 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act12040174
https://doi.org/10.3390/act12040174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-2486-3014
https://orcid.org/0000-0001-6428-0310
https://doi.org/10.3390/act12040174
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act12040174?type=check_update&version=1


Actuators 2023, 12, 174 2 of 16

contrary, with maglev technology, the specimens in the devices [22,23] can be applied with
load in a noncontact way; as a result, only the specimens and a few parts need to be placed
in the container where the special environment can be created, which avoids exposing
sensitive components of the testing device (e.g., circuits in force sensors and actuators are
sensitive to environment humidity) to the special environment, facilitating the conduct
of the testing. The research [22,23] was inspired by the research [27] held by Okayama
University. In the research [27], Naoya Tada and Hiroyasu Masago developed a device in
which a noncontact tension force can be applied to one end of a specimen using permanent
magnets. As the tension force can be transmitted to the specimen in a noncontact way,
the specimen can be isolated from the fixture at the end, and the specimen can be put in a
container where a liquid environment can be created, which will be helpful to liquid and
humid environment’s testing. However, the device in the research [27] only allows one
end of the specimen to realize noncontact force; the other end still remains in contact force.
Therefore, it is difficult to seal the specimen in a closed container, but a completely closed
container is necessary to create a vacuum and gas environment. That is to say, this device
is only helpful for testing in a liquid environment and not really helpful for testing in a
gas or vacuum environment. To address this issue, in the research [22,23], we developed a
completely noncontact tension testing device and a completely noncontact bending device
using maglev technology. In addition, by designing various maglev mechanisms, various
types of noncontact material testing devices can be developed. The Torsion test is one of
the most common mechanical tests; it can directly measure the shear strength of materials,
which is a very important parameter in some applications. The Torsion test is applicable to
a wide variety of materials, such as metals, polymers, ceramics, and composites, and it is
a short test that can usually be finished in a few minutes. Due to these advantages, it is
widely used in metal processing, material research, medical equipment, and the automobile
industry. Given the status and superiority of the Torsion test, in this paper, we focus on
developing a noncontact torsion testing device using maglev technology.

Primarily, it is necessary to consider a control scheme for global levitation stability.
Generally, there are six levitation degrees of freedom (DoF) for a rigid levitated object.
If many levitation DoFs can be inherently stable, i.e., passively stable, a lot of hardware,
such as displacement sensors, electromagnets, amplifiers, and controllers can be saved.
Therefore, we want the designed structure to have as many passively stable levitation
DoFs as possible. However, according to Earnshaw’s theorem [28], it is necessary that at
least one levitation DoF be actively controlled for complete non-contact. In this paper, to
maximize passively stable levitation DoFs, a structure with four passively stable levitation
DoFs was designed. In the structure, the passive stability is mainly realized by four
attractive-type permanent magnetic bearings; each attractive-type permanent magnetic
bearing consists of two axially magnetized permanent magnet rings. Furthermore, to
produce noncontact torque, we employed one permanent magnetic gear, which consists of
two radially magnetized permanent magnets.

Furthermore, there are still two levitation DoFs to be actively controlled. We used
typical attraction-type electromagnetic levitation for these two DoFs. Generally, a PD-
controller is enough for ordinary electromagnetic levitation, and PD-gains are usually
determined based on the plant model derived from the electromagnetic force model.
However, in this case, since the attractive-type permanent magnetic bearings are involved
in the work, the plant model will be affected by the permanent magnetic force. To obtain
proper PD-gains, it is necessary to consider the effect caused by the permanent magnetic
force. Therefore, before building the plant model, FEM analysis was conducted on the
attractive-type permanent magnetic bearings to obtain their support characteristics. Then,
taking the support characteristics into account, a plant model was built. With the plant
model, two PD-controllers were designed.

This paper is organized as follows: Section 1 is the research background. Section 2
describes the structure and the working principle of the device. Section 3 is about the
control of the two DoFs, including the plant model building process, the PD-controller
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design process, and simulation verification. Section 4 conducts an experiment to verify the
feasibility of the device. Section 5 draws a summary and extension of this paper.

