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Abstract: The collaborative robot market has experienced rapid growth, leading to advancements in
compliant actuation and torque control. Magneto-rheological (MR) clutches offer a hardware-level
solution for achieving both compliance and torque control through adjustable coupling between
the input and output of the MR clutch. However, the presence of frequency-dependent magnetic
hysteresis makes controlling the output torque challenging. In this paper, we present a comparative
study of six widely used hysteresis models and propose a computationally efficient algebraic model
to address the issue of hysteresis modeling and control of the output torque of rotary MR clutches.
We compare the estimated torques with experimental measurements from a prototype MR clutch, to
evaluate the computational complexity and accuracy of the model. Our proposed algebraic hysteresis
model demonstrates superior accuracy and approximately two times less computational complexity
than the Bouc–Wen model, and approximately twenty times less memory requirement than neural
network-based models. We show that our proposed model has excellent potential for embedded
indirect torque control schemes in systems with hysteresis, such as MR clutches and isolators.

Keywords: magneto-rheological clutch; hysteresis modeling; nonlinear behaviour; torque control

1. Introduction

Recent developments in the field of robotics have led to the use of compliant actuators
for providing a safe environment for humans and robots to interact. These actuators can
be built with either passive compliance, using elastic components inside the actuators [1],
or active compliance [2]. Passive compliance has been used in exoskeletons [3], robotic
hands [4], and humanoid robots [5], among other intrinsic compliance devices. Active
compliance requires torque measurement at the robot joint along with designated control
algorithms to simulate a compliant behaviour. Active compliance has been employed in
recent works, including co-manipulation [6], quadruped robots [7], and pneumatic soft
robots [8].

While active compliance can be costly and complex, passive compliance is limited by
difficulties in torque regulation and complex hardware design [9–11]. An alternative ap-
proach to achieving compliant actuation is based on MR actuators (i.e., a serial combination
of a motor and an MR clutch). This approach exploits the ability of MR fluid to change its
viscosity on demand, hence the compliance of the actuator.

MR actuators have been used in robotics applications, including rehabilitation robots [12],
collaborative robots [13], robot-assisted surgery [14], as well as non-robotics applications, such
as suspension systems in railway vehicles [15], brakes [16], and actuators [17].

MR actuators have favorable characteristics, such as quick and reversible response,
energy efficiency, and a high torque-to-weight ratio. Despite the advantages, controlling
the transmission torque through an MR clutch (i.e., MR clutch output torque) without using
external measurements remains a challenge due to the nonlinear [18] and rate (frequency)-
dependant [19] hysteresis relationship between the input and output. One may use an
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F/T sensor to achieve closed-loop torque control. However, F/T torque sensors are known
to have significant noise, which prohibits high-fidelity torque control. Moreover, this
approach adds to the cost and complexity of the control system. To address these issues,
we propose to use the magnetic flux density measured using embedded Hall sensors inside
the MR clutch, along with a hysteresis model of the MR clutch, to achieve high-fidelity
torque control [20].

To this effect, we present a comparative study of six widely used hysteresis models and
propose a computationally efficient but accurate algebraic model for hysteresis modeling
and evaluate the results experimentally. Our goal is to obtain a computationally efficient
model suitable for real-time torque control of rotary MR actuators. Our proposed approach
does not require external F/T sensors and relies on Hall sensor measurements alone, which
is substantially less expensive.

The contributions of this research are as follows:

• Study of the magnetic hysteresis behaviour of rotary MR clutches.
• Comparative analysis and experimental evaluation of six hysteresis models for pre-

dicting the output torque of an MR clutch using magnetic flux density measurements.
• Proposing a computationally efficient and accurate torque estimation model for rotary

MR clutches.
• Evaluating the accuracy of model prediction and its applicability for real-time torque

control.

The remainder of the paper is organized as follows: In Section 2, several hysteresis
models are introduced and categorized. Section 3 introduces the structure and working
principles of an MR clutch, and the experimental setup used for evaluating the results.
Section 4 presents four parametric hysteresis models, along with the modifications needed
to adapt these models to an MR clutch. Section 5 presents two non-parametric hysteresis
modeling approaches. Section 6 provides comparative analyses and validation results for
the accuracy and generality of these models. Section 7 concludes the paper.

2. Overview of Hysteresis Modeling in MR Clutches

Studies of MR actuators for robotic applications have identified the need for high-
quality torque estimation models. In this regard, the estimation accuracy, robustness, and
computational complexity of the models are among the considerations for selecting a
suitable model. Existing models can be categorized as quasi-static and dynamic models.
Dynamic models can be further divided into parametric and non-parametric models.

There have been several attempts to develop a quasi-static model of devices that uses
MR fluids, but the rheology of the MR fluid can only be represented using the quasi-static
analysis of the fluid flow in the flow mode [21]. In these models, it is assumed that the MR
fluid’s yield stress and viscosity are constant, which may not be the case in all applications
under dynamic loads. As a result, the nonlinear behaviour of the device under dynamic
loading, such as the rate-dependent hysteresis behaviour, is not accurately described using
quasi-static models [22].

