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Abstract: In order to improve the state monitoring and adaptive control capability of inertial stabi-
lization platforms (ISPs) with unknown loads, it is necessary to estimate the dynamic parameters
comprehensively online. However, most current online estimation methods regard the system as a
linear dual-inertia model which neglects the backlash and nonlinear friction torque. It reduces the
accuracy of the model and leads to incomplete and low accuracy of the estimated parameters. The
purpose of this research is to achieve a comprehensive and accurate online estimation of multiple
parameters of ISPs and lay a foundation for state monitoring and adaptive control of ISPs. First,
a dual-inertia model containing backlash and nonlinear friction torque of the motor and load is
established. Then, the auto-regressive moving average (ARMA) model of the motor and load is
established by the forward Euler method, which clearly expresses the online identification formula of
the parameters. On this basis, the adaptive identification method based on the recursive extended
least squares (RELS) algorithm is used to realize the online estimation of multiple parameters. The
simulation and experimental results show that the proposed adaptive multi-parameter estimation
method can realize the simultaneous online identification of the moment of inertia of the load, the
damping coefficient of motor and load, the transmission stiffness, the Coulomb friction torque of
motor and load, and the backlash, and the steady-state error is less than 10%. Compared with
the traditional linear dual-inertia model, the similarity between the model based on the proposed
adaptive parameter estimation algorithm and the actual system is increased by 65.3%.

Keywords: inertial stabilization platform; backlash; nonlinear friction torque; adaptive multi-
parameter estimation

1. Introduction

Inertial stabilization platforms (ISPs) play an increasingly important role in the field
of remote sensing, such as optical imaging equipment, tracking radar, antenna, and so
on [1–6], to isolate the influence of carrier motion on pointing accuracy. With the increase
in load weight range (10 kg~100 kg), ISPs need a precision reducer to enlarge the driving
torque and ensure high transmission accuracy. However, the reducer would inevitably
introduce backlash and nonlinear friction torque [7–9]. At the same time, ISPs would
collocate different loads according to different tasks, resulting in changes in the resonance
frequency, stability margin, and nonlinear characteristics of the system, and ultimately
deteriorating the security and control performance of ISPs [10,11].

To solve this problem, there are two main solutions used in engineering now. One is to
design a controller with sufficient margin to ensure robustness when the load changes, while
sacrificing the dynamic performance of the system. The other is to redesign all parameters
of the servo control system after each load modification, which has the disadvantages of
low efficiency and high cost. To make up for the shortcomings of the above two ways,
researchers gradually turned their attention to adaptive control, which can automatically
adjust the structure or parameters of the controller according to the information collected
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by the sensors, to maintain the performance of the system [10,12–14]. Nevertheless, the
basis of adaptive control is to estimate the key dynamic parameters of the system online
according to the information collected by sensors. Thus, a lot of research has been carried
out on adaptive parameter estimation.

