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Abstract: Regarding the problem of reduced remaining useful life (RUL) due to wear of the ball
screw in the feed system of CNC (computer numerical control) machine tools, a prediction method
based on constructing the degradation feature vector of the signal data and the improved gray-wolf
optimization with bidirectional long short-term memory (IGWO-BiLSTM) neural network regression
model is proposed. Firstly, a time-domain analysis and the complete ensemble empirical mode
decomposition with adaptive noise analysis (CEEMDAN) were carried out based on the collected life
cycle signal data of a ball screw. The time-domain feature vector and the energy feature vector of each
IMF (intrinsic mode function) component after CEEMDAN decomposition were constructed. The
Pearson correlation coefficient was used to filter feature vectors and construct the multivariate feature
vector. Secondly, this paper improves the traditional gray wolf optimization algorithm, adds a search
strategy based on dimension learning, and combines the improved algorithm with the BiLSTM model,
based on the IGWO-BiLSTM theory. A regression model between feature vectors and the remaining
life of a ball-screw system was established. Finally, the prediction model was established according
to the proposed method and compared with the other five neural network models: LSTM, BiLSTM,
BO-LSTM (Bayesian optimization of LSTM), BO-BiLSTM, and IGWO-LSTM. The results indicate that
this method has high accuracy and good generalization ability for predicting the remaining life of a
ball-screw system.

Keywords: ball screw; CEEMDAN; IGWO; BiLSTM; life prediction

1. Introduction

CNC machine tools are widely used in modern industrial production, such as petro-
chemical, automotive, mold manufacturing, aerospace, and other fields. The development
level of CNC machine tools reflects the overall advanced manufacturing technology level
of a country. As an integral mechanical transmission component of the CNC machine tool
feed system, the ball screw demands high precision, large bearing capacity, and reliability.
The service life of ball screws may lead to mechanical failures and a decrease in production
efficiency, indirectly affecting the machining accuracy of CNC machine tools and, thereby,
affecting the economic benefits and image of the enterprise. In summary, it is necessary to
establish an effective life-prediction model for ball screws to ensure the reliability of CNC
machine tools [1,2].

In recent years, with the rapid development of Internet of Things technology, informa-
tion technology, and artificial intelligence, predictive maintenance has gradually become a
research hotspot [3–5]. Predictive maintenance mainly uses remaining useful life (RUL) pre-
diction information to select the lowest-cost maintenance strategy and production schedule
in the maintenance-opportunity window to reduce costs, improve efficiency, and maximize
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production profits. In the context of predictive maintenance, researchers have carried out
a series of life-cycle-operation tests of mechanical equipment. The Center for Intelligent
Maintenance Systems at the University of Cincinnati has designed three sets of accelerated
life-cycle fatigue tests of rolling bearings. The failure time of the bearing is determined by
monitoring the wear debris in the oil. The data set clearly indicates the fault form after
each bearing failure, so it can be used not only for residual life prediction research [6–8] but
also for fault diagnosis research. The accelerated life test of rolling bearings was carried
out at Xi’an Jiaotong University in China. The life cycle vibration signals of 15 rolling
bearings under three working conditions were collected, and the failure parts of each
bearing were clearly marked, which provided data support for the research in the field of
health-status assessment [9,10]. The intelligent-learning model can independently learn
the performance-degradation mode of mechanical equipment from the monitoring data
through intelligent algorithms, and predict the remaining life. It does not need to construct
a physical model or a statistical model in advance, so it has gradually become a research
hotspot. At present, in the field of residual life prediction, the commonly used intelligent
models mainly include the artificial neural network model, support vector machine model,
and correlation vector machine model. The artificial neural network simulates the working
process of the human brain through a large number of connection nodes in a complex
hierarchical structure, which can automatically extract features from monitoring data and
predict the remaining life of mechanical equipment. The support vector machine model is
an intelligent model based on statistical learning theory, which can effectively deal with
the residual life prediction problem of small sample data. The support vector regression
machine model is also a common support vector machine model used in the field of residual
life prediction. At present, some studies [11,12] have applied relevance vector machines
to the field of residual life prediction. However, the prediction performance of relevance
vector machines depends largely on the choice of the kernel function, and the optimization
of model parameters is still a problem to be solved.

