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Abstract: With the aim of increasing the momentum jet and obtaining better environmental adaptabil-
ity, this study designs a new type of actuator combining a sparkjet actuator and a combustion-driven
actuator. Numerical simulation shows that the combustion-driven sparkjet actuator has a higher
velocity and mass rate compared to the sparkjet actuator when the length and orifice diameter
are 6.5 mm and 1.3 mm, respectively, while the saturation work frequency is almost the same. A
parameter study shows that as the volume increases, the pressure, orifice velocity, and mass rate
of the combustion-driven sparkjet actuator increase. By contrast, the saturation work frequency
decreases. Moreover, as the orifice diameter decreases, the orifice peak velocity, temperature, and
pressure increase, whereas the mass flow rate and saturation work frequency decrease.

Keywords: sparkjet actuator; sparkjet; plasma actuator; combustion driven

1. Introduction

Significant effort has recently been devoted to the development of actuation technolo-
gies for flow control [1–4]. Effective manipulation of the flow field can lead to considerable
benefits for vehicle systems, including enhanced performance, maneuverability, payload,
and range. Active flow control actuators can be categorized as fluidic, mechanical, and
plasma [5]. Among them, fluidic actuators can be classified as pulsed jet or combustion-
driven sparkjet actuators. Plasma actuators are mainly classified as dielectric-barrier
discharge, DC, or spark discharge actuators.

Grossman et al. [6] first developed the plasma synthetic jet (also called pulsed plasma
or sparkjet) actuator in 2003. The material is an insulating ceramic, with the anode and tip
cathode located at the top and bottom of the actuator cavity, respectively. The jet velocity
measured by experiments is about 100 m/s. Improving the cavity structure and materials
of the actuator, Belinger et al. [7] enhanced the heat dissipation and thereby increased the
operating frequency of the actuator to 500 Hz and the jet velocity to 250 m/s. The research
team of the Air Force Engineering University [8–10] studied the influence of actuator
structure, electrode position, discharge frequency, capacitor energy, outlet configuration,
and other parameters by using zero-dimensional theoretical calculation, shadowgraphs,
PIV, and other technical methods. Liu R B and Lin Q et al. [11] proposed an inflatable
plasma synthetic jet actuator with a one-way valve to improve work frequency. Li J F
and Zhang X B et al. [12] proposed an actuator that combines a piezoelectric oscillator
and sparkjet discharge to improve the cavity suction recovery ability and increase the
pressure of the actuator cavity through the regulation effect of the piezoelectric oscillator
on cavity volume. Luo Z B and Wang L et al. [13,14] proposed an enhanced version of a
two-electrode actuator by adding a high-voltage trigger electrode (as shown in Figure 1).
This three-electrode actuator has a reduced break-down voltage and increased discharge
energy and cavity volume. Preliminary experiments show that the maximum jet velocity
of the actuator is more than 500 m/s. However, the plasma synthetic jet actuator has
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several problems, such as a low refill rate, limited saturation work frequency, and poor
environmental adaptability [15], especially in high-altitude and supersonic rarefied flow
field environments. Zhou Y et al. [16] numerically studied the performance of a two-
electrode plasma synthetic jet actuator and found that the numerical results are in good
agreement with the experiment. Moreover, the influence of orifice shapes on jet flow
has been analyzed. Huang H X et al. [17] examined the transient interaction between a
two-electrode plasma synthetic jet actuator and a supersonic compression ramp flow field.
Narayanaswamy V et al. [18] conducted an experimental study of a pulsed-plasma jet
actuator’s performance and found that the pulsed-plasma jet actuator creates a sufficiently
strong flow perturbation that holds great promise as a supersonic flow actuator.
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Figure 1. Three-electrode PSJ actuator.