Ref. [15] presented a moment of inertia (MOI) identification method based on the
improved model-reference adaptive system that uses a dynamic gain and a curvature
model, which not only decreases the identification error caused by the load torque but
also ensures fast convergence speed and high identification accuracy. Liu [16] compared
the effects of various parameters on the running stability of the motor, and a least-squares
identification method based on the forgetting factor is added to identify the parameter
online to optimize the prediction model in real time. Kim [17] proposed a new method of
servo system parameter identification, in which the MOI, Coulomb friction torque, and
viscous coefficient of the servo device can be obtained from the half-cycle integration of
the extremely low-frequency sinusoidal torque command. To solve the problem that the
mismatch of the parameters of the permanent magnet synchronous motor (PMSM) drive
system would lead to the observation error of the load torque, Lian C [18] proposed two
identification methods: the direct calculation method and the proportional-integral (PI)
regulator method, so that the load torque observer also has a higher observation accuracy
and faster convergence speed. Yang M [19] proposed an adaptive Kalman Observer Re-
cursive Least Square identification method based on the original Kalman Observer and
recursive least squares (RLS) by adding an adaptive algorithm, which can achieve bet-
ter performance and improve robustness under time-varying load and inaccurate initial
value conditions. For the problem of online frequency domain identification of mechanical
systems with variable dynamic characteristics, Nevaranta [20] proposed a closed-loop fre-
quency domain online identification algorithm based on sliding discrete Fourier transform
on selected frequency groups and the simulation and test results show that the algorithm
can obtain satisfactory real-time frequency response estimation in short data using slid-
ing windows. Amini [21] presented the simultaneous integration of online estimation of
structural parameters with adaptive control to reduce structural vibrations, in which the
stiffness and damping online identification were carried out by the RLS method without
initial estimation and only by measuring the structural responses. To solve the problem of
simultaneous state estimation and parameter identification for a class of nonlinear systems,
Alvaro-Mendoza [22] designed an adaptive observer based on the sliding mode method,
whose main advantages are that it combines the robustness and finite-time convergence of
the sliding mode observer, as well as the simple tuning of the high-gain observer, reducing
the tuning effort. In addition, some researchers have adopted intelligent algorithms, such
as particle swarm optimization (PSO), genetic algorithm (GA), neural network algorithm
(NNA), and other intelligent algorithms to realize online parameter identification and have
made some breakthroughs [23–25].

Summarizing the various identification methods proposed above, the following defi-
ciencies can be found:

(1) In order to reduce the parameters to be identified, many studies simplified the dy-
namic model to a first-order model, which reduces the accuracy of the model and
leads to the low accuracy of parameter identification.

(2) For the dual-inertia dynamic model with backlash and a nonlinear friction torque of
motor and load, the explicit expression for online identification of parameters has not
been seen.

Therefore, the above methods cannot distinguish the varieties of system characteristics
when the load changes, thus reducing the accuracy of identification. In order to make up
for the above two deficiencies, the following works were carried out in this study:

(1) An adaptive estimation method of the dual-inertia model considering the backlash
and nonlinear friction torque of motor and load is proposed.

(2) The explicit solutions of all model parameters in the online estimation process are obtained.
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(3) The multi-parameter online identification method proposed in this manuscript can
achieve simultaneous online identification of nine key dynamic parameters, including
load MOI, transmission stiffness, motor viscous damping coefficient, load viscous
damping coefficient, Coulomb friction torque of motor forward and reverse, Coulomb
friction torque of load forward and reverse, and transmission backlash.

This research can finally realize the simultaneous online identification of load MOI,
motor damping coefficient, load damping coefficient, transmission stiffness, Coulomb
friction torque of motor and load, and backlash, which greatly improved the fitting degree
between the proposed model and the actual system. The other parts of this paper are as
follows: In Section 2, the nonlinear dynamic model framework of the ISP is constructed,
and the adaptive multi-parameter estimation method is proposed in Section 3. Section 4
carries out simulation and experimental verification of the effectiveness of the adaptive
multi-parameter estimation method. Section 5 gives the summary of this paper.

2. Problem Statement

Figure 1 shows the structure of the two-axis inertial stabilization platform, and the
elevation gimbal is installed inside the azimuth gimbal. The azimuth gimbal controls the
azimuth motion of the line of sight (LOS) through a motor-driving gear ring, while the
elevation gimbal controls the elevation motion of the LOS through a precision reducer.
When the load modifies, the direct impact is the change in the moment of inertia at the
output side of the reducer. Since the weight of the azimuth gimbal is far greater than the
total weight of the elevation gimbal and the load, the change in load has little effect on the
azimuth gimbal. Therefore, we take the elevation gimbal as the object of this paper.
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Figure 1. The structure of the two-axis inertial stabilization platform.