With the development of sensor technology and signal processing technology, the
residual life prediction method based on deep learning of signal feature extraction has
gradually become mainstream. Guo et al. [13] proposed the generalized variational mode
decomposition (GVMD) algorithm to extract the weak features of rolling bearing faults.
The GVMD algorithm can make full use of the bearing-fault frequency information and
bandwidth information to accurately extract the weak feature components of bearing faults
on demand. Zhang et al. [14] proposed a parallel variance constrained-convolutional
auto-encoder (PVC-CAE) model for bearing degradation feature extraction. The PVC-CAE
model is used to extract features in the frequency domain signal, and the LSTM network
is used for prediction. In order to effectively evaluate the degradation trend of bearings,
Qu et al. [15] proposed a prediction method of bearing RUL based on the beetle antennae
BP (back propagation) neural network model optimized by the beetle antennae search
algorithm. By extracting the time domain and frequency domain features of 18 kinds of
bearing life-cycle vibration signals, the degradation features are constructed. Zhu et al. [16]
proposed a rolling bearing fault feature enhancement extraction method based on the
instantaneous angular speed (IAS) signal of the rotary encoder. The de-phasing algorithm
(DPA) is used to suppress the strict periodic components, such as rotating frequency and
its harmonics, and multi-point optimization minimum entropy deconvolution adjusted
(MOMEDA) is used to enhance the rolling bearing fault impulse component. The spectrum
analysis of the enhanced signal is carried out to extract the bearing fault impulse charac-
teristics. Zhu et al. [17] proposed a new deep feature-learning method for RUL prediction
through the representation of time-frequency (RTF) and a multiscale convolutional neural
network (MSCNN), which improved the prediction accuracy. As a variant of the recurrent
neural network (RNN), the long short-term memory (LSTM) network can effectively solve
the problems of gradient disappearance and gradient explosion in RNN. Guo et al. [18]
proposed a method based on empirical modal decomposition (EMD) and an LSTM network
to predict the RUL of rolling bearings. However, LSTMs can only be passed from the
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present moment to the future, which leads to ignoring the impact of the future on the
present moment. At present, the research on the life prediction of ball screws based on data
is few. Therefore, this paper chooses the BiLSTM model, which can consider both past and
future information, to predict the RUL and improves the conventional parameter-seeking
algorithm to highlight the advantages of the model.

Based on the above analysis, in order to accurately predict the remaining life of the ball
screw, the authors improve the traditional gray wolf algorithm and add a search strategy
based on dimension learning to enhance the balance between local search and global
search. The improved algorithm is combined with a BiLSTM neural network to construct
a new life-prediction regression model. Compared with the optimization results of five
other regression models, such as LSTM, BiLSTM, etc., the method proposed in this paper
performs the best in prediction accuracy and generalization ability through simulation data
testing and verification.

2. Energy Characteristics of Signal IMF Component
2.1. CEEMDAN Algorithm

Torres [19] and colleagues proposed the CEEMDAN algorithm to solve the problem of
modal aliasing in EMD (empirical mode decomposition). The EEMD (ensemble empirical
mode decomposition) and CEEMD (complete ensemble empirical mode decomposition)
algorithms, including Gaussian white noise, can improve mode aliasing, but they cannot
effectively separate residual noise, and the added white noise is unevenly distributed in
the high-frequency and low-frequency regions, leaving some white noise signals in the
modal intrinsic components. To solve this issue, CEEMDAN adds adaptive white noise
during each empirical mode decomposition, effectively addressing the problem of residual
noise and incomplete decomposition that exist in EEMD and CEEMD [20–23].

The steps of the CEEMDAN algorithm are as follows:
Let Ei(·) be the i-th intrinsic mode function obtained by EMD decomposition, IMFk

be the k-th intrinsic mode component obtained after CEEMDAN decomposition, ε be the
constant coefficient, andω be the added random noise.

(1) The Gaussian white noise is added to the decomposed signal x(t) to obtain a new
signal xi(t) = x(t) + ε0E0(ωi) (i =1, 2, ..., N). The new signal is decomposed by the
EMD algorithm to obtain the first-order intrinsic mode component IMF1:

IMF1(t) =
1
N ∑N

i=1 IMFi
1(t)i (1)

Calculate the first margin:
r1(t) = x(t)− IMF1(t) (2)

(2) A new signal r1(t) + ε1E1(ωi) (i = 1,2, ..., N) is obtained by adding noise to the
residual component r1(t), and the second component IMF2 is obtained by EMD
decomposition:

IMF2(t) =
1
N ∑N

i=1 E1(r1(t) + ε1E1(ωi)) (3)

(3) Calculate the margin:

rk(t) = r(k−1)(t)− IMFk(t)(k = 2, 3, ..., K) (4)