Based on small-scale combustion technology [19–24], Crittenden [25] proposed a new
actuator powered by combustion. Figure 2 shows the schematic of the micro axisymmetric
combustion driver. The burning blend with a low mass flow rate fills the driver and is
ignited by ignition sources. The combustion driver generates a high-pressure burst and
jet. The cycle restarts with a fresh blend refilling the actuator and replacing the burned gas.
Crittenden [26], Rajendar [27] and Srinivasan [28] studied the effect of the fuel type, chamber
volume, mixture ratio, chamber surface area, ignition source and exhaust orifice diameter
on small-scale combustion with experiments and numerical simulations. Crittenden [29]
showed that the actuator operating performance is not affected by rain, vibration, ice, or a
particulate environment. Jee S. et al. [30] investigated this combustion driver via numerical
and experimental methods and found that it can effectively improve the aerodynamic lift.
However, the jet velocity of the combustion driver needs further enhancement.
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To overcome the disadvantages of sparkjet actuators and combustion-driven actua-
tors, we propose a combustion-driven sparkjet actuator, as illustrated in Figure 3. This
actuator combines the advantages of sparkjet and combustion-driven actuators, improving
the velocity and environmental adaptability. The effects of actuator length and orifice
diameter on the performance are numerically investigated, and the underlying mechanisms
are addressed.
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Figure 3. Schematic diagram of combustion-driven sparkjet actuator.

2. Mathematical-Physical Model
2.1. Computational Model

The governing equations of the gas phase, including the continuity, momentum,
chemical component transport, and the energy conservation equations, were solved using
Fluent 15.

The solution methods and flux type are implicit formulation and RoeFDS, respectively.
A second-order upwind method is employed for the spatial discretization, and a second-
order implicit method is used for the unsteady formulation. The time step is 2 × 10−8 s, each
with 60 maximum iterations. The SST K-ω turbulent model is employed for the viscous
model during the simulation. The density and specific heat of blends are calculated using
the compressible ideal gas law and mixing law, respectively. By using the mass weighted
mixing law and kinetic theory, we calculate the thermal conductivity and viscosity of the
mixture. Kinetic theory is also adopted to calculate the blend mass diffusivity. A piecewise
polynomial fitting method is used to compute the specific heat of each species. The pressure
outlet condition is specified with a fixed pressure of 1.013 × 105 Pa at the outlet, and the
natural convection heat transfer coefficient is set at 10 W/m2/K [5,31].

This study mainly examines the influence of actuator structural parameters on the
performance; therefore, the premixed hydrogen/air equivalence ratio is 1.0. The detailed
reaction mechanism involving 9 species and 19 reversible reactions [32] is used for modeling
the combustion of hydrogen/air mixture. Meanwhile, the eddy dissipation conception
(EDC) model [24] is adopted to solve the turbulence–chemistry interaction because of its
advantage of incorporating the effect of finite rate kinetics on computing costs and including
the turbulence’s effect on the reaction rate [33]. The energy deposition of the discharge
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is simulated by adding a source term in the energy equation [34]. The discharge zone is
defined as a separate region in the calculation, as shown in Figure 4. The energy source term
is added into the discharge zone and it is assumed that the energy is uniformly distributed
over the discharge duration and discharge region. The source term and discharge duration
are 7 × 1010 W/m3 and 16 µs, respectively. Figure 4 shows the numerical model of the
actuator. The geometry is modelled as a 2D axi-symmetric model due to the axial symmetry
of the actuator [16]. In this study, we assume that the premixed blends in the actuator have
been filled, the valve has been closed, and the arc discharge is struck inside the chamber.
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2.2. Mesh Independency Test and Model Validation

To verify the accuracy of the numerical model of combustion, we compare the numeri-
cal results with the experimental data in the literature [23]. At this time, the combustion
model parameters and the boundary conditions of numerical model are consistent with
those in the literature. Table 1 shows that the numerical results have good agreement with
the experimental data. Therefore, the numerical model is reliable.

Table 1. Comparison between experimental data and numerical results under adiabatic condition.

