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Abstract: Clamping force control is one of the key technologies in the algorithm design and imple-
mentation of electro-mechanical braking system, whose control effects directly affect the vehicle
braking performance and safety performance. In order to improve the clamping force control perfor-
mance of electro-mechanical braking (EMB) system, an EMB clamping force control method based
on Variable universe adaptive fuzzy PID (VUF-PID) controller is proposed, and stretching factors
are added to the fuzzy PID control. According to the operation of the controlled object, the fuzzy
theory domain can be adjusted in real time to keep the system in the proper parameter value and
improve the adaptive ability of the system. The response characteristics and effectiveness of clamping
force under step braking condition, gear switching braking condition and sine braking condition are
verified by simulation experiments using MATLAB/Simulink. The results show that the proposed
VUF-PID control method has strong tracking characteristics and stability characteristics, and meet
the braking requirements under different braking conditions.

Keywords: electric vehicle; electro-mechanical brake; clamping force control; variable universe
adaptive fuzzy control

1. Introduction

With the development of the industrial, technological innovation and energy con-
sumption continues to accelerate, the automobile industry pays more and more attention to
the process of electrification and intellectualization, thus accelerating the rapid evolution
of automotive electronic technology and architecture [1]. The braking system, as the key
to the safety of electric vehicles, is required to realize the active braking function and
energy recovery function [2]. The traditional braking system cannot adjust the braking
force in real time and cannot meet the development needs of electric vehicles. Therefore, the
wire-controlled dynamic technology has gradually become a research hotspot at present [3].

According to current research ideas, there are two main types of wire control dy-
namic systems: electro-hydraulic brake system (EHB) and electro-mechanical brake system
(EMB) [4]. The EHB is a simple modification of the original traditional braking system,
using a motor instead of a vacuum booster, and the braking force can be adjusted. The
energy recovery function can be realized through semi-decoupling or full decoupling be-
tween the brake pedal and the brake master cylinder. Compared with EHB, EMB eliminates
hydraulic components such as hydraulic master cylinder, brake pipeline, etc., with flexi-
ble structure layout, fast response speed, good compatibility, and arranged at the wheel
end, can realize individual and precise control of the wheel, and can integrate multiple
functional technologies, which is the main research direction of the current wire control
dynamic system [5].

Because of the many advantages of EMB systems, more and more people are studying
them. Krishnamurthy et al. studied EMB systems using switched reluctance motors and
proposed a robust nonlinear force controller [6]. Han et al. established a mathematical
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model of electronic wedge brake and proposed a contact point detection algorithm based
on sliding mode control [7]. Park et al. analyzed the mechanical and electrical parts of
EMB [8]. Baek et al. adopted the Maximum torque per ampere (MTPA) method to control
the motor current in the electro-mechanical brake, estimated the d-q axis current reference
value through the motor Angle, realized the efficient control of EMB and reduced energy
consumption [9].

Under the action of brake saturation, load-related friction and nonlinear stiffness, the
performance of EMB will be subject to many limitations [10]. How to quickly and accurately
control the clamping force is the current research focus of EMB. Young et al. proposed a
clamping force estimation control method based on a new type of switch to avoid excessive
clamping force caused by inertia effect [11]. Considering the failure of clamping force
sensor, Zhao et al. proposed a clamping force control method based on power fast terminal
sliding mode [12]. Chihoon et al. proposed a clamping force control calculation based on
adaptive PID considering the initial clearance of electro-mechanical brake [13]. Park et al.
proposed a clamping force estimation and control method based on hysteresis model
considering the clamping force phase hysteresis [14]. Lee et al. established a clamping
force controller considering the optimal state constraint time based on the double-switch
control method [15]. Li et al. established a nonlinear EMB model and proposed a clamping
force control method considering brake clearance and force following to achieve a smooth
transition between clearance elimination and clamping force following [16]. It is known
that the clamping force control strategy of the existing EMB system has problems such as
response hysteresis and following jitter [17].

Therefore, a VUF-PID based EMB clamping force control strategy is proposed to solve
the above problems in this paper. The stretching factors are introduced to adjust the EMB
system in real time, so that the system can keep the proper parameter value and improve
the system’s adaptive ability. There are two main contributions of this paper. First, an
EMB structure with a planetary gear reducer and ball screw configuration is used, and a
mathematical model of an EMB system with a new type of clamping force controller that
considers the friction characteristics of the motor is developed. Secondly, an EMB clamping
force control method based on VUF-PID controller is proposed, which uses stretching
factors to adjust the system parameters in real time according to the running state of the
controlled object.