2. Structure and Working Principle
2.1. Structure Overview

Figure 1 gives a schematic diagram to highlight the advantages of this research.
Figure 1a represents the traditional torsion testing mechanism, which applies contact
torque to the specimen. As shown in Figure 1a, if a traditional torsion testing mechanism is
used to test a specimen in a special environment (liquid, vacuum, or humid environment),
since contact force is required, the whole device, including the torque sensor, actuator, etc.,
has to be put in a container where the special environment is created. In addition, as shown
by the green line in Figure 1a, to provide support for the torque, both ends of the whole
device have to be fixed to the inner wall of the container; that is to say, the container needs
to bear the torque. However, on the one hand, the actuator and torque sensor contain
circuits, which are sensitive to liquid, air humidity, or barometric pressure; on the other
hand, since the container needs to bear the torque, the method is not applicable to the
test in the soft body. As an improvement, the mechanism in Figure 1b not only employs
noncontact torque using permanent magnetic gear, which prevents the actuator and torque
sensor from entering the special environment, but also employs magnetic levitation to
support the torque, which avoids the container bearing the torque.
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Figure 1. Schematic diagram: (a) Traditional torsion testing mechanism; (b) Noncontact torsion
testing mechanism.

Figure 2 gives two illustrations to describe the structure and the working principle.
As shown in Figure 2a,b, a magnetic levitation torsion testing device (MLTTD) mainly
consists of a torque sensor, a servo motor, a permanent magnetic gear made of two radially
magnetized disc-shaped permanent magnets, four attractive-type permanent magnetic
bearings each made of two axially magnetized annular permanent magnets, two displace-
ment sensors, a specimen, two iron plates, a thrust bearing, and four electromagnets. The
specification of the main components is shown in Table 1. As shown in Figure 2b, there is
a semi-transparent container; the contents of the container are the levitated object, which
includes one of the disc-shaped permanent magnets, the thrust bearing, the specimen, the
iron plates, and half of the attractive-type permanent magnetic bearing pairs.

In brief, the permanent magnetic gear is used to generate noncontact torque, and the
torque sensor is used to measure the noncontact torque; the four electromagnets and the
four attractive-type permanent magnetic bearings are used to control levitation. Since
there are two levitation DoFs that require active control, the two displacement sensors are
equipped for active control.
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Figure 2. Physical structure of the noncontact torsion testing device: (a) Overall structure (b) Partial
exploded view.

Table 1. Specification of main components.

Name Material/Model Number

Torque sensor Forsentek FT05 1
Servo motor Maxon A-max 32 1

Displacement sensor Panasonic GP-XC12ML 2
Permanent magnetic gear N40 1
Attractive-type permanent

magnetic bearing N40 4

2.2. Principle of Levitation

Figure 3 presents an illustration to describe the six levitation DoFs, they are X, RX, Y,
RY, Z, and RZ. Table 2 shows the control strategy for the six levitation DoFs. As shown in
Table 2, X and RY are actively controlled, while RX, Y, Z, and RZ are passively controlled. In
more detail, referring to Figures 3 and 2b, the two displacement sensors detect X and RY for
feedback, the displacement data will be transmitted to a controller, and the controller will
adjust the currents of the four electromagnets in real-time according to the displacement
data so that the levitated object will be kept at a constant position in both the X-direction
and the RY-direction. On the other hand, RX, Y, Z, and RZ are passively controlled by the
four attractive-type permanent magnetic bearings; the principle is that, due to the edge
effect, a magnetic force will be generated between two permanent magnets of each pair
once they are not concentric, and this magnetic force will hinder the permanent magnets
from misalignment.

2.3. Principle of Torque Application

Figure 4 presents an illustration to describe the torque application. As described
before, torque is generated by the permanent magnetic gear. As shown in Figure 2b, the
upper permanent of the permanent magnetic gear is driven by a servo motor so that it
can rotate; once it rotates, a noncontact torque will be generated for the other permanent
magnet. As shown in Figure 4, driven by this torque, the rotating body will rotate, and
through the thrust bearing, the rotation will be transmitted to the specimen so that the
specimen can be twisted.
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Figure 3. Illustration of the six levitation DoFs.