Dynamic models can better predict the hysteretic behaviour of MR devices. A paramet-
ric dynamic model is normally presented using nonlinear ordinary differential equations
with posteriori parameters. The posteriori parameters can be estimated by fitting the model
response to measured outputs. Common models used are the Bingham, Herschel–Bulkley
(H–B), Bouc–Wen (B–W), LuGre, hyperbolic tangent, and algebraic models.

The Bingham model can adequately characterize MR fluids, with the exception of
nonlinear phenomena and shear thinning and/or thickening [23]. Moreover, the model
assumes that the viscosity of the fluid is constant below the yield stress [24], making it
difficult for the model to describe complex fluid behaviour. As a result, it fails to describe
the roll-off phenomenon in MR devices at low force–velocity (i.e., change in magnetic
flux density over time) in the hysteresis loop [25]. The Bingham model can not accurately
predict the rate-dependent hysteresis behaviour in MR devices. The H–B model is a
more general model than the Bingham model, as it accounts for both shear thinning and
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thickening behaviours. The H–B model is simpler to use and less prone to overfitting than
the Bingham model because it requires fitting fewer parameters. However, in the case
of rotary disc-type MR clutches, the use of Bingham or H–B models makes it difficult to
track the shape and location of the MR fluids yield surface, because of the non-uniform
magnetic fields and varying gaps between the disks, leading to discontinuity and numerical
issues [26]. Due to the shortcomings of these models, we will not consider them in our
subsequent analyses. We will provide a more in-depth study of the B–W, LuGre, hyperbolic
tangent, and algebraic models in the following sections. These models vary in terms of their
computational complexity and their ability to describe MR clutches hysteresis behaviour,
including rate-dependency.

To provide a more comprehensive evaluation of different modeling approaches, and
to determine the strengths and weaknesses of each approach related to our application, we
will compare non-parametric models to the parametric models as well. Non-parametric
dynamic models are entirely based on the analytical expressions obtained from experimen-
tal data. This means non-parametric models can capture ("learn") hysteresis behaviour
from input-output data without having an explicit functional form. As such, the prediction
accuracy of non-parametric models relies on the quality of input-output data. In our appli-
cation, the input-output data are the responses of a prototype rotary MR clutch to various
excitation conditions.

The commonly used models are the Hammerstein–Wiener (H–W) and nonlinear auto-
regressive with eXogenous inputs (NARX) models. The NARX model is based on a neural
network architecture that captures the dependencies between current and past inputs and
outputs. In contrast, the H–W model does not take past inputs and outputs into account.
Instead, it combines a linear dynamic system with static nonlinearities to represent the
system, in which the nonlinear functions can be represented using various approaches,
such as neural networks.

Some research groups have explored the use of a combination of non-parametric and
parametric models to describe the asymmetric hysteresis behaviour observed in some
cases [27,28]. MR clutches exhibit symmetric hysteresis behaviour for the most part; as
such, it is not necessary to resort to such hybrid approaches in order to avoid the extra
complexity of the model.

3. MR Clutch and Experimental Setup

In this section, we evaluate the performance of the parametric and non-parametric
models introduced previously. We will use a prototype MR clutch and an experimental
setup specifically designed for that purpose. The prototype MR clutch is shown in Figure 1.

Hall sensorCoil

Rotor and stator disks submerged in MR fluid

Magnetic core

Figure 1. Cross-sectional view of the prototype MR clutch.

The prototype MR clutch used in our study is part of the actuation mechanism of the
first joint of a 5-DOF compliant robot developed in [13,29]. The MR clutch consists of the
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rotor (input) and stator (output) disks, an electromagnetic coil, and embedded Hall sensors.
The gaps between the rotor and stator disks are filled with MR fluid (LORD Corporation,
MRF-140CG). The MR fluid generates shear forces between the rotor and stator disks that
enable torque transmission through the MR clutch.

The experimental setup used to collect the data used in our study is shown in Figure 2a.
The components of the experimental setup are shown in Figure 2b.

Mounting 

frame

MR clutch

with hall 

sensors 

Load cell

Motor

Estimation 

models

driver

load cell

testbench/robot 1st joint

MR clutch 

with hall 

sensors

ESC with 

motor

Tmeasured

PWM

Icommand

Imeasured

Vcommand

Bmeasured
dSPACE

Testimated

PC&Simulink

(a) Experimental setup. (b) Components of the experimental setup.

Figure 2. Rotary MR clutch test setup.