The elevation gimbal consists of a driver, a motor, a reducer, a load, and an encoder,
as shown in Figure 2, and the load can be flexibly replaced. In the figure, u is the voltage
command input to the actual system and model, KI is the conversion coefficient of the
driver, KT is the motor torque factor, and Jm, JL are the moment of inertia of the motor and
load, respectively; N is the transmission ratio of the reducer, Ks is the transmission stiffness,
and θm, ωm are the angular and angular velocity of the motor, respectively; θL, ωL are the
angular and angular velocity of the load, respectively; Tf m, Tf L are the nonlinear friction
torque of the motor and load, respectively; Tq is the transmission torque of the reducer.
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According to Figure 2, the dynamic model of the system can be expressed as:

.
θm = ωm
Jm

.
ωm = uKIKT − 1

N Tq − Tf m.
θL = ωL
JL

.
ωL = Tq − Tf L

. (1)

To facilitate the analysis, previous studies simplified the friction of the motor and load
into the linear viscous friction. However, this simplification makes it unable to describe the
details of the actual system at low speed or when the direction is reversed. In this paper,
the friction of the motor and load are both expressed in the form of Coulomb friction plus
viscous friction, as shown in Equation (2).

Tf m =


T+

cm + Bmωm ωm > 0
0 ωm = 0

T−cm + Bmωm ωm < 0
, Tf L =


T+

cL + BLωL ωL > 0
0 ωL = 0

T−cL + BLωL ωL < 0
, (2)

where T+
cm, T−cm are the Coulomb friction of the motor in different directions; T+

cL, T−cL are the
Coulomb friction of the load in different directions; and Bm, BL are the viscous coefficient
of the motor and load, respectively. Since there is backlash in the reducer, the dead zone
model is adopted to describe the transmission torque, as shown in Equation (3).

Tq =


Ks(z− ∆) z > ∆
0 |z| < ∆
Ks(z + ∆) z < −∆

, z =
θm

N
− θL, (3)

where z is the transmission error and ∆ is the backlash of the reducer.
By considering the dead zone and the nonlinear friction torque, the fitting degree

between the dynamic model and the actual system can be greatly improved, and the
detailed characteristics of the system at low speed can be better depicted. According to
Figure 2, to achieve live updating of the dynamic model, a total of nine parameters need to
be identified online, which include JL, Bm, BL, Ks, T+

cm, T−cm, T+
cL, T−cL, and ∆. However, as far

as the authors know, there is no algorithm that can realize online recognition of so many
parameters at the same time. Hence, the aim of this paper is to realize the simultaneous
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online identification of the above nine parameters, which lays the foundation for the state
monitoring and adaptive control of the ISPs.

3. Multi-Parameter Online Identification Method

According to Equation (2), the Coulomb friction in different directions can be shown as:

Tc =


T+

c ω > 0
0 ω = 0
T−c ω < 0

, (4)

where ω is the velocity. To identify the Coulomb friction of the motor and load, it is
necessary to linearize it. Then, we define the following functions:{

ω̃+ = 1
2 sign(ω)(1 + sign(ω))

ω̃− = − 1
2 sign(ω)(1− sign(ω))

, (5)

where ω̃+ and ω̃− are the equivalent velocities. According to Equations (2), (4), and (5), the
Coulomb friction of motor and load can be expressed as:{

Tcm = T+
cmω̃+

m + T−cmω̃−m ,
TcL = T+

cLω̃+
L + T−cLω̃−L

(6)

where the right subscripts m and L of ω̃ represent the equivalent speed of motor and
load, respectively. By introducing Equations (3) and (6) into Equation (1) and temporarily
ignoring the backlash of the system, the dynamic Equations can be obtained as:

.
θm = ωm

Jm
.

ωm = uKIKT − 1
N Ks

(
1
N θm − θL

)
− Bmωm − T+

cmω̃+
m − T−cmω̃−m

.
θL = ωL

JL
.