Table 2. Control strategy of the six levitation DoFs.

Degree of Freedom Control Type Component That Implements Control

X Active The four electromagnets
Y Passive The four attractive-type permanent magnetic bearings
Z Passive The four attractive-type permanent magnetic bearings

RX Passive The four attractive-type permanent magnetic bearings
RY Active The four electromagnets
RZ Passive The four attractive-type permanent magnetic bearings
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Figure 5 presents a FEM analysis result, which was calculated using J-mag software.
In the analysis, the airgap between the two permanents was 17 mm. The abscissas of both
graphs denote the relative angle between the two permanents; the ordinate of the first
graph denotes the generated torque; and the ordinate of the second graph denotes the
attractive force between the two permanents in the vertical direction. In this paper, we
want to obtain 0.1 N·m torque. As shown by the red area in Figure 5a, as long as the relative
angle reaches no more than 20◦, 0.1 N·m torque can be obtained. On the other hand, as
can be seen from the red area in Figure 5b, the attractive force will change from 18.8 N to
about 17.7 N while the torque is increasing. The attractive force can be used to support
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the levitation in the Z-direction so that the burden of the attractive permanent magnetic
bearings will be reduced and the attractive force will not be transmitted to the specimen
because the thrust bearing will block any upward force. Although the attractive force will
change a little during the torque application, it will be fine because the attractive-type
permanent magnetic bearing will compensate for the change.
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3. Control of X and RY

As mentioned in Section 2.2, X and RY require active control; therefore, this Section
will discuss this issue.

3.1. Plant Model
3.1.1. State Space Model Derivation

To start, a plant model is built as follows: Figure 6 shows two illustrations for the plant
model. In Figure 6a, z1, z2, z3, and z4 are the four airgaps between the electromagnets and
the iron plates. O is the centroid of the levitated object. M is the point on the surface of the
iron plate at the same vertical height as the midpoint of z1 and z2. Obviously, zM = z1+z3

2 . l
is the vertical distance between the lower and upper attractive-type permanent magnetic
bearings. h is the vertical distance between the lower and upper electromagnets. In
Figure 6b, F1, F2, F3, and F4 denote the attractive forces of the four electromagnets on the
iron plates, respectively. FP and TP, respectively denote the resultant force and resultant
torque of the four attractive-type permanent magnetic bearings on the levitated object.
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The expressions of F1, F2, F3, and F4 are shown in Equation (1), where a and c
are two coefficients depending on the shape and dimensions of the electromagnets and
the iron plates, and i1, i2, i3, and i4 are the currents of the four electromagnets, respec-
tively. As shown in Equation (2), F1, F2, F3, and F4 can be linearized at a working
point (i0, z0), where i0 and z0 are a constant current and a constant airgap, respectively.
In Equation (2), F0 denotes the magnetic force when the current and airgap are just i0
and z0, and ∆i1 = i1 − i0, ∆i2 = i2 − i0, ∆i3 = i3 − i0, ∆i4 = i4 − i0, z1 = z1 − z0,
∆z2 = z2 − z0, ∆z3 = z3 − z0, ∆z4 = z4 − z0, in addition, ki and kz are the current
coefficient and airgap coefficient, respectively. Their expressions are shown in Equation (3),
which was derived by calculating the derivative of the magnetic force (Any of F1, F2, F3,
and F4) with respect to the current (Any of i1, i2, i3, and i4) and the airgap (Any of z1, z2, z3,
and z4) at the working point (i0, z0). 