In this setup, the MR clutch input is coupled to a DC motor (Hacker, Q80-13XS) through
a reduction gear. The DC motor provides mechanical power to the MR clutch at a constant
angular velocity throughout the experiments. The output torque transmitted through the
MR clutch is measured using a load cell (Transducer Techniques, SBO-500) fixed to the
body of the setup. The output (transmitted) torques are measured for various sinusoidal
excitations of the MR clutch with different frequencies. The commanded excitation signals
are generated using MATLABr Simulink through a dSPACE module (DS1103). The input
excitation signals are applied to the MR clutch using a current driver (A-M-C, AZ12A8) for
DC motors. The load cell and the embedded Hall effect sensors (Infineon, TLE4990) are
also connected to the dSPACE using analog inputs. The Hall effect sensors are capable of
measuring magnetic flux density with both polarities in either current direction. The data
is collected at a sampling rate of 500 Hz for 30 s. After being filtered using a low-pass filter,
the data is imported into MATLAB for model fitting. Figure 3 depicts the output torque of
the MR clutch versus the input magnetic flux density for a sinusoidal excitation of 0–3 A
for four different frequencies.

Figure 3. Magnetic hysteresis of the MR clutch at (a) 0.5 Hz, (b) 3 Hz, (c) 7 Hz, (d) 9 Hz.
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4. Parametric Models of an MR Clutch

In this section, we will further analyze four parametric models to better understand
the advantages and disadvantages of each model for real-time applications.

4.1. Bouc–Wen Model

The B–W hysteresis operator was first introduced by Bouc in 1971 [30] to analytically
describe hysteresis. It was then generalized by Wen in [31]. This hysteresis operator was
later introduced to model the hysteresis behaviour of an MR damper in [32]. It then quickly
gained popularity for modeling hysteresis in other MR devices due to its simplicity and
generality. The damping force F (N) in the B–W model is described as,

F = c0 ẋ + k0(x− x0) + αz, (1)

where c0 is the viscous coefficient, k0 is the stiffness coefficient, α is the scaling factor, and
x and x0 (mm) are the current and initial displacements, respectively. The value of c0
indicates the dissipation of energy inside the damper, but it does not affect the shape of the
hysteresis loop significantly. On the other hand, a higher value of k0 results in a steeper
slope of the hysteresis loop, which indicates a more viscous behaviour of the force with
respect to displacement. The hysteresis variable z can be expressed as,

ż = δẋ− βẋ|z|n − γ|ẋ|z|z|n−1, (2)

in that δ and β define the amplitude and shape of the hysteresis. Higher values of δ and
β lead to a narrower hysteresis loop. γ affects the linearity of the hysteresis loop in the
unloading region, and n determines the smoothness of the transition from the pre-yield to
post-yield region. A higher value of n results in a sharper transition in the hysteresis loop.

To adapt this model to an MR clutch, the magnetic flux density and its derivative are
used as the inputs to the model. The modified model can be written as,

T = cḂ + kB + αz, (3)

where T (N·m) is the estimated torque, and B (mT) is the magnetic flux density measured
by the Hall effect sensor. The hysteresis variable z is expressed as,

ż = δḂ− βḂ|z| − γ|Ḃ|z|z|. (4)

In our proposed model for an MR clutch, the variable n is set to 1 since no transitions from
the pre-yield to the post-yield region are observed in the graphs depicted in Figure 3. In
this model, the coefficients c and k represent the viscosity and stiffness of the MR clutch as
in the original B–W model. The rest of the parameters are the same as the original model
and can be determined in MATLAB through offline parameter estimation.

4.2. LuGre Model

The LuGre model was first proposed by De Wit et al. [33] for simulating the friction
dynamics, and it was first presented to represent the dynamics of an MR damper at the
15th IFAC World Congress [34]. Later, the model was further modified in [35] to reflect the
dynamics of MR dampers. The model is expressed as,

F =
β

α
z + cẋ + kx +

ε

α
ż, (5)

where α, β, ε are parameters related to the shape and scale of the hysteresis loops. c and k
denote the viscous and stiffness coefficients of the MR damper, x (mm) is the displacement
and F (N) is the damping force. In the original LuGre model, z is an internal state that
represents the average deflection of some fictitious bristles that cause friction between
the two surfaces. In this model, two modes, including pre-sliding and sliding modes, are
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assumed and the viscous and stiffness parameters in the model describe the behaviour of
these imaginary bristles during the pre-sliding mode. It is difficult to provide a similar
interpretation for such parameters in relation to MR fluids. One can imagine the internal
state z as the deformation of the micro-structure columns formed in the MR fluid. The
changes in variable z are governed by the following nonlinear dynamics,

ż = αẋ− α|ẋ|z. (6)

To adapt the LuGre model to an MR clutch, similar changes are made. The adapted
LuGre model for an MR clutch is expressed as,

T =
β

α
z + cḂ + kB +

ε

α
ż + T0, (7)

where
ż = αḂ− α|Ḃ|z, (8)

in that B (mT) is the magnetic flux density measured by the Hall effect sensor, T0 (N·m) is
the residual torque, and all other parameters are as defined in the original LuGre model.