(4) For the signal rk(t) + εkEk(ωi) (i = 1, 2, ..., N), the k + 1th IMF is obtained by EMD
decomposition:

IMF(k+1)(t) =
1
N

Ek(rk(t) + εkEk(ωi)) (5)

(5) Repeat (3) and (4) until the margin is a monotonic function and cannot be further
decomposed. The final residual sequence is rk(t) = x(t)− ∑K

k=1 IMFk(t), then the
original signal is decomposed into x(t) = ∑K

k=1 IMFk(t) + rk(t).
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The schematic diagram of CEEMDAN decomposition is shown in Figure 1:
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2.2. Signal IMF Component Energy Feature Construction

When the ball screw is worn inside, the energy information of the IMF component
decomposed by CEEMDAN will change accordingly. Here, the energy information of
the IMF is used as the characteristics value to indirectly reflect the change of the RUL of
the component [24].

The CEEMDAN method is used to decompose the signal x(t) to obtain n intrinsic mode
functions (IMF components) and a residual r. The total energy of each IMF component is
calculated, as shown in Formula (6):

Ei =
∫ +∞

−∞
| ci
(
t
)
|2 dt = ∑n

i=1 | Ci |2 (6)

In the formula, Ci(t) is the i-th IMF component, Ci is the amplitude of discrete points,
and n is the number of sampling points. The total energy Es of m IMF components is:

Es = (∑m
i=1 | Ei |2)

1
2 (7)

Constructing the energy feature vector E′ are E′ = [E1E2 · · ·Em]/Es
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3. IGWO-BiLSTM Regression Model
3.1. BiLSTM Neural Network

LSTM is a type of time-recurrent neural network that has evolved from the RNN
(recurrent neural network). It was created to address the issue of “gradient disappearance”
in the RNN structure of the recurrent neural network. The LSTM network improves upon
the structure of the input layer, hidden layer, and output layer of the traditional RNN neural
network. It includes a gate mechanism to control the path of information transmission,
enabling selective memory or deletion of information that passes through the network.

Figure 2 shows a typical LSTM memory block structure. Each memory block has three
‘gating’ structures: the input gate, output gate, and forgetting gate.

Actuators 2023, 12, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 2. Schematic diagram of LSTM structure. 

BiLSTM (bidirectional long short-term memory) is an improvement of LSTM, and its 
structure diagram is shown in Figure 3. The BiLSTM neural network structure model is 
divided into two independent LSTM. The input sequence is input into the two LSTM neu-
ral networks in positive and reverse order, respectively, for feature extraction. The two 
output vectors, namely the extracted feature vectors, are spliced to form the final feature 
expression. In this model, the response signal of the ball screw inputs the information into 
the BiLSTM network layer through the input layer. The input sample signal outputs h⃗  
through the forward LSTM layer and outputs h⃖  through the backward LSTM layer to 
jointly determine the value of the incoming hidden layer and obtain the output yt of 
BiLSTM. The update formula is as follows: h⃗ = LSTM(x ,h⃗ ) (14)h⃖ = LSTM(x ,h⃖ ) (15)y = W⃗h⃗ + W⃖h⃖ + b  (16)

where W⃗  is the weight matrix from the forward LSTM to the output layer; W⃖  is the 
weight matrix from the inverse LSTM to the output layer; and by represents the bias matrix 
of the output layer [25–28]. 

 
Figure 3. Schematic diagram of BiLSTM structure. 

3.2. Gray Wolf Optimization Algorithm 
Gray wolf optimization (GWO) is a swarm intelligence optimization algorithm with 

a global optimal search mechanism. The inspiration comes from the predation behavior 
of the gray wolf group. There is a strict hierarchy in the gray wolf group, and a small 

Figure 2. Schematic diagram of LSTM structure.

(1) The first step to calculating the forgetting gate ft is to determine the information
discarded from the cell. The decision is implemented by the sigmoid layer of the
forgetting gate. It looks at the previous output ht-1 as well as the current input xt
and outputs a number between 0 and 1 for each number in a state Ct−1 on the cell,
representing complete deletion and complete retention, respectively.

ft = σ(Wfxt + Ufht−1 + bf) (8)

(2) The second step, the input gate it determines what information is stored in the cell
state next. The sigmoid layer of the input gate determines which values we will
update. Next, the tanh layer creates a candidate vector C̃t, which will be added to the
cell state. Combine these two vectors to create an updated value.

it = σ(Wixt + Uiht−1 + bi) (9)

C̃t = tan h(Wcxt + Ucht−1 + bc) (10)

(3) The third step to updating the previous state value, and update the previous state
value Ct−1 to Ct.