Experimental Results Numerical Results

Temperature (K) 2382 2392
Mass fraction of H2O 0.323 0.317
Mass fraction of O2 0.005 0.007
Mass fraction of H2 0.015 0.018
Mass fraction of OH 0.007 0.009
Mass fraction of H 0.002 0.003
Mass fraction of O 0.001 0.0012

Mass fraction of NO 0.003 -
Mass fraction of N2 0.644 0.63

Moreover, the numerical results and experimental data [16] of the sparkjet actuator un-
der the same conditions are compared. Figure 5 shows that the numerical and experimental
results are in good agreement in terms of the precursor shock wave and front jet. These
data indicate that the established sparkjet actuator computational model is sufficiently
accurate to capture fluid characteristics.
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Figure 5. Position of precursor shock wave and front jet.

Grid independence is verified with a 2D model of the combustion-driven sparkjet
actuators under four mesh intervals: 2 × 10−5, 2.7 × 10-5, 3.3 × 10−5, and 4 × 10−5 m.
The length and the orifice diameter of the actuators are 6.5 mm and 1.3 mm, respectively;
the heat transfer coefficient is 10 W/m2/K. Figure 6 shows that the velocity, pressure and
temperature variation trends at the outlet are similar as the grid size increases from 2 × 10−5

to 3.3 × 10−5 m. Thus, the mesh size of 3.3 × 10−5 m is used in our final computation to
maintain high accuracy and save computational time.
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3. Results and Discussion
3.1. Influence of Actuator Length

The effects of different lengths and orifice diameters on the working performance of
the actuators can be examined by using the parameter dimensions in Table 2. The diameter
and length of the actuator inlet are 2.5 mm and 1 mm, respectively. The outlet length and
inner diameter of the actuator are 1 mm and 10 mm, respectively. Among them, Case 1 is
the sparkjet actuator, and Cases 2–6 are the combustion-driven sparkjet actuator.

Table 2. Structure parameters of actuator.

Cases 1 2 3 4 5 6

Orifice
Diameter 1.3 mm 1.3 mm 1.3 mm 1.3 mm 2 mm 2.8 mm

Chamber
length 6.5 mm 13 mm 6.5 mm 3.75 mm 6.5 mm 6.5 mm

To ensure sufficient working medium in the cavity and optimize the working perfor-
mance of the actuator, Wang L et al. [34] defined the maximum working frequency that
can fully refill the actuator cavity as the saturation work frequency. When the discharge
frequency exceeds saturation work frequency, it can cause misfire due to the actuator cavity
not being fully backfilled. In addition, in order to evaluate the quick response ability of
the actuator, the time when the jet momentum of the actuator reaches its maximum value
is defined as the peak time tpeak of the jet. A shorter peak time means a faster response of
the actuator.

The jet momentum can be expressed as:

Pjet =
∫ τ

0

.
mujdt (1)

where τ is the jet duration,
.

m is the jet flow rate, and uj is the jet instantaneous velocity.
As shown in Figure 7, the peak velocity of the combustion driver is 1392 m/s, which

is considerably larger than that of the sparkjet actuator, at 594 m/s. The saturation work
frequency is almost the same, and the heat release of the combustion improves the pressure
and temperature in the combustion-driven sparkjet actuator. As a result, the outlet jet
velocity of the combustion-driven sparkjet actuator is much higher than that of the sparkjet
actuator. In addition, as the volume increases, the pressure and mass rate of combustion
driver also increase while the saturation work frequency decreases.