4.3. Hyperbolic Tangent Model

The hyperbolic tangent model has been used to model various systems with hysteresis,
including smart actuators [36], power transformers [37], and MR devices. The model was
first proposed in [38] to describe the force–velocity characteristics of an MR damper with
hysteresis. The model is given by,

F = cẋ + kx + αz + f0, (9)

where c and k are the viscous and stiffness coefficients, α is the scaling factor of the hysteresis
variable z, x (mm) is the damper displacement, and f0 (N) is the damper initial force. The
changes in the hysteresis variable are described as,

z = tanh(βẋ + γsign(x)), (10)

in that β and γ are the parameters to shape the hysteresis loop. In contrast to the two
previous models, the hyperbolic tangent model is not formulated using dynamic equations,
which lessens the computational complexity of this model.

To help visualize the effect of different parameters in this model, Figure 4 depicts the
change in the shape of the hysteresis loop with respect to each parameter.

12 
--e--No Hysteresis, k postive value 

---e- Small Hysteresis, c increased 

- Medium Hysteresis, � increased
10 ......... Large Hysteresis, /3 increased

8 

6 

4 

2 

0 

-2.._ ___ ____J�-..c;._----,1 ____ ....... ____ ....&.. _________ _ 

-0.5 0 0.5 1 

Input 

1.5 2 2.5 

Figure 4. Effects of various parameters on the hyperbolic tangent model.

In this figure, the stiffness is represented by k, which defines the slope of the hysteresis,
and the product kx determines the inclination of the hysteresis loop, shown with the
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dotted blue line in the figure. This line grows to a small hysteresis loop shown in red after
increasing the shape factors c. The loop expands to a black medium hysteresis with the
increase in γ. The scale factor γ determines the width of the hysteresis. The hysteresis
variable z is scaled by α to adjust the height of the hysteresis loop, and, together with f0,
determines the location of the loop along the vertical axis. The final hysteresis loop is
depicted in purple.

The hyperbolic tangent model is once again adapted to the MR clutch. The MR clutch
hyperbolic tangent model can be expressed as,

T = cḂ + kB + αz + T0, (11)

where
z = tanh(βḂ + γsign(B)), (12)

in that T (N·m) is the estimated torque, T0 (N·m) is the initial torque, B (mT) is the magnetic
flux density measured by the Hall effect sensor, and the remaining parameters are as
defined for the original hyperbolic model.

4.4. Algebraic Model

Different from the Bouc–Wen and LuGre models, the algebraic model describes the
hysteresis behaviour using a simple mathematical formulation and without the use of an
internal state variable. This model is computationally much more efficient, making it more
suitable for real-time embedded controllers.

The model combines the rubber’s visco-elastic effect and the strain stiffening effect
due to the model input. This model was originally developed for an MR elastomer in [39].
The model can be represented as,

F = kx + cẋ + α|x|x3 + F0, (13)

where c and k denote the damping and stiffness coefficients, α is a coefficient for the power
law element, F0 (N) is the initial force, and x (mm) is the displacement.

Figure 5a illustrates the effects of the model parameters on the shape of the hysteresis
loop. The stiffness coefficient k represents the inclination of the hysteresis loop, while the
damping coefficient c and the coefficient of the power law element α change the shape of
the hysteresis loop. As can be seen, the size of the hysteresis loop grows with increase in
c and α. Figure 5b illustrates the combination of the two effects, namely, the visco-elastic
effect kx + cẋ, shown with a dotted blue line, and the strain stiffening effect α|x|x3, shown
with a solid red line with circle. The combination of these two phenomena results in the
hysteresis loop shown by the solid black line.

(a) Effects of parameters on the algebraic model. (b) Fundamental elements of the algebraic model.

Figure 5. Algebraic model parameters analysis under 1 Hz sinusoidal input (−1 to 1).
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The algebraic adapted model to an MR clutch can be expressed as,

T = kB + cḂ + α|B|B3 + T0, (14)

where B (mT) is the magnetic flux density. The absolute value in the equation is designed
to account for both the positive and negative magnetic flux density, which depends on the
direction of current applied to the MR clutch. T and T0 are the estimated and initial torques,
respectively, and other parameters are as defined in the original model.

The intricate nature of the molecular interactions that underlie the behaviour of MR
fluids poses a challenge for providing a comprehensive interpretation of how each model
parameter affects the physical behaviour of these fluids. Conducting a thorough analysis of
MR fluid behaviour is beyond the scope of this study. Instead, we adopt a more pragmatic
approach by demonstrating how these parameters impact the shape of the hysteresis loop,
without delving into theoretical details.

5. Non-Parametric Models of an MR Clutch

The non-parametric models will be introduced and described in this section. These
models are typically derived from a large amount of experimental data through analytical
methods. These models often do not require knowledge and pre-defined mathematical
formulation a priori, as they are fundamentally unrelated to physical phenomenon that
they describe. This is advantageous when modeling complex systems, where the under-
lying physical mechanisms are too complex to be modeled accurately using traditional
physics-based models. In other words, they are easier to adapt to the data with a desired
fitting accuracy.