Ct = ft ⊗Ct−1 + it ⊗ C̃t (11)

(4) The last step, the output gate ot needs to decide what to output. First, a sigmoid layer
is run, which determines the part of the cell state to be output. Then the cell state is
passed through tanh and multiplied by the output of the sigmoid gate. The output
result ht is the output of LSTM and the hidden state of the next LSTM.

ot = (Woxt + Uoht−1 + bo) (12)
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ht = ot ⊗ tan h(Ct) (13)

where Wi, Wf, Wo, and Wc represent the weight matrix from the input gate, forgetting
gate, output gate, and candidate memory cells to the next input gate; Ui, Uf, Uo, and Uc
represent the weight matrix of the hidden layer; bi, bf, bo, and bc represent the bias matrix
of each gate structure, respectively. σ is the sigmoid activation function.

BiLSTM (bidirectional long short-term memory) is an improvement of LSTM, and
its structure diagram is shown in Figure 3. The BiLSTM neural network structure model
is divided into two independent LSTM. The input sequence is input into the two LSTM
neural networks in positive and reverse order, respectively, for feature extraction. The two
output vectors, namely the extracted feature vectors, are spliced to form the final feature
expression. In this model, the response signal of the ball screw inputs the information
into the BiLSTM network layer through the input layer. The input sample signal outputs
→
h t through the forward LSTM layer and outputs

←
h t through the backward LSTM layer

to jointly determine the value of the incoming hidden layer and obtain the output yt of
BiLSTM. The update formula is as follows:

→
h t = LSTM(xt,

→
h t−1) (14)

←
h t = LSTM(xt,

←
h t−1) (15)

yt =
→
W
→
h t +

←
W
←
h t + by (16)

where
→
W is the weight matrix from the forward LSTM to the output layer;

←
W is the weight

matrix from the inverse LSTM to the output layer; and by represents the bias matrix of the
output layer [25–28].
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3.2. Gray Wolf Optimization Algorithm

Gray wolf optimization (GWO) is a swarm intelligence optimization algorithm with
a global optimal search mechanism. The inspiration comes from the predation behavior
of the gray wolf group. There is a strict hierarchy in the gray wolf group, and a small
number of gray wolves with absolute discourse power lead a group of gray wolves to prey.
Gray wolves are generally divided into four levels: α wolves, β wolves, δ wolves, and
ωwolves. The rights are from large to small in order to simulate the leadership class, as
shown in Figure 4. Collective hunting is a social behavior of gray wolves. Social hierarchy
plays an important role in the process of collective hunting, and the process of predation
is completed under the leadership of a wolf. It mainly includes three steps: (1) tracking,
approaching, and harassing the prey; (2) hunting and encircling the prey until it stops
moving; and (3) attacking the prey.
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To begin, construct a gray wolf social hierarchy model and mathematically model the
social hierarchy of the gray wolf. The α wolf is used as the optimal solution, that is, the
individual’s fitness is optimal, the suboptimal solution is βwolf, and the best solution is
δwolf, which can be the global optimal solution or local optimal solution of the objective
function, with the minimum objective function value or the maximum objective function
value. The remaining candidate solution is namedω wolf. The hunting process is guided
by the three wolves α, β, and δ, and theω wolf follows the three wolves. That is, first find
the three best solutions, and then search around the region, the purpose is to find a better
solution, and then update the α, β, and δ wolves. The behavior of gray wolves hunting
prey is defined as follows:

The distance formula between individual and prey:

D =| C · Xp(t)− X(t) | (17)

Gray wolf position update formula:

X(t + 1) = Xp(t)−A ·D (18)

Coefficient vectors:
A = 2α · r1 − α (19)

C = 2 · r2 (20)

where t is the number of iterations, D is the distance vector between the individual and the
hunt, Xp is the position vector of the prey, X is the position vector of the gray wolf, a is the
convergence factor (linearly decreases from 2 to 0 with the number of iterations), and r1
and r2 are random vectors, with modulo random numbers between 0–1.