ωL = Ks

(
1
N θm − θL

)
− BLωL − T+

cLω̃+
L − T−cLω̃−L

. (7)

Establishing the state vector as x = [θm, ωm, θL, ωL]
T, Equation (7) can be converted

into a continuous state space as:

.
x = Ax + Bu + C

[
T+

cmω̃+
m + T−cmω̃−m

T+
cLω̃+

L + T−cLω̃−L

]
, (8)

where,

A =


0 1 0 0

− Ks
N2 Jm

− Bm
Jm

Ks
NJm

0
0 0 0 1
Ks

NJL
0 −Ks

JL
− BL

JL

, B =


0

KIKT
Jm
0
0

, C =


0 0
− 1

Jm
0

0 0
0 − 1

JL

.

To realize online identification in practical digital systems, it is necessary to discretize
the continuous state space. Since the expression of the fourth-order matrix discretized by
the zero-order holder is too complex, it would cause a great computational burden to the
computer and cannot obtain the expression of the online identification of parameters. In
this paper, the forward Euler method is proposed to discretize the continuous state space
and the discretization process is as follows:

Ad = I4×4 + ATs
Bd = BTs
Cd = CTs

, (9)
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where I4×4 is the identity matrix and Ts is the discrete sampling period. The state space of
the discrete domain can be obtained as follows:

x(k + 1) = Adx(k) + Bdu(k) + Cd

[
T+

cmω̃+
m(k) + T−cmω̃−m(k)

T+
cLω̃+

L (k) + T−cLω̃−L (k)

]
, (10)

where k is the sample counter, and

Ad =


1 Ts 0 0

− KsTs
N2 Jm

− BmTs
Jm

+ 1 KsTs
NJm

0
0 0 1 Ts

KsTs
NJL

0 −KsTs
JL

− BLTs
JL

+ 1

, Bd =


0

KIKTTs
Jm
0
0

, Cd =


0 0
− Ts

Jm
0

0 0
0 − Ts

JL

.

Then, the ARMA models of the motor and load are obtained as shown in Equations (11)
and (12), respectively.

ωm(k + 1) = Jm−BmTs
Jm

ωm(k)− KsTs
N2 Jm

θm(k) + KsTs
NJm

θL(k)

+KIKTTs
Jm

u(k)− Ts
Jm
(T+

cmω̃+
m(k) + T−cmω̃−m(k))

, (11)

ωL(k + 1) = JL−BLTs
JL

ωL(k) + KsTs
NJL

θm(k)− KsTs
JL

θL(k)
− Ts

JL

(
T+

cLω̃+
L (k) + T−cLω̃−L (k)

) . (12)

In this paper, a recursive extended least squares (RELS) algorithm is adopted to realize
the iterative update of ARMA model parameters. With the voltage, the angular and angular
velocity of the motor as the input, the recursive state vector of the motor is constructed as
shown in Equation (13):

Φ1 = [−ωm(k), θm(k), θL(k), u(k), ω̃+
m(k), ω̃−m(k)]T,

Θ1 =
[

BmTs−Jm
Jm

,− KsTs
N2 Jm

, KsTs
NJm

, KIKTTs
Jm

,− T+
cmTs
Jm

,− T−cmTs
Jm

]T , (13)

where Φ1, Θ1 are the state vector and regression vector, respectively. Thus, Equation (11) is
converted into:

ωm(k + 1) = ΦT
1 Θ1. (14)

Then, the iterative process of RELS for obtaining motor parameters is shown as
follows [26]:

Θ̂1(k + 1) = Θ̂1(k) + K1(k + 1)
[
ωm(k + 1)−ΦT

1 (k + 1)Θ̂1(k)
]

K1(k + 1) = P1(k)Φ1(k+1)
λ+ΦT

1 (k+1)P1(k)Φ1(k+1)

P1(k + 1) = 1
λ

[
I−K1(k + 1)ΦT

1 (k + 1)
]
P1(k)

, (15)

where K1(k + 1) is the recursive gain, P1(k + 1) is the covariance matrix of estimation
deviation, and λ is the forgetting factor.