5.1. Hammerstein–Wiener Model

The Hammerstein–Wiener (H–W) model has been utilized to model systems with
backlash [40] and hysteresis [41]. This model can be separated into the Hammerstein
model, in which a static nonlinear block connects to a linear dynamic block in series, and
the Wiener model, in which a linear dynamic block connects to a static nonlinear block.
Combining the two separate models results in the H–W model. The block diagram of an
H–W model is shown in Figure 6, which consists of two static nonlinear functions and a
linear transfer function. The linear dynamic block represents the transfer function that
maps the output torque of the MR clutch to changes in the input current (or the magnetic
flux density). The Hammerstein block represents the magnetization dynamics of the MR
clutch relating the magnetic field to the output torque. The Wiener block represents the
hysteresis behaviour caused by residual magnetization of the ferromagnetic materials after
the magnetic field is weakened or reversed. This is because the residual magnetization can
cause the MR fluid to maintain a certain degree of viscosity, leading to a residual torque.

H(⋅) L(⋅) W(⋅)

Hammerstein Linear Wiener

B(t) x(t) v(t) T(t)
H(⋅) L(⋅) W(⋅)

Hammerstein Linear Wiener

B(t) x(t) v(t) T(t)

Figure 6. Block diagram of the Hammerstein–Wiener model.

The mathematical expression of the H–W model is given by,

x(t) = H(B(t)), (15)

v(t) = L(·)x(t), (16)

and
T(t) = W(v(t)), (17)
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where (15) is the Hammerstein nonlinear mapping function H that transforms input mag-
netic flux density B(t) to x(t), (16) is the linear transfer function L that transforms x(t) to
v(t), and (17) is the Wiener nonlinear mapping function W that maps v(t) to the model
output torque T(t). The outputs of both nonlinear functions are solely dependent on the
input value at the specified time t, not on the values from earlier points in time. Config-
uring this model using the MATLAB System Identification Toolbox™ enables selection
of the nonlinear function, including piecewise, wavelet network, sigmoid network, unit
gain, etc. Typically, the selection of the functions and the corresponding parameters are
determined by trial and error. In this work, both nonlinear blocks were selected as wavelet
networks because of their superior performance in dealing with non-stationary signals
with a nonlinear transient. The details of configuring the H–W model will be described in
Section 6.

5.2. Nonlinear ARX Model

The Nonlinear AutoRegressive with eXogenous inputs (NARX) model can predict the
output of a system for a given input, based on a trained neural network that incorporates
the past input and output data [42], as well as other eXogenous inputs, such as disturbance.
The model is frequently used to model MR dampers and clutches [43,44] in the fields of
robotics, civil engineering, automotive engineering. Compared to the H–W model, the
NARX model takes into account the past inputs and outputs to determine the dependencies
(nonlinear hysteresis) between them. The model makes more accurate predictions based on
the current input. The block diagram of the model is presented in Figure 7.

L(⋅)

NL(⋅)

Offset

Mapping function

Inputs

u(t)

y(t)

Figure 7. Block diagram of the Nonlinear ARX model.

As shown, the model consists of past inputs and outputs, a mapping function, and
a feedback connection, which allows the model output to be fed back to relearn from its
own prediction. In addition, the model also considers the time delay, which refers to the
number of time steps between the input and output data that are used to train the model.
The nonlinear mapping function NL is expressed as,

NL(t) = f (y(t− 1), u(t), u(t− 1), u(t− 2), . . . , u(t− 5)), (18)

where f (·) is a nonlinear mapping function that maps the current input, and past inputs
and outputs to the output at time t. The inputs to the f (·) function include, y(t− 1), the
fed-back term, u(t), the current model input, and u(t− 1), . . . , u(t− 5), the past inputs to
the model. The activation function of f can be chosen from wavelet networks, tree partition
networks, sigmoid networks, etc., to adapt to various systems. In this work, the activation
function is configured as wavelet networks. This is because a wavelet network can adapt
to the varying hysteresis behaviour by adjusting its coefficients and functions, leading to
better estimation accuracy. The details of configuring a NARX model will be described in
Section 6.

In addition to the nonlinear mapping function that captures the local nonlinear be-
haviour, the linear mapping function L is needed to capture the global linear relationship
between inputs and outputs. It also provides an estimation baseline for the nonlinear
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mapping function, which makes it easier to interpret the hysteresis behaviour. It can be
expressed as,

L(t) =W1 · y(t− 1) + W2 · u(t) + W3 · u(t− 1) + W4 · u(t− 2)

+ W5 · u(t− 3) + W6 · u(t− 4) + W7 · u(t− 5),
(19)

where the inputs to L are the same as the nonlinear mapping function and W1 to W7 are the
weights for the inputs. The weights are updated during the training process. Finally, the
linear and nonlinear mapping functions are combined with an offset term to produce the
model output y(t).