Gray wolves can identify the position of prey and surround them. When the gray wolf
recognizes the position of the prey, it guides the wolf group to surround the prey under the
guidance of α, β, and δ. The mathematical model of gray wolf individual tracking prey
position is described as follows:

Dα =| C1 · Xα − X |
Dβ =| C2 · Xβ − X |
Dδ =| C3 · Xδ − X |

(21)

Among them, Dα, Dβ, and Dδ represent α and β, respectively, and the distance from
other individuals; Xα, Xβ, and Xδ represent the current position of α, β, and δ, respectively.
C1, C2, and C3 are random vectors, and X is the current position of the gray wolf.

X1 = Xα −A1 · (Dα)
X2 = Xβ −A2 · (Dβ)
X3 = Xs −A3 · (Dδ)

(22)
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Xt+1 =
X1 + X2 + X3

3
(23)

Formula (22) defines the step length and direction ofω individuals in the wolf pack
towards α and β, and δ, respectively, and Formula (23) defines the final position ofω.

When the prey stops moving, the gray wolf completes the hunting process by attacking. In
order to simulate approaching prey, the value of a is gradually reduced, so the fluctuation range
of A is also reduced. In other words, in the iterative process, when the value of a decreases
linearly from 2 to 0, the corresponding value of A also changes in the interval [−a, a].

3.3. Improving Gray Wolf Optimization Algorithm

The classical GWO algorithm will cause the diversity loss of the wolf pack to con-
verge prematurely so that the global optimal solution cannot be accurately obtained. The
IGWO algorithm adds a dimension learning-based hunting (DLH) search strategy. The
role of DLH is to enable each wolf in the group to learn from the surrounding wolves
and exchange information, ensuring a fair selection of the best candidate wolves from
the population, thereby enhancing the balance between local search and global search,
ensuring the diversity of individuals and better searching of the entire space. It solves
the shortcomings of the algorithm’s poor optimization effect on complex problems. In the
IGWO algorithm, three different steps are redefined, including wolf initialization, wolf
movement, wolf selection, and update [29].

(1) Initialization stage. N wolves are randomly distributed and searched with
[
li, uj

]
in a

given space.
Xij = lj + randj[0, 1]

(
uj − lj

)
, i ∈ [1, N], j ∈ [1, D]◦ (24)

(2) Movement stage. The hunting strategy in IGWO is a combination of Xi-GWO(t + 1)
and Xi-DLH(t + 1), that is, a combination of group-based hunting and dimension-based
learning hunting (DLH). The Euclidean distance between the current position Xi(t)
and the updated Xi-GWO(t + 1) is calculated. Equation (25) is used to construct the
neighborhood Ni(t) of each wolf.

Ri(t) =‖ Xi(t)− X(i−GWO)(t + 1) ‖,

Ni(t) =
{

Xj(t) | Di
(
Xi(t), Xj(t)

)
≤ Ri(t), Xj(t) ∈ p

} (25)

where the position of Xj(t) is adjacent to the current iteration position Xi(t); Di is Euclidean
distance; and p is the population of gray wolves. The position of the candidate wolf is
calculated by Equation (26), and the recommended update position is established.

Xi−GWO(t + 1) = Xi,d(t) + rand(Xn,d(t + 1)− Xr,d(t))◦ (26)

(3) Selection and update stage. By comparing the fitness values of candidate wolves
Xi-GWO(t + 1) and Xi-DLH(t + 1), the best candidate wolves are selected, which can be
described by Formula (27).

Xi(t + 1) =
{

Xi−DLH(t + 1), f(Xi−GWO) < f(Xi−DLH)
Xi−GWO(t + 1), f(Xi−GWO) ≥ f(Xi−DLH)

(27)

3.4. IGWO-BiLSTM Regression Model

The parameter determination of BiLSTM models is usually based on manual experi-
ence, which leads to a significant amount of time required for model parameter adjustment
and a tendency to converge to locally optimal solutions [30]. The improved gray wolf
optimization (IGWO) algorithm has the advantages of strong global search ability, fast
convergence, and easy implementation. In order to enhance the accuracy of the residual
useful life prediction model of a ball screw, the parameters of the BiLSTM model are
optimized and adjusted using the IGWO. Specifically, the number of hidden layer units,
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learning rate, and iteration times in the BiLSTM network are employed as the positions of
wolves. By calculating the fitness function and updating the position of wolves, an optimal
solution for the LSTM network model parameters can be obtained, and the residual life
prediction model of the ball screw can be constructed using the optimal model parameters.
The specific steps involved in constructing the life-prediction model LSTM are as follows:

Step 1: Divide the preprocessed sample data into a training set and a test set in the
appropriate proportion.