Figure 8 shows that, at 16 µs from the discharge triggering, the peak temperature of
the combustion-driven sparkjet actuator is 2300 K, higher than that of the sparkjet actuator
at 2000 K. Moreover, the temperature near the wall area is slightly higher, which means that
the mixture begins to react. At 100 µs, the high-temperature gas in the sparkjet actuator
moves towards the outlet, while the temperature in the combustion-driven sparkjet actuator
increases rapidly due to the mixture reaction. The flame front is substantially wrinkled,
and the peak temperatures of the combustion-driven sparkjet actuator when the actuator
volume equals 0.25, 0.5, and 1 cm3 are 3249 K, 3116 K, and 3180 K, respectively. With the
increase in volume, the percentage of the unburned mixture increases. The reason for this
is that the chemical reaction time increases as the volume and mixture mass becomes larger,
meaning the flame front takes more time to propagate to the chamber walls, scaling closely
with chamber length. At 200 µs, the area of the high-temperature zone raises; the peak
temperatures in the 0.5 and 1 cm3 actuators rise to 3200 K and 3300 K, respectively, while
that in the 0.25 cm3 actuator decreases to 3000 K. The reason for this is that the mixture
mass increases as the combustion chamber size increases, thereby releasing more heat from
combustion. Moreover, the ratio of volume to surface area also decreases substantially as the
volume decreases, and the heat loss is expected to increase. At 350 µs, the temperature in the
actuator begins to decline as time passes. A larger volume increases the chemical reaction
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time, and thus the actuator saturation work frequency rises correspondingly. Additionally,
the volume increase leads to increased combustion heat and actuator temperature.
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Figure 8. Temperature contours of the actuators.

Figure 9 shows the OH mass fraction of actuators at various delay times. At 16 µs,
a small amount of OH components are produced near the wall area, indicating that the
mixture begins to react. When time equals 100 µs, the magnitude of the OH mass fraction
rises quickly, indicating an increase in combustion intensity. Moreover, part of areas
in the 1 cm3 actuator does not generate the OH components, which means part of the
mixture in the driver undergoes no chemical reaction. At 200 µs, the magnitude of OH
components continues to increase. At 350 µs, the amount of OH components keeps raising,
whereas the magnitude of the OH mass fraction declines, indicating a drop in combustion
intensity. At 900 µs, the OH components have a low magnitude, indicating that the chemical
reaction is nearly complete. The OH components concentration decreases as the chamber
volume decreases. This is because the volume to surface area ratio decreases as the volume
decreases, which results in higher heat loss and lower reaction intensity.

Figure 10 shows that at 16 µs, the pressure in the sparkjet actuator reaches its peak
value, while that in the combustion-driven sparkjet actuator is slightly higher. At 100 µs,
the pressure in the sparkjet actuator decreases, while that in the combustion-driven sparkjet
actuator rises. With the increase in volume, the time that the pressure takes to reach its
peak value also lengthens accordingly. The pressure in the combustion-driven sparkjet
actuator is clearly larger than that in the sparkjet actuator due to the heat release caused by
combustion. Most mixtures are burnt within about 350 µs, 200 µs and 200 µs for the 1, 0.5,
and 0.25 cm3 combustion-driven sparkjet actuators, as shown in Figures 8 and 9, and the
combustion-driven sparkjet actuator reaches its peak value at a corresponding time and
then decreases gradually.
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3.2. Influence of Actuator Orifice Diameter

Figure 11 shows the work performance of actuators with various orifice diameters with
a fixed value of combustion driver length. Clearly, the outlet peak velocity, temperature,
and pressure increase as the orifice diameter declines. By contrast, the mass flow rate
and saturation work frequency also decrease. This is because the small orifice diameter
enhances the blocking effect of the boundary layer thickness on the airflow at outlet. Jet
momentum is an important parameter of work performance, as a function of the speed and
fluid mass. Actuators with a large orifice diameter have a low outlet peak velocity but a
higher fluid mass and saturation work frequency.

Figures 12 and 13 illustrate the temperature contours and OH mass fraction on the cross
section of three combustion drivers with various orifice diameters. At 16 µs after the start
of the discharge, the combustion driver has similar temperature distributions. At 140 µs,
the highest temperature and OH mass fraction in Case 3 are 3200 K and 0.0316, respectively.
As the orifice diameter increases to 2 mm, the highest temperature and OH mass fraction in
the combustion driver decrease to 3080 K and 0.029, respectively. As the orifice diameter
further increases, the highest temperature and OH mass fraction in the combustion driver
decrease to 2880 K and 0.025, respectively. At 200 µs, the maximum temperature and OH
mass fraction of the actuator with a 1.3 mm orifice diameter increase to approximately
3260 K and 0.033, respectively, while those of the actuator with a 2 mm orifice diameter are
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3097 K and 0.029, separately. As the orifice diameter increases to 2.8 mm, the maximum
temperature and OH mass fraction decrease to 2790 K and 0.025, respectively. After 350 µs,
the temperature and reaction intensity gradually decrease. Clearly, the temperature and
chemical reaction intensity decrease as the orifice diameter increases.
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Figure 10. Pressure contours for various actuators.