Similarly, the state vector Φ2 and regression vector Θ2 of the load can be constructed
as shown in Equation (14):

Φ2 =
[
−ωL(k), θm(k), θL(k), ω̃+

L (k), ω̃−L (k)
]T,

Θ2 =
[

BLTs−JL
JL

, KTs
NJL

,−KTs
JL

,− T+
c Ts
JL

,− T−c Ts
JL

]T . (16)

And Equation (12) is converted into:

ωL(k + 1) = ΦT
2 Θ2. (17)
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Then, the iterative process for obtaining load parameters is shown as follows [26]:
Θ̂2(k + 1) = Θ̂2(k) + K2(k + 1)

[
ωL(k + 1)−ΦT

2 (k + 1)Θ̂2(k)
]

K2(k + 1) = P2(k)Φ2(k+1)
λ+ΦT

2 (k+1)P2(k)Φ2(k+1)

P2(k + 1) = 1
λ

[
I−K2(k + 1)ΦT

2 (k + 1)
]
P2(k)

(18)

By combining Equations (13) and (16), we can get the estimation Equations of the
following eight parameters:

ĴL = −NJmΘ̂1(3)
Θ̂2(3)

, B̂m =
Jm(Θ̂1(1)+1)

Ts
, B̂L = −NJmΘ̂1(3)(Θ̂2(1)+1)

TsΘ̂2(3)
, K̂s =

NJmΘ̂1(3)
Ts

T̂+
cm = − JmΘ̂1(5)

Ts
, T̂−cm = − JmΘ̂1(6)

Ts
, T̂+

cL = NJmΘ̂1(3)Θ̂2(4)
TsΘ̂2(3)

, T̂−cL = NJmΘ̂1(3)Θ̂2(5)
TsΘ̂2(3)

, (19)

where ĴL, B̂m, B̂L, K̂s, T̂+
cm, T̂−cm, T̂+

cL, and T̂−cL are the estimated values of JL, Bm, BL, Ks, T+
cm,

T−cm, T+
cL, and T−cL, respectively. The moment of inertia in the motor can be obtained from

the product description. Thus, it can be considered as a known parameter.
In addition, in order to estimate the backlash in real time, we proposed an online

backlash test method, as shown in Figure 3. In Figure 3, ω′m and ω′L are the test values of
ωm and ωL in the actual system, respectively. The principle is to capture the time t1 when
the drive component and driven component are disconnected and the time t2 when they
are reconnected and calculate the size of the backlash accordingly.
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According to Figure 3, we put forward a method to accurately capture t1 and t2, which
are shown in Equations (20) and (21), respectively.

if |ω′m(t− n1)| > ω0&|ω′m(t− n1 + 1)| < ω0& · · ·&|ω′m(t)| < ω0
t1 = t− n1 + 1

end
, (20)

if |ω′L(t− n1)| < ω0&|ω′L(t− n1 + 1)| < ω0& · · ·&|ω′L(t)| > ω0
t2 = t

end
, (21)

where t is the current moment, n1 is set to ensure the reliability of the method, and ω0 is
the speed threshold to judge whether the motor and load reverse. When the velocity is less
than ω0, the motor or the load is considered to be reversed. Then, the size ∆ of backlash
can be calculated by Equation (22).

2∆ =
∣∣θ′m(t1)− θ′m(t2)

∣∣+ ∣∣θ′L(t1)− θ′L(t2)
∣∣, (22)

where θ′m, θ′L are the angular of the motor and load collected by encoders, respectively.
The advantage of this method is that the backlash can be calculated only once the

velocity reverses, which is practical for the equipment with a frequent reversal.
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4. Simulation and Experimental Verification