Step 2: Specify the initial data for IGWO, including the number of gray wolf popu-
lations, initial coordinates, and iterations. Transform the number of hidden layer units,
learning rate, and iteration times of the BiLSTM network into the position coordinates of
wolves, then select the training sample set to train the BiLSTM model.

Step 3: Calculate each wolf’s individual fitness value within the wolf group, and up-
date their individual positions based on the fitness value calculated by the fitness function.
Once either the maximum number of iterations is reached or the global optimal position
satisfies the minimum boundary, the optimal solutions for the three model parameters of
the hidden layer unit number, learning rate, and iteration number of the BiLSTM network
will be obtained.

Step 4: Select the test sample set, and test the BiLSTM network using the above-
optimized parameters to obtain the optimum BiLSTM network model.

4. Life Prediction Methods

The block diagram depicting the ball-screw life-prediction method based on CEEM-
DAN decomposition and the IGWO-BiLSTM model is illustrated by MATLAB in Figure 5.
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(1) Extract time-domain feature vectors. Extracting the time-domain characteristic values
from the collected ball-screw drive-motor current signal, we have identified 16 types
of time-domain characteristics. Their respective calculation formulas are provided
in Table 1 [31].

Table 1. Equation for calculating time domain eigenvalues.

Name Formula

Maximum max(x(n))

Peak max | x(n) |

Mean 1
N

N
∑

n=1
x(n)

Root amplitude ( 1
N ∑N

n=1
√
| x(n) |)2

Standard deviation
√

1
N−1 ∑N

n=1 [x(n)−
−
x]

2

Kurtosis ∑N
n=1 [x(n)−

−
x]

4

(N−1)σ4
x

Waveform factor
√

1
N ∑N

n=1 x2(n)
1
N ∑N

n=1|x(n)|

Pulse factor max|x(n)|
1
N ∑N

n=1 x(n)

Minimum min(x(n))

Peak value xmax − xmin

Absolute average 1
N ∑N

n=1 | x(n) |

Variance 1
N ∑N

n=1 x2(n)

Root mean square
√

1
N ∑N

n=1 x2(n)

Skewness ∑N
n=1 [x(n)−

−
x]

3

(N−1)σ3
x

Peak factor xmax√
1
N ∑N

n=1 x2(n)

Margin factor max|x(n)|
( 1

N ∑N
n=1

√
|x(n)|)2

Although the 16 time-domain features mentioned above can reflect various aspects
of the performance status of parts, the accuracy of the reflection varies greatly. Certain
features are closely linked to changes in the degradation state of parts, while others cannot
accurately indicate trends in the change of parts’ states. Therefore, it is necessary to select
features from the set that can provide accurate reflections of performance state changes
so as to avoid excessive dimension and ensure accuracy in predictions. In this case, the
Pearson correlation coefficient ρ (Equation (28)) was used to represent the correlation
between features and the component’s performance, with a value range between [−1, 1].

ρ =
∑ xiyi − nxy
(n− 1)sxsy

=
n ∑ xiyi −∑ xi ∑ yi√

n ∑ x2
i − (∑ xi)

2
√

n ∑ y2
i − (∑ yi)

2
(28)

By applying Equation (28), the correlation coefficient between the 16 time-domain features
listed in Table 1 and the RUL can be calculated by selecting the most relevant m eigenvalues to
the residual life and constructing a time-domain feature vector T = [T1 T2 · · ·Tm] as the input
feature for the model.

(2) Extract energy characteristic values by decomposing the signal with CEEMDAN into
several IMF components. Utilize Formula (28) to calculate the correlation coefficient
between each IMF component and the original signal to obtain n components with a
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strong correlation with the original signal, which contains the most crucial informa-
tion. Following the approach in Section 2, use the energy information feature vector
E′ = [ E ′1 E ′2 · · · E ′n] of these IMF components as the energy input feature for
the model. Combine the obtained time domain feature vector with the energy fea-
ture vector to create a new feature vector, which serves as the input feature for the
IGWO-BiLSTM model.

X =
[
T1 T2 . . . Tm E′1 E ′2 · · · E ′n

]
= [X1 X2 . . . Xk] (29)

where k = m + n.