6. Model Comparisons

The previous sections introduced and discussed six hysteresis models. To further
investigate and focus on obtaining an accurate and computationally efficient hysteresis
model for rotary MR clutches, we will train the models using the magnetic flux density and
the output torque of a prototype MR clutch. The results of the model fitting are compared
and evaluated in Section 6.1. In addition, the parameters, fitting time, execution time, and
stack size are recorded and analyzed to help select the optimal model. Section 6.2 compares
and validates the selected algebraic model through experimental validations.

For model fitting, the Simulink Parameter Estimation Function (PEF) is used to es-
timate the parameters of the parametric models. The MATLAB System Identification
Toolbox™ (SIT)’s nonlinear model tool is used to create the non-parametric models. For the
former method, the cost function is set to sum of squares error (SSE), and the optimization
method is set to nonlinear least square (NLS). In the latter method, the linear block of the
H–W model is configured with two zeros, five poles, and one time unit of input delay. The
two nonlinear blocks used in this model are the wavelet network with automatic selection
of the number of wavelets. This means the number of parameters will be based on the
finest fitting accuracy, which can lead to excessive use of parameters.

The input block of the NARX model consists of six time units of past inputs and one
time unit of past output. The nonlinear mapping function employed in this model is the
wavelet network, which automatically selects the number of wavelets. Similarly to the
H–W model, the number of parameters is also automatically selected based on the finest
fitting accuracy.

6.1. Model Fitting

In this section, we will present a series of experiments to obtain the data related to
the dynamic response of the MR clutch. These experiments were designed to provide
comprehensive datasets for training the hysteresis models. The inputs were sinusoidal
current excitation signals with amplitude ranging from 0 to 3 A and frequencies between
1 Hz and 9 Hz with an interval of 2 Hz. The experimental data were filtered by a low-pass
filter before being used in PEF and SIT for data fitting. The fitting results are presented in
Figure 8. The fitting errors are depicted as box plots in the same figure, which represent the
distribution and spread of errors across different models.

To make a quantitative comparison among the fitting results, the relative root mean
square error (R-RMSE) was used to compare the accuracy of various models, where a lower
value indicates a more accurate model. The R-RMSE is obtained as,

R− RMSE =

√
∑N

i=1(Ti
m − Ti

est)
2

∑N
i=1(Ti

m)
2

, (20)

where Ti
m represents the ith measured torque in the total of N data points, and Ti

est stands
for the corresponding model estimated value. In Table 1, the R-RMSE values for six models
for five different frequencies are listed. Table 2 provides insight into the computational
complexity of the models based on metrics obtained using a PC with an Intelr Core™
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i5-4200H CPU @ 2.8 GHz processor and 16 GB of RAM. The execution time and stack
size were obtained through the Performance Advisor and Static Code Metrics function of
MATLAB Embedded Coderr.

(a) (b)

(c) (d)

(e)

Figure 8. Comparison of the estimated and measured values of the models at (a) 1 Hz, (b) 3 Hz,
(c) 5 Hz, (d) 7 Hz, (e) 9 Hz.



Actuators 2023, 12, 190 12 of 18

Table 1 shows that, for all models, the fitting accuracy decreases slightly as the fre-
quency of excitation increases. Overall the hyperbolic tangent and algebraic models demon-
strate better fitting accuracy across all frequencies than the B–W and LuGre models. Com-
paring non-parametric and parametric model performances, the non-parametric models
show marginally better fitting accuracy.

Table 2 provides a comprehensive evaluation of the computational burden of these
models by comparing the number of required parameters, fitting time, execution time,
and stack size for different models. The four parametric models exhibit a relatively small
difference in terms of the required stack size that ranges from 96 bytes to 192 bytes. The
execution time for these models exhibits a similar trend, with the hyperbolic tangent and
algebraic models having the shortest execution times among the four models. Moreover,
the algebraic model requires the least time for fitting the experimental data. The fitting
time becomes an important consideration in adaptive modeling approaches. In contrast,
the non-parametric models require a significantly larger amount of parameters to achieve
slightly more accurate fitting results. However, the required stack sizes for these models are
approximately 15 to 28 times larger than those of the algebraic model. The non-parametric
models also take two to three times longer than the algebraic model to execute on the
same PC configuration mentioned above. If executed on an embedded computer with
limited internal memories and computational bandwidth, these results are expected to be
exacerbated. Considering these results, the hyperbolic tangent and algebraic models are
further evaluated for selecting the most suitable model. In the following, we will further
compare parametric models in terms of their fitted parameters.

Table 1. R-RMSE of the fitting results.