F1 =
ai21

(z1+c)2

F2 =
ai22

(z2+c)2

F3 =
ai23

(z3+c)2

F4 =
ai24

(z4+c)2

(1)


F1 = F0 + ki · ∆i1 − kz · ∆z1
F2 = F0 + ki · ∆i2 − kz · ∆z2
F3 = F0 + ki · ∆i3 − kz · ∆z3
F4 = F0 + ki · ∆i4 − kz · ∆z4

(2)

 ki =
2ai0

(z0+c)2

kz =
2ai20

(z0+c)3

(3)

It can be assumed that the whole levitated object is a rigid body, and point M has the
same horizontal displacement as point M, so its dynamics can be described by Equation (4),
where m is the mass of the levitated object and J is the moment of inertial around its centroid.
FP and TP can be regarded as two generalized forces with stiffness, so Equation (4) can be
rewritten as Equation (5), where ka and kr are the stiffnesses of FP and TP, respectively.{

(F1 − F2) + (F3 − F4)− FP = −m
..
zCOM

[(F1 − F2)− (F3 − F4)]× h
2 − TP = −J

..
θ

(4)

{
(F1 − F2) + (F3 − F4)− ka(zCOM − z0) = −m

..
zCOM

[(F1 − F2)− (F3 − F4)]× h
2 − krθ = −J

..
θ

(5)

As mentioned before, zM equals z1+z3
2 . Furthermore, if the variation range of θ is very

small, it can be approximately regarded that θ equals z1−z3
h . Therefore, Equation (5) can be

rewritten as Equation (6). Then, substituting ∆i1 = i1 − i0, ∆i2 = i2 − i0, ∆i3 = i3 − i0,
∆i4 = i4 − i0, z1 = z1 − z0, ∆z2 = z2 − z0, ∆z3 = z3 − z0, ∆z4 = z4 − z0 and Equation (2)
into Equation (6), Equation (7) can be obtained.{

(F1 − F2) + (F3 − F4)− ka

(
z1+z3

2 − z0

)
= −m

..
z1+

..
z3

2

[(F1 − F2)− (F3 − F4)]× h
2 − kr × z1−z3

h = −J
..
z1−

..
z3

h

(6)

{
ki · [(∆i1 − ∆i2) + (∆i3 − ∆i4)]− kz · [(∆z1 − ∆z2) + (∆z3 − ∆z4)]− ka

2 (∆z1 + ∆z3) = −m ∆
..
z1+∆

..
z3

2
h
2 · ki · [(∆i1 − ∆i2)− (∆i3 − ∆i4)]− h

2 · kz · [(∆z1 − ∆z2)− (∆z3 − ∆z4)]− kr
h (∆z1 − ∆z3) = −J ∆

..
z1−∆

..
z3

h

(7)
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It can be seen from the geometric relationship that ∆z1 = −∆z2, ∆z3 = −∆z4. In
addition, since differential driving mode [29] is employed for the four EM in this paper,
therefore ∆i1 = −∆i2, ∆i3 = −∆i4. As a result, Equation (7) becomes Equation (8).{

2ki · (∆i1 + ∆i3)− 2kz · (∆z1 + ∆z3)− ka
2 (∆z1 + ∆z3) = −m ∆

..
z1+∆

..
z3

2

h · ki · (∆i1 − ∆i3)− h · kz · (∆z1 − ∆z3)− kr
h (∆z1 − ∆z3) = −J ∆

..
z1−∆

..
z3

h

(8)

Furthermore, defining ∆z+ = ∆z1 + ∆z3, ∆z− = ∆z1 − ∆z3, ∆i+ = ∆i1 + ∆i3,
∆i− = ∆i1 − ∆i3, Equation (8) can be rewritten as Equation (9).{ 4ki

−m · ∆i+ + 4kz+ka
m · ∆z+ = ∆

..
z+

kih2

−J · ∆i− + kzh2+kr
J · ∆z− = ∆

..
z−

(9)

After that, define a state space as follows:

X =


∆z+
∆

.
z+

∆z−
∆

.
z−

 (10)

U =

[
∆i+
∆i−

]
(11)

Y =

[
∆z1
∆z3

]
(12)

{
X = AX + BU
Y = CX

(13)

where X is the state variable, U is the input, Y is the output, and Equation (13) is the state
space expression. From Equation (9), the expressions of A, B and C can be drawn as follows:
So far, the plant model has been built.