(3) IGWO-BiLSTM model is established. In order to ensure that the model can train
better results, assigning a smaller training set may lead to under-fitting the model,
and assigning a larger training set may lead to over-fitting the model. The selected
feature vectors are divided into training sets and test sets according to the ratio of 7:3.
All data is normalized using the range of [−1, 1] to avoid large differences between
samples and improve the convergence speed of the model. The weight matrix and
bias vector in the model are determined using the IGWO algorithm and substituted
into the model for training. The trained lifespan prediction model is then tested with
the test set, and the obtained prediction results, along with the remaining life data
of the corresponding test set samples, are used to calculate the root mean square
error (RMSE) and coefficient of determination (R2). R2 indicates the percentage of the
model prediction array reaching the data itself, with a higher value indicating better
regression accuracy. Evaluate the performance of the model using RMSE and R2
indicators. If the requirements are not met, the regression model can be reconstructed
by modifying the parameters until the requirements are met. If the requirements are
met, determine the IGWO-BiLSTM prediction model.

RMS =

√
1
N ∑N

i=1 (ŷi − yi)
2 (30)

R2 =
(N ∑N

i=1 ŷiyi −∑N
i=1 ŷi ∑N

i=1 yi)
2

[N ∑N
i=1 ŷ2

i − (∑N
i=1 ŷi)

2)][N ∑N
i=1 y2

i − (∑N
i=1 yi)

2
]

(31)

(4) For signal data collected in real time, feature extraction is performed according to steps
(1) and (2) before substituting the extracted feature vectors into the IGWO-BiLSTM
prediction model established in step (3) to predict RUL in real time.

5. Life Prediction by Experimental Data

There are many failure modes of the ball screw. In order to compare and verify the
model better, this paper analyzes and processes the life cycle signal of ball screw raceway
wear failure. Because the wear failure of the inner ring and outer ring of the bearing has
something in common with the wear failure of the ball screw raceway, the life-cycle signal
of the bearing’s outer ring failure is selected for simulation verification. This paper selected
bearing life-cycle data sets provided by the University of Cincinnati. The experimental
platform and structural diagram are shown in Figure 6:

On a single shaft, the bearing test equipment has four test bearings. An AC (alternating
current) motor drives the shaft, which is connected by rubber belts. The rotation was
maintained at a steady 2000 rpm. A spring mechanism adds a radial load of 6000 lbs.
to the shaft and bearing. All of the bearings are greased by force. Both the flow and
the temperature of the lubricant are controlled by an oil circulation system. Debris from
the oil is collected by a magnetic plug that was inserted in the oil feedback channel as
proof of bearing deterioration. When the magnetic plug’s collected trash reaches a certain
level and closes an electrical switch, the test will end. Four Rexnord ZA-2115 double-row
bearings were installed on one shaft. Each row of bearings consists of 16 rollers with a pitch
diameter of 2.815 inches, a roller diameter of 0.331 inches, and a conical contact angle of
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15.171 inches. A PCB 353B33 high-sensitivity quartz ICPs (Integrated Circuit Piezoelectric)
accelerometer was installed on each bearing box. Each bearing’s outer race is equipped
with four thermocouples for checking lubrication by the temperature reading of the bearing.
A National Instruments DAQCard-6062E data acquisition card was used to record vibration
data every 20 min. The data length is 20,480 points, and the data sample rate is 20 kHz.
LabVIEW software from National Instruments was used to collect the data.
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In this paper, the whole life-cycle vibration signal data of outer ring damage, inner
ring damage, and roller damage were selected respectively. The time-domain image of the
signal is shown in Figure 7. Due to the long-life cycle of the bearing, the signal fluctuation
is relatively stable for a long time in the early stage, which is the healthy stage. In the
later stage, due to the long-term wear of the bearing, the remaining life of the bearing is
reduced, which causes the fluctuation amplitude of the vibration signal to change until the
final failure.
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Figure 7. Whole life-cycle vibration signals under different failure modes of bearings.

This paper intercepted some signals from the entire life cycle as simulation data.
The CEEMDAN method was utilized to decompose the residual life simulation signals
at varying residual life levels, producing several IMF components. Figure 8 displays the
original signal of the simulation data and the first 7 IMF components after decomposition
at a residual life of 3200 h.
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Figure 8. CEEMDAN decomposition of the first 7 components.

Based on Equation (6), the energy value of each component can be calculated, while
substitution into Equation (28) allows for the calculation of the correlation coefficient
between each component and the original signal. The six components with the highest
correlation coefficient are selected as energy features in the degradation feature vector.

The time-domain feature T and the energy feature E′ are combined into a new degra-
dation feature vector X (as shown in Table 2) as the model input features:

Table 2. Signal time domain, energy eigenvalues, and actual remaining life data.