To verify the effectiveness of the multi-parameter online identification method, an
experimental platform was built, and a series of simulations and tests were carried out. As
shown in Figure 4, the experimental platform is mainly composed of a permanent magnet
synchronous motor (model: ASM80B1007-30M), an RV reducer (model: ZKRV-20E-161-B),
a moment of inertia adjusting device, and an absolute encoder (model: BCE112K50). The
adjusting device is used to simulate the load of the ISP. The following values of the actual
system are obtained by consulting the instructions of the experimental equipment and
3D modeling: KI = 0.48 A·V−1, KT = 0.49 Nm·A−1, N = 161, and Jm = 2 × 10−4 kg·m2.
When there is no mass block, the no-load condition of the ISP is simulated, and there is
JL = 0.22 kg·m2. After adding the mass blocks, the simulated case is with load, and the
moment of inertia becomes JL = 0.45 kg·m2.
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4.1. Simulation Analysis

According to the dynamic model established in Section 2, the simulation model
was built in Simulink. In addition to the above-known parameters, the parameters to be
identified of the simulation model are set as Ks = 1× 106 Nm·rad−1, Bm = 0.005 Nm·rad−1·s,
BL = 20 Nm·rad−1·s, T+

cm =0.1 Nm, T−cm =−0.1 Nm, T+
cL = 5 Nm, T−cL =−5 Nm, 2∆ = 1 arcmin,

and n1 = 3. Reference will be made to the velocity control loop, and the loop is closed
on the load side, the speed measurements being actually numerical differentiations of
position measurements obtained with an encoder. A PI (Proportional Integral) regulator
is used, whose tuning had already been performed independently of this article. This
tuning, however, is inessential here, as the goal is just the validation of the model and
identification method. The sine signal with an amplitude of 30◦/s and frequency of 1 Hz is
input as the command, and the identification results without load and with load are shown
in Figure 5a,b, respectively. In addition, Table 1 lists the converged values.

It can be seen from Figure 5 and Table 1 that the multi-parameter online identification
method proposed in this paper can accurately estimate the values of JL, Bm, BL, Ks, T+

cm,
T−cm, T+

cL, T−cL, and ∆ with and without load, and the steady-state error is not more than 10%.
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Table 1. The converged values of the identification results in the simulation. 
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Figure 5. Convergence process of the multi-parameter online identification in the simulation. (a) With-
out load; (b) With load.

Table 1. The converged values of the identification results in the simulation.

Without Load With Load

Parameters The Set Value The Estimated
Value Error (%) The Set Value The Estimated

Value Error (%)

B̂m (Nm·rad−1·s) 0.005 0.0045 10 0.005 0.00467 6.6

ĴL (kg·m2) 0.22 0.22 0 0.45 0.406 9.78

B̂L (Nm·rad−1·s) 20 20.51 2.55 20 20.54 2.7

K̂s (Nm·rad−1) 1 × 106 1 × 106 0 1 × 106 1 × 106 0

T̂+
cm (Nm) 0.1 0.092 8 0.1 0.0904 9.6

T̂−cm (Nm) −0.1 −0.1046 0.46 −0.1 −0.1034 0.34

T̂+
cL (Nm) 5 4.643 7.14 5 4.612 7.76

T̂−cL (Nm) −5 −4.683 6.34 −5 −4.68 6.4

2∆ (arcmin) 1 0.9~1.1 10 1 1~1.1 10
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4.2. Experimental Results

A series of experiments were carried out to validate the effectiveness of the multi-
parameter online identification method. The experimental projects are mainly divided
into two parts: The multi-parameter online identification tests were carried out in part
one. The second part validated the accuracy of the dynamic model by updating the model
parameters in real-time based on the online identification results.

4.2.1. Multi-Parameter Online Identification Results

The multi-parameter online identification results of the actual system before and after
adding the mass blocks are shown in Figure 6a,b, respectively, and whose converged values
are listed in Table 2.
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Figure 6. Convergence process of multi-parameter online identification in the experiment. (a) Without
load; (b) With load.

The identification results show that the multi-parameter online identification method
can not only recognize the adjustment of load but also detect the change of backlash and
friction when the load varies. The backlash and friction torque increase with the increase
of the mass blocks. The reason is that with the mass blocks added, the pressure on the
bearing increased, and the Coulomb friction torque is proportional to the pressure, so the
friction torque increased. When the increment of friction torque is greater than the inertia
torque, the angular forward movement of the load due to the inertia would reduce, so the
measured backlash would enlarge.
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Table 2. The converged values of the identification results in the experiment.