A =


0 1 0 0

4kz+ka
m 0 0 0
0 0 0 1
0 0 kzh2+kr

J 0

 (14)

B =


0 0

4ki
−m 0
0 0

0 kih2

−J

 (15)

C =

[
0.5 0 0.5 0
0.5 0 −0.5 0

]
(16)

3.1.2. Determination of Plant Model Parameter

In Equations (14)–(16), there are some parameters to be determined; they are m, J,
h, l, ki, kz, kr, and ka. Among them, m, J, h, and l can be easily calculated based on the
densities, dimensions, and shapes of the solids; their values are 1.731 kg, 3.3 × 10−3 kg·m2,
0.143 m, and 0.0774 m, respectively. ki and kz can be calculated using Equation (3), however,
the calculation requires the values of a and c. Therefore, the attractive force of a single
electromagnet to an iron plate was calculated at various combinations of current and
airgap by FEM analysis. After the analysis, the result data were imported into the Curve
Fitting Toolbox of MATLAB to obtain a fitting surface, which was generated in the form
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of F = ai2

(z+c)2 , which is the general equation of electromagnetic force. The generated fitting

surface is shown in Figure 7, where the black point is the original data. With the generation
of the fitting surface, a and c were also calculated out by the toolbox; their values were
1.204 × 10−5 Nm2 A−2, 2.38 × 10−3 m, respectively. Furthermore, i0 and z0 were set as
2 A and 3 mm, and then ki and kz were calculated using Equation (3); their values were
1.6639 N/A and 618.5426 N/m, respectively.
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Figure 7. Fitting surface generated from the FEM analysis result data.

Furthermore, to determine values for kr and ka, another FEM analysis was conducted
on the four attractive-type permanent magnetic bearings. In the FEM analysis, the four
permanent magnets in the bearing holder were set to be static, and the four permanent
magnets embedded in the iron plate were set to be movable; then, FP and TP are calculated
under various lateral displacements (zM-z0) and rotation angles (θ) of the four permanent
magnets embedded in the iron plate. The results are shown in Figure 8. Figure 8a shows
the result of FP, and Figure 8b shows the result of TP. It can be drawn from the slope of the
red dashed line in both graphs that the stiffnesses ka and kr are approximately +12.5 N/mm
and +0.133 N·m/◦ in the vicinity of the initial point (abscissa = 0). So far, all the plant
model parameters have been caught, and the main parameter values are shown in Table 3.
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Table 3. Main parameters of the plant model.

Parameter Name Parameter Value

a (Nm2A−2) 1.204 × 10−5

c (mm) 2.38
i0 (A) 2

z0 (mm) 3
ki (N/A) 1.6639
kz (N/m) 618.5426

m (kg) 1.731
J (kg·m2) 0.0033

h (m) 0.143
l (m) 0.0774

3.2. Control Design

As can be seen from Equation (14), the first two state variables and the last two state
variables are not coupled to each other, therefore they can be controlled individually, so a
feedback matrix with the following structure can be used:

K =

[
P1 D1 0 0
0 0 P2 D2

]
(17)

where P1, D1, P2, and D2 can be regarded as two PD-gains of two independent PD-
controllers. If the feedback matrix is used, a closed-loop system matrix will be as follows.

A + BK =


0 1 0 0

4kz+ka−4ki P1
m

−4ki D1
m 0 0

0 0 0 1

0 0 kzh2+kr−kih2P2
J

−kih2D2
J

 (18)

According to Equation (18), two independent characteristic equations can be derived
as follows: {

s2 + 4ki D1
m s + 4ki P1−4kz−ka

m = 0

s2 + kih2D2
J s + kih2P2−kzh2−kr

J = 0
(19)

{
s2 + 2ζ1ωn1 · s + ω2

n1 = 0
s2 + 2ζ2ωn2 · s + ω2

n2 = 0
(20)