Serial Number 1 2 ... 301 302

Average amplitude 0.080 0.080 ... 0.002 0.001
Square root amplitude 0.066 0.066 ... 0.002 0.001

Standard deviation 0.105 0.104 ... 0.001 0.001
Root mean square 0.145 0.104 ... 0.002 0.002

EIFM1 0.993 0.989 ... 0.993 0.988
EIFM2 0.005 0.006 ... 0.033 0.020
EIFM3 0.045 0.049 ... 0.078 0.131
EIFM4 0.094 0.114 ... 0.055 0.060
EIFM5 0.054 0.068 ... 0.047 0.038
EIFM6 0.021 0.020 ... 0.034 0.022

Remaining life 3200 3100 ... 20 10

IGWO was used to train the BiLSTM model to obtain the optimal model parameters.
Using the optimal model parameters, the five models of standard LSTM, BiLSTM, BO-
LSTM, BO-BiLSTM, and IGWO-LSTM were used to predict the RUL. The prediction results
of each model are shown in Figure 9. The predicted points of the model are distributed
on both sides of the real-value curve. The closer the scatter distance curve is, the more
accurate the prediction is. Figure 9 shows the life prediction of the failure of the outer ring
raceway by using six models. It can be seen from the diagram that the predicted scatter
points of the IGWO-BiLSTM model are closer to the true value than the other five models.
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After using the full life-cycle vibration signal data as simulation data to predict the
failure of the outer ring, in order to prove that the model is also applicable to inner ring
raceway failure and roller failure, the study used the six models mentioned above to predict
the life of the faults caused by these two types of failures. The predicted results are shown
in Figures 10 and 11:
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Figure 11. Roller failure life prediction.

In order to further verify the prediction accuracy and prediction ability of the model for
the six different models, LSTM, BiLSTM, BO-LSTM, BO-BiLSTM, IGWO-LSTM and IGWO-
BiLSTM, the two evaluation indicators, root mean square error (RMSE) and determination
coefficient (R2), are selected to measure the prediction performance of the six models.
RMSE and R2 are common indicators to measure the prediction performance of the model.
RMSE is the square root of the average of the sum of squares of deviations between the
predicted value and the actual value of the model. R2 refers to the proportion of the model
prediction value that can explain the degree of variation of the actual value. Both RMSE and
R2 are indicators for quantitative evaluation of model prediction accuracy, but they have
different concerns. RMSE focuses on the difference between the predicted value and the
actual value. The smaller the value, the more accurate the model prediction. The coefficient
of determination focuses on the ability of the model to describe the actual data. The closer
the value is to 1, the better the model can explain the data. Therefore, when evaluating
the prediction performance of the model, the above two indicators can be considered
comprehensively to ensure that the prediction accuracy and interpretation ability of the
model are guaranteed at the same time. Figure 12 shows the prediction-accuracy analysis
values of the RUL prediction results for different prediction models.

It can be clearly seen from the diagram that the root mean square error of the IGWO-
BiLSTM regression model is smaller than that of the other five models when used to predict
the remaining life of the screw. The coefficient of determination R2 predicted by the model
is also the closest to 1. The minimum root mean square error indicates that the difference
between the predicted value and the actual value of the method used in this paper is the
smallest. When the coefficient of determination is 1, the predicted value of the model is
the same as the actual value. The coefficient of determination of the predicted result of
the IGWO-BiLSTM regression model is the closest to 1, the predicted value is the closest
to the real value, and the model prediction is the most accurate. The results show that
the IGWO-BiLSTM regression model proposed in this paper can accurately predict the
remaining service life of ball screws.
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For the real-time collected current signal data that performs the same process, the
degradation feature vector is extracted according to the method described in this paper,
and the remaining life of the screw corresponding to the current signal can be predicted by
inputting the established IGWO-BiLSTM regression model.
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6. Conclusions

For the data-driven ball screw remaining-life prediction problem, this paper mainly
improves the traditional gray wolf optimization algorithm, improves the effect of algorithm
optimization, and combines the improved algorithm with the BiLSTM neural network
model to establish a new life-prediction regression model. Using the collected life-cycle
signal data, the multivariate life-degradation feature vector is constructed. The regression
model was validated and compared based on the actual remaining life data of a ball
screw. The simulation results show that this method has better prediction accuracy and
generalization ability compared to other models. This method is suitable for CNC machine
tools to monitor and collect ball screw signals while predicting and evaluating the remaining
life of the ball screw pair in real time based on the measured signals.
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