Frequency

Model 1 Hz 3 Hz 5 Hz 7 Hz 9 Hz

Bouc-Wen 6.15% 5.66% 8.17% 10.58% 9.09%

LuGre 9.79% 7.78% 9.73% 9.79% 8.35%

Hyper-tan 4.46% 5.46% 6.39% 8.16% 8.69%

Algebraic 4.48% 5.60% 6.74% 8.11% 8.69%

H–W 2.88% 4.19% 5.95% 6.72% 5.61%

NARX 3.18% 4.43% 5.26% 6.52% 7.17%

Table 2. Parameter list of the models and the computation efficiency evaluation.

Model Parameters
Fitting Time

(s)
Execution Time
(Simulation s)

Stack Size
(Bytes)

Bouc-Wen α, β, δ, γ, c, k 282 19.048 192

LuGre α, β, ε, c, k, T0 294 13.812 184

Hyper-tan α, β, γ, c, k, T0 196 9.634 96

Algebraic α, c, k, T0 54 10.672 96

H–W 94 units 105 24.450 2700

NARX 656 units 113 28.571 1492

The fitted parameters of parametric models are listed in Tables 3–6. In these tables,
standard deviation (SD) values are calculated to quantify the extent to which the values of
model parameters vary across different frequencies. This indicator is important to identify
the model with more prediction robustness and accuracy over a wider range of frequencies.
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Table 3. Parameters of the Bouc–Wen model.

Frequency Statistics

Param 1 Hz 3 Hz 5 Hz 7 Hz 9 Hz SD AVG

α 2.472 2.793 2.441 0.641 2.464 0.863 2.162

β 1.000 1.000 1.000 1.000 1.000 0.000 1.000

δ −2.083 −1.816 −1.523 0.488 −2.495 1.160 −1.486

γ 0.062 0.038 0.438 0.847 0.615 0.351 0.400

c −0.145 −0.084 −0.064 −0.047 −0.045 0.041 −0.077

k 6.518 6.072 5.826 5.294 5.593 0.466 5.861

Table 4. Parameters of the LuGre model.

Frequency Statistics

Param 1 Hz 3 Hz 5 Hz 7 Hz 9 Hz SD AVG

α 5.315 3.590 5.695 3.062 3.899 1.137 4.312

β 6.251 6.456 5.831 5.783 4.534 0.747 5.771

ε 0.042 0.017 0.000 −0.030 −0.014 0.028 0.003

c −0.443 −0.144 −0.105 −0.026 −0.038 0.170 −0.151

k 4.441 4.947 3.469 4.859 3.769 0.656 4.297

T0 5.508 5.326 5.146 5.036 5.110 0.191 5.225

Table 5. Parameters of the hyperbolic tangent model.

Frequency Statistics

Param 1 Hz 3 Hz 5 Hz 7 Hz 9 Hz SD AVG

α 0.687 0.656 1.019 0.079 0.036 0.424 0.495

β 0.541 0.129 0.082 3.645 5.446 2.444 1.969

γ 1.711 0.698 0.005 3.494 2.110 1.343 1.603

c −0.257 −0.130 −0.118 −0.050 −0.044 0.086 −0.120

k 5.371 4.946 4.943 4.681 4.008 0.502 4.790

T0 0.106 0.441 0.610 0.711 1.070 0.355 0.587

Table 6. Parameters of the algebraic model.

Frequency Statistics

Param 1 Hz 3 Hz 5 Hz 7 Hz 9 Hz SD AVG

α 0.217 0.107 −0.075 −0.056 −0.031 0.126 0.033

c −0.143 −0.082 −0.064 −0.047 −0.043 0.041 −0.076

k 4.263 4.425 5.264 4.926 4.152 0.472 4.606

T0 1.040 0.925 0.452 0.580 0.988 0.264 0.797

In light of this fact, we note that the parameters of the algebraic model have the
smallest SD values among all four parametric models. This suggests that the algebraic
model can provide more accurate estimation results over a wider range of frequencies and
the model should exhibit more generality. In comparison, the other three models have much
larger SD values, which results in difficulty in accurately estimating the output torque.
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In addition to analyzing the SD values of the parameters, we also observed the presence
of negative values among them. The interpretation of negative parameters can vary
depending on the specific model under consideration. For example, in the B–W and LuGre
models, a negative damping coefficient may indicate that the system is dissipative, whereas
a negative stiffness coefficient may suggest instability. Conversely, negative parameter
values in the hyperbolic tangent and algebraic models may not necessarily have a physical
interpretation and may instead be a byproduct of the parameter identification algorithm.

It is important to carefully consider the meaning of negative parameter values in
different models, as they can have different implications for the behaviour and stability of
the system. However, in cases where the negative values are not physically meaningful,
it is crucial to be aware of their potential origins and to take them into account when
interpreting the results of the parameter identification process.

6.2. Model Validation

In this section, we will experimentally evaluate the accuracy and the generality of the
six models. To this effect, a multi-sine as well as a swept-sine signal were applied to the
MR clutch. The output torque of the MR clutch was recorded for a duration of 40 s. The
results were then compared with those from each model.