The arrangement of this paper is as follows. In Section 2, the correlation analysis
and model establishment of EMB system are carried out. In Section 3, an EMB clamping
force control strategy based on VUF-PID is established. In Section 4, different working
conditions are simulated to verify the effectiveness of the proposed strategy. Section 5
presents conclusions and a vision for future work.

2. Modeling of EMB

The structure of the EMB studied in this paper is mainly consists of driving motor,
planetary gear reducer, ball screw mechanism, calipers and other components. The sim-
plified schematic diagram of the EMB brake system is shown in Figure 1. The working
principle of EMB is as follows: When the EMB system receives the target braking force
signal from the Vehicle control unit (VCU), the driving motor starts to work, reduces the
speed and increases the torque through the planetary gear reducer, converts the rotating
motion into linear motion through the ball screw pair, and drives the brake linings to clamp
the brake disc to produce braking torque.

2.1. Motor Model

The driving motor model of EMB system in this paper is a permanent magnet syn-
chronous motor (PMSM) with comprehensive performance, and it is difficult to establish an
accurate mathematical model due to its strongly coupled nonlinear characteristics. There-
fore, it is necessary to simplify the complex mathematical model of PMSM. Assuming that
the op state of the three-phase PMSM studied in this paper is in an ideal state, the stator
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voltage equation of the three-phase PMSM in the synchronous rotating coordinate system
is given: {

ud = Rid + Ld
d
dt id −ωθ Lqiq

uq = Riq + Lq
d
dt iq + ωθ(Ldid + ψ f )

(1)

where id, iq is the current of axis d and q, A;ud, uq is the voltage component of axis d and axis
q, V; Ld, Lq is the inductance component of the d and q axes, H; ωθ is the electric angular
velocity, rad/s.
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The torque equation of three-phase PMSM in the synchronous rotation coordinate
system is defined:

Te =
3
2

pniq
[
id
(

Ld − Lq
)
+ ψ f

]
(2)

where Te is the electromagnetic torque of the motor, N·m; pn is the number of magnetic poles.
When the system adopts vector control of id = 0, there is Ld = Lq, the three-phase

PMSM torque equation is simplified:

Te =
3
2

pnψ f iq (3)

The motion equation of the motor is defined:

J
dωm

dt
= Te − TL − Bωm (4)

where J is the moment of inertia, kg·m2; TL is the load torque, N·m; B is the viscous friction
coefficient, N·m (rad/s)−1; ωm is the mechanical angular velocity, rad/s.

2.2. Motor Friction Model

The motor of EMB is required to have a relatively high precision control performance,
and the friction in the motor will directly affect the clamping force generated by the EMB
system. Therefore, it is very important to establish an accurate motor friction model for
improving the overall braking performance of the EMB system. In this paper, static friction
characteristic models of static friction, Coulomb friction and viscous friction are selected.
The static friction characteristic curve of the motor is shown in Figure 2, and the friction
torque is given:

Tf =


Tm,

.
θ = 0, |Tm| < Ts

Tssgn(Tm),
.
θ = 0, |Tm| ≥ Ts

Tcsgn
( .

θ
)
+ B

.
θ,

.
θ 6= 0

(5)

where
.
θ is the relative sliding speed; Tm is the external torque, N·m; Ts is static friction

moment, N·m; Tc is the coulomb friction torque, N·m.
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2.3. Transmission Mechanism Model

Due to the limitations of motor installation space, EMB system needs to be equipped
with a device to reduce speed and increase torque. In order to meet the needs of braking
force under different driving conditions of vehicles, the EMB motor is made to work in
the high efficiency curve as much as possible. In this paper, the transmission mechanism
consisting of a planetary gear reducer and a ball screw mechanism is adopted. The gear
ring is fixed and the motor output shaft drives the solar wheel to rotate and transmit the
torque to the ball screw mechanism changes the rotary motion into linear motion. The
mathematical model of transmission mechanism is defined:

x =
L

2πip
θm (6)

where θm is the Angle of the motor, rad; L is the lead of ball screw, mm; x is the screw nut
displacement, mm; ip is the planetary gear ratio.

2.4. Load Model

The load torque of the motor comes from the thrust generated by the ball screw
mechanism, and the brake liner generates a clamping force on the brake disc under the
action of the thrust. There is a certain mathematical relationship between the clamping
force of the EMB system and the shape variable of the friction disc [18], which indicates
that the clamping force on the brake disc is given:

Fn = A1s3 + A2s2 + A3s (7)

where A1, A2, A3 is the coefficient of the clamping force cubic polynomial; s is the shape
variable of the friction plate, mm.

The relationship between the load torque of the motor and the clamping force trans-
mitted is defined:

TL =
Fn · L

2π · ip · ηs · ηp
(8)

where ηs is the transmission efficiency of ball screw mechanism; ηp is planetary gear
transmission efficiency.