Parameters Without Load With Load

B̂m (Nm·rad−1·s) 2.4 × 10−3 2.4 × 10−3

ĴL (kg·m2) 0.246 0.453
B̂L (Nm·rad−1·s) 23.17 25.23
K̂s (Nm·rad−1) 9.7 × 105 8.9 × 105

T̂+
cm (Nm) 0.1 0.11

T̂−cm (Nm) −0.095 −0.12
T̂+

cL(Nm) 1.9 2.89
T̂−cL (Nm) −1.86 −2.01

2∆ (arcmin) 0.82 1.74

4.2.2. Dynamic Model Validation Results

By live updating all parameters identified online to the model, we compared the
similarity between the model and the actual system. Figure 7a,b show the comparison
results under no load and load, respectively.
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Figure 7. Dynamic model experimental verification. (a) Without load; (b) With load.

In the figure, the solid gray curve is the linear dual-inertia model without backlash
and nonlinear friction torque, the black dotted curve represents the model proposed in
this paper, and the blue dashed curve is the velocity of the actual system collected by the
absolute encoder. When time < 15 s, the value of the parameters is set to the initial value
and fixed. When time > 15 s, the parameters are live updated through online estimation.

It can be seen from Figure 7a that the traditional linear model has a low fitting degree
with the actual system. However, the proposed model is highly similar to the actual system,
indicating that the initial value assigned to the proposed model is consistent with the
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system. When there is load, Figure 7b shows that the velocity of the fixed value model is
higher than that of the actual velocity (time < 15 s). After switching to the values identified
online (time > 15 s), the model is highly consistent with the actual system again. The reason
is that after adding the mass blocks, the moment of inertia of the load increase, while the
values of the fixed value model are still the initial value, which is less than the actual system,
resulting in the model velocity being greater than the actual system. The experimental
results show that although the system characteristics have changed after adjusting the load,
the model can still well monitor the system throughmulti-parameter online identification.

The fitting degrees between the two models and the actual system are expressed by
the root mean square of error (RMSE), and the results are shown in Table 3. It can be seen
from Table 3 that, compared with the fixed values linear model, the RMSE of the proposed
model with load can be reduced from 6.83 to 2.37, which is improved by 65.3% at most.

Table 3. The RMSE of the model and actual system.

Experiments Without Load With Load

Linear model (fixed values) 5.23 6.83
Linear model (online identification values) 5.16 4.36

Proposed model(fixed values) 2.12 3.52
Proposed model (online identification values) 2.11 2.37

5. Conclusions

An adaptive multi-parameter estimation method is proposed to monitor the state of
the ISP with high accuracy when the load is changed. The dual-inertia dynamic model
considering the backlash and the nonlinear friction torque of the motor and load is formed,
and the online identification expressions of the parameters of the motor and load are
obtained by using forward Euler method. Then, an adaptive multi-parameter estimation
method based on the RELS is put forward. Finally, the effectiveness of the multi-parameter
estimation method is verified by simulations and experiments, and the following two
conclusions are obtained:

(1) Simulation and experimental results show that when the load changes, the multi-
parameter estimation method can simultaneously identify the changes of JL, Bm, BL,
Ks, T+

cm, T−cm, T+
cL, T−cL, and ∆ at one time, and the steady-state error is less than 10%,

which is more comprehensive than previous studies;
(2) Compared with the traditional linear dual-inertia model neglecting the backlash and

nonlinear friction torque, the RMSE between the proposed model and the actual
system can be reduced from 6.83 to 2.37, which is improved by 65.3% at most.

Thus, the proposed model and adaptive multi-parameter estimation method can
realize the status monitoring of the ISP when the loads are frequently changed and provide
a basis for the adaptive high-precision control.
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