It can be seen from Equation (19) that they are two second-order systems. Generally,
second-order systems have characteristic equations in the form of Equation (20), where
ζ1 and ζ2 denote the damping ratios of the systems, ωn1 and ωn2 denote the undamped
oscillation angular frequencies of the systems. Comparing Equations (19) and (20), the
following equations can be derived.{

ω2
n1 = 4ki P1−4kz−ka

m

ω2
n2 = kih2P2−kzh2−kr

J
(21)

{
2ζ1ωn1 = 4ki D1

m

2ζ2ωn2 = kih2D2
J

(22)

With Equations (21) and (22), the expressions of the PD-gains with respect to ζ1, ζ2,
ωn1, and ωn2 can be obtained as follows: P1 =

mω2
n1+4kz+ka

4ki

D1 = ζ1ωn1m
2ki

(23)
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 P2 =
Jω2

n2+kzh2+kr
kih2

D2 = 2ζ2ωn2 J
kih2

(24)

As can be seen from Equations (23) and (24), the PD-gains can be determined by
determining the values of ζ1, ζ2, ωn1, and ωn2. In addition, damping ratio (ζ1, ζ2) and
undamped oscillation angular frequency (ωn1, ωn2) determine the dynamic performance of
the system. In more detail, as shown in Equations (25) and (26), damping ratio determines
overshoot (Mp1, Mp2) of step response, while undamped oscillation angular frequency
jointly determines settling time (ts1, ts2) of step response. Mp1 = e

−ζ1π√
1−ζ1

2 × 100%
ts1 ≈ 3

ωn1ζ1
(5% tolerance)

(25)

 Mp2 = e
−ζ2π√

1−ζ2
2 × 100%

ts2 ≈ 3
ωn2ζ2

(5% tolerance)
(26)

A damping ratio of 0.707 can coordinate overshoot and settling time; thus, it is usually
regarded as an optimal damping ratio in practice [30]. Therefore, in this paper, 0.707 is
taken for both ζ1 and ζ2. As a result, the overshoots will approach 4.33%. In addition,
0.025 s is taken for both ts1 and ts2, to realize that ωn1 and ωn2 should be 169.73 s−1.
Then, substituting ζ1 = ζ2 = 0.707 and ωn1 = ωn2 = 169.73 s−1 into Equations (23) and (24),
PD-gains that realize the desired dynamics performance will be obtained as Table 4.

Table 4. The designed PD-gains.

Parameter Name Parameter Value

P1 (A/m) 9886
D1 (A·s/m) 64
P2 (A/m) 3166

D2 (A·s/m) 23

3.3. Control Simulation

To verify the feasibility of the designed PD-controllers, control simulation was con-
ducted using Matlab-Simulink. Control diagram is shown in Figure 9. The plant model
parameters and control parameters in the simulation are the same as Tables 3 and 4. To
make the simulation closer to reality, the electromagnetic force model used in the simu-
lation was the nonlinear plant model denoted by Equation (1) rather than the linearized
plant model denoted by Equation (2). Moreover, to test the dynamic performance of the
system, two sets of 0.1 mm step disturbances were applied to the airgaps at 0.1 s and 0.5 s,
respectively; the first set was in the same direction, and the second set was in the opposite
direction. The simulation result is shown in Figure 10.
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Figure 10. Simulation result.

As shown in Figure 10, after bearing the first step disturbance, the overshoots of both
airgaps were about 3%, and the settling times (5% tolerance) of both airgaps were about
0.02 s. On the other hand, after bearing the second step disturbance, the overshoots of both
airgaps were about 3%, and the settling times (5% tolerance) of both airgaps were about
0.02 s. This result implies that the dynamic performances in the simulation are slightly
different from the designed dynamic performance (overshoot: 4.33%; settling time: 0.025 s);
this may be due to the nonlinearity of the plant model used. Anyway, the overshoots (about
3%) of both responses were lower than the designed overshoot (4.33%), which implies the
stability of the system is better than the design standard. On the other hand, the settling
times (about 0.02 s) of both responses were shorter than the designed settling time (0.025 s),
which implies the rapidity of the system is better than the design standard. To sum up, the
designed PD-controllers are feasible.