The values of the parameters for the parametric models were obtained as the average
value of each parameter for five different frequencies, as listed in Tables 3–6. For the
non-parametric models, we used the values of the parameters obtained for the 5 Hz dataset
fitted to these models.

The multi-sine signal was constructed as,

y(t) =
n

∑
i=1

aisin(ωit), (21)

where ai and ωi, i = 1, .., n are the magnitudes and frequencies of different sinusoidal
waves. The multi-sine excitation signal is the sum of 11 sinusoidal waves with uniformly
selected frequencies within the range of 1 Hz to 10 Hz and different magnitudes.

The swept-sine signal was constructed as,

y(t) = a · sin(2π( f0t +
f1 − f0

2T
t2)) + b, (22)

where a, f0, f1, T, b are the magnitude, start frequency, stop frequency, signal duration, and
offset values, respectively. The magnitude of the swept-sine signal was chosen to match the
fitting process (0-3 A), and its frequency was set to change from 0.1 Hz to 5 Hz.

Figures 9 and 10 show the measured torque and estimated output torques for the
multi-sine and swept-sine signals, respectively.

To further analyze the accuracy of the model prediction results, both R-RMSE and the
coefficient of determination (R2) index were used to provide a comprehensive evaluation
of the model validation results. The latter metric can evaluate the overall goodness of
the fitting between the predicted and measured data points. R2 is calculated as the sum
of squares errors to the total sum of squares. A high R2 value indicates that the model
explains a large proportion of the variation in the data, while a low R2 value suggests that
the model does not fit to the data well. It can be expressed as,

R2 = 1− ∑N
i=1(T

i
m − Ti

est)
2

∑N
i=1(Ti

m − Tm)2
, (23)

where Ti
m represents the ith measured torque in the total of N data points, Ti

est stands for the
corresponding model estimated value, and Tm is the mean value of the measured torque.
The results for R-RMSE and R2 are shown in Table 7.
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Figure 9. Multi-sine validation results. (a) Measured signal. (b) 10–15 s zoomed in. (c) 11–12 s
zoomed in. (d) 28–28.5 s zoomed in. (e) 32.5–32.75 s zoomed in.

Figure 10. Swept-sine validation results. (a) Measured signal. (b) 3–10 s zoomed in. (c) 36–39 s
zoomed in. (d) 3–4 s zoomed in. (e) 19.5–20 s zoomed in. (f) 38.75–39 s zoomed in.

Table 7. Error metrics of the validation results.

R-RMSE R2

Model Multi-Sine Swept-Sine Multi-Sine Swept-Sine

Bouc-Wen 13.84% 18.45% 0.689 0.862

LuGre 15.74% 19.31% 0.598 0.849

Hyper-tan 9.84% 13.63% 0.843 0.925

Algebraic 9.00% 11.70% 0.868 0.945

H–W 10.34% 12.56% 0.827 0.936

NARX 7.96% 8.08% 0.897 0.974
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Among the four parametric models, the algebraic model has the lowest R-RMSE values
of 9.0% and 11.7% for the multi-sine and swept-sine signals, respectively. The algebraic
model also has the highest R2 values of 0.868 and 0.945 for these two signals. When
comparing all models, the algebraic model still outperforms the H–W model but is not
as accurate as the NARX model, which has R-RMSE values of 7.96% and 8.08%, and R2

values of 0.897 and 0.974 for the two input signals. The result implies that the algebraic
model and the NARX model can both provide more accurate estimation than the other
four models. However, as shown previously, the NARX model has much higher memory
requirements (up to 28 times more) and higher computational time (up to 3 times more).
These drawbacks pose implementation challenges for embedded computers.

Looking at the overall results, it is seen that the R-RMSE values for swept-sine are
higher than those for multi-sine, suggesting that the models estimate better for the multi-
sine signal. However, the R2 values show the opposite. This indicates that the models
are able to estimate the overall shape of the swept-sine signal more accurately, except for
higher frequencies where the models have a larger phase shift, resulting in less accurate
predictions.

7. Conclusions

In this study, the frequency-dependent magnetic hysteresis present in a prototype
rotary MR clutch was investigated. Six hysteresis models, including four parametric and
two non-parametric models, were experimentally studied and compared. The models
utilized magnetic flux density measurements as input to predict the output torque of the
MR clutch. The performance of the models was compared based on the R-RMSE and R2

values for model predictions, as well as the computational requirements of the models.
The results showed that the algebraic hysteresis model offered the best computational

efficiency with good estimation accuracy among all parametric and non-parametric models.
It was found that the algebraic model required 28 times less memory and computed 3 times
faster than the non-parametric models. These results are important for selecting a suitable
model for real-time applications in embedded computers.

Overall, this study provided valuable insights into the frequency-dependent magnetic
hysteresis of rotary MR clutches and offered a practical solution for torque control using
the algebraic hysteresis model. The findings could be useful for designing more efficient
and effective robotic systems that require precise torque control.
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