In order to further investigate the combustion features of three combustion drivers
with various orifice diameters, Figure 14 shows the mass of the hydrogen leakage at
t = 0.04–0.07 ms. The mixture spurts out from the actuator due to the heat release caused
by combustion and energy deposition. Part of the mixture spurts out from the actuator
before it burns on account of the limited combustion rate, which leads to fuel loss. The
mass of the hydrogen leakage increases with the increase in orifice diameter, leading to heat
release and temperature decline. The actuator performance degrades with the increase in
the mass of the hydrogen leakage. Hence, the orifice diameter must be selected reasonably
under different work requirements.

As shown in Figure 15, the peak pressure decreases as the orifice diameter increases.
On the other hand, the peak time is shorter. The reason for this is that the blocking effect
of the boundary layer thickness on the airflow at the outlet also decreases with the rising
orifice diameter, and as a result, the mixture spurts out quickly. In addition, the mass of
the leakage of hydrogen increases as the orifice diameter increases, thereby reducing the
heat release.
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Figures 12 and 13 illustrate the temperature contours and OH mass fraction on the 
cross section of three combustion drivers with various orifice diameters. At 16 μs after the 
start of the discharge, the combustion driver has similar temperature distributions. At 140 
μs, the highest temperature and OH mass fraction in Case 3 are 3200 K and 0.0316, respec-
tively. As the orifice diameter increases to 2 mm, the highest temperature and OH mass 
fraction in the combustion driver decrease to 3080 K and 0.029, respectively. As the orifice 
diameter further increases, the highest temperature and OH mass fraction in the combus-
tion driver decrease to 2880 K and 0.025, respectively. At 200 μs, the maximum tempera-
ture and OH mass fraction of the actuator with a 1.3 mm orifice diameter increase to ap-
proximately 3260 K and 0.033, respectively, while those of the actuator with a 2 mm orifice 
diameter are 3097 K and 0.029, separately. As the orifice diameter increases to 2.8 mm, the 
maximum temperature and OH mass fraction decrease to 2790 K and 0.025, respectively. 
After 350 μs, the temperature and reaction intensity gradually decrease. Clearly, the tem-
perature and chemical reaction intensity decrease as the orifice diameter increases. 

Figure 11. Comparison of actuator performance with different orifice diameters.
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4. Conclusions

To improve the actuator performance, we propose a combined design of a combustion-
driven sparkjet actuator. The influences of the actuator length and orifice diameter are
numerically investigated. The main conclusions are as follows:

1. At a length and orifice diameter of 6.5 mm and 1.3 mm, respectively, the combustion-
driven sparkjet actuator has a higher velocity and mass rate than the sparkjet actuator
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due to the heat release caused by combustion, while the saturation work frequency is
almost the same.

2. With the rise in volume in the actuator length range from 3.75 to 13 mm, the pressure,
orifice velocity and mass rate of the combustion driver increase, whereas the saturation
work frequency decreases. The reason for this is that the mixture mass rises as
the combustion chamber size increases, which leads to a more heat release from
combustion. Meanwhile, as the volume of combustion driver increases, the chemical
reaction time increases, resulting in low work frequency.

3. The outlet peak velocity, temperature, and pressure increase as the orifice diameter
decreases from 2.8 to 1.3 mm. By contrast, the mass flow rate and saturation work
frequency trend decrease. The reason for this is that the large orifice diameter reduces
the blocking effect of the boundary layer thickness on the airflow at the outlet. More-
over, the mass of the hydrogen leakage increases with the increase in orifice diameter,
leading to heat release and temperature decline. Therefore, the structural parameters
of the actuator must be optimized reasonably according to different requirements.
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