4. Experiment

To validate the feasibility of the devices, an experiment was conducted. Figure 11a
presents a photograph of the experiment setup, and Figure 11b presents an overall system
structure diagram. The model of the torque sensor is FT05, made by FORSENTEK Co.,
Limited(Shenzhen, China); its measuring range is±0.2 N·m. The model of the displacement
sensors is GP-XC12ML, and the manufacturer is Panasonic Industry Co., Ltd. (Osaka,
Japan). The power amplifiers are ESCON made by MAXON Japan Corp. (Tokyo, Japan).
The control system is MicroLabBox dSPACE; it is equipped with software, i.e., ControlDesk.
In ControlDesk, we can import a Matlab-Simulink file, adjust control parameters, record,
and observe experiment data in real-time. In addition, as can be seen in Figure 11b,
there are two paths, i.e., the levitation path and the torsion path; the former is used to
stabilize X and RY, and the latter is used to apply noncontact torque. As mentioned before,
the noncontact torque is generated by the relative rotation between the two disc-shaped
permanent magnets; the rotation is driven by the servo motor. In the experiment, the servo
motor drove the upper disc-shaped permanent magnet to rotate at a constant speed, so
that a noncontact torque was generated on the lower disc-shaped permanent magnet, and
through the thrust bearing, the torque was finally transmitted to the specimen.
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Figure 11. Experiment setup: (a) A Photograph of the experiment setup (b) Overall system structure diagram.

Table 5 shows the control parameters in the experiments. Comparing Tables 4 and 5, it
can be found that the PD-gains in the experiment are a little different from the PD-gains in
the simulation, but this is considered normal because the actual model and the theoretical
model will inevitably deviate. In addition, as shown in Table 5, two integrators were
added to the two PD-controllers, so that the two PD-controllers became two PID-controllers.
Integrator can improve the robustness of the control system because, with the rotation of
the permanent magnetic gear, the permanent magnetic gear will pose a disturbance and
some uncertainty in the control of X and RY. Therefore, an integrator is added to deal with
the disturbance and the uncertainty. Table 6 shows the specifications of the specimen used
in the experiment.
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Table 5. Control parameters in the experiment.

Parameter Name Parameter Value

i0 (A) 2
z0 (mm) 3

P1 (A/m) 10,000
I1 (A/m/s) 1000
D1 (A·s/m) 50
P2 (A/m) 7000

I2 (A/m/s) 1000
D2 (A·s/m) 35

Table 6. Specification of the specimen.

Property Name Property Value

Material Z-ASA PRO
Length (mm) 67
Width (mm) 6

Thickness (mm) 1.6

Figure 12 shows the experiment result, where Figure 12a shows torque data measured
by the torque sensor and Figure 12b,c show airgap response and current response, respec-
tively. As shown in Figure 12a, the torque kept increasing throughout the whole process;
the maximum torque was about 0.126 N·m. As shown in Figure 12b, the two airgaps
slightly fluctuated, but the airgap errors were within ±0.05 mm, which is considered fine.
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5. Conclusions

To facilitate torsion testing in special environments, this paper proposes a noncontact
torsion testing device using magnetic levitation technology, where a noncontact torque
can be transmitted to a specimen. To ensure the stability of the six levitation degrees of
freedom (DOF), four levitation DoFs are passively controlled by some permanent magnets,
while two levitation DoFs are actively controlled by four electromagnets. Furthermore, a
plant model was built for the control of the two levitation DoFs. With the plant model, two
PD-controllers were designed, and the simulation result demonstrated that the designed
PD-controllers make the system have good dynamic performance. Finally, an experiment
was performed to test the stability of the levitation and the torque load capacity. The
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experiment result indicated that the device could apply a 0.126 N·m noncontact torque to
the specimen while maintaining levitation.

Currently, the control mode of the torque is open-loop, which makes it impossible to
accurately control the amount of torque. In the future, a torque feedback system will be
constructed using torque sensors to apply the desired amount of torque.
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