2.5. Brake Disc Model

The brake liner is installed in the caliper end, and the ball screw mechanism is used to
push the brake disc to clamp, so that the left and right sides of the brake disc produce the
same friction torque, which is given:

Tµ = 2Fn · Rb · µb (9)
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where Fn is the clamping force, N; µb is the friction coefficient of the friction plate; Rb is the
effective radius of the brake disc, m.

3. EMB Clamping Force Control Strategy Based on VUF-PID

Usually, the braking process of EMB system is divided into brake clearance elimination
stage, clamping force following stage and brake clearance formation stage according to the
working state of the motor. In order to obtain higher control accuracy and improve the
control quality of the EMB system, a clamping force control strategy based on VUF-PID
controller is proposed for the clamping force following stage, which enables the EMB
system to quickly reach the required target clamping force, control the motor to push the
brake liner to clamp the brake disc, and the actual clamping force can be stably output
according to the target clamping force.

The target response of the controlled system at time t is y(t), the actual response
is r(t), and the difference between the two is the error e(t), e(t) = y(t)− r(t). PID con-
troller transfer function is obtained by linear combination of proportional, integral and
differential errors.

u(t) = Kp0e(t) + Ki0

∫ t

0
e(t)dt + Kd0

de(t)
dt

(10)

where Kp0, Ki0, Kd0 are the ratio, integral and differential coefficients respectively.
Fuzzy PID controller is an intelligent control strategy. Combining fuzzy control with

PID control, the system can be adjusted in real time according to the current operating
state of the system, with certain adaptive adjustment ability and good control effect [19].
The error e and error change rate ec of target clamping force and actual clamping force are
selected as the input, PID parameter adjustment quantities ∆Kp, ∆Ki, ∆Kd are selected as
the output. Mamdani fuzzy reasoning method is adopted, and seven language variables are
used to describe: negative big (NB), negative median (NM), negative small (NS), zero (ZE),
positive small (PS), positive median (PM), and positive big (PB). Assuming that the domain
of e, ec are [−24,000, 24,000] and [−2400, 2400], the domain of ∆Kp, ∆Ki, ∆Kd are [−1, 1],
[−0.1, 0.1] and [−0.002, 0.002]. The membership function selects trigonometric function.

The input and output variables are multiplied by the corresponding quantitative fac-
tors and the proportional factors, thus the transformation of the two-dimensional quantity
from the basic field to the fuzzy field is realized, and the transformation of the precise
quantity to the fuzzy quantity is realized. The quantitative factors of e, ec are Ke, Kec, the
proportion factors of the correction quantities ∆Kp, ∆Ki, ∆Kd are Kup, Kui, Kud. After pro-
cessing the fuzzy PID controller, the PID parameter adjustment quantities ∆Kp, ∆Ki, ∆Kd
are obtained. The fuzzy rules control table of PID parameters are shown in Tables 1–3 and
the output adjustment quantities of the PID controller is determined by Equation (11).

Kp = Kp0 + ∆KpKup
Ki = Ki0 + ∆KiKui

Kd = Kd0 + ∆KdKud

(11)

where Kp0, Ki0, Kd0 are the initial parameters of the PID controller.

Table 1. The fuzzy rules control table of ∆Kp.

e
ec

NB NM NS ZE PS PM PB

NB NB NB NM NM NS ZE ZE
NM NB NB NM NS NS ZE ZE
NS NB NM NS NS ZE PS PS
ZE NM NM NS ZE PS PM PM
PS NM NS ZE PS PS PM PB
PM ZE ZE PS PS PM PB PB
PB ZE ZE PS PM PM PB PB
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Table 2. The fuzzy rules control table of ∆Ki.

e
ec

NB NM NS ZE PS PM PB

NB PB PB PM PM PS ZE ZE
NM PB PB PM PS PS ZE NS
NS PM PM PM PS ZE NS NS
ZE PM PM PS ZE NS NM NM
PS PS PS ZE NS NS NM NM
PM PS ZE NS NM NM NM NB
PB ZE ZE NM NM NM NB NB

Table 3. The fuzzy rules control table of ∆Kd.

e
ec

NB NM NS ZE PS PM PB

NB PS NS NB NB NB NM PS
NM PS NS NB NM NM NS ZE
NS ZE NS NM NM NS NS ZE
ZE ZE NS NS NS NS NS ZE
PS ZE ZE ZE ZE ZE ZE ZE
PM PB NS PS PS PS PS PB
PB PB PM PM PM PS PS PB

The center of gravity method is used to de-fuzzy, and the calculation formula is expressed:

uk =

m
∑

k=1
yk · A(yk)

m
∑

k=1
A(yk)

(12)

where uk is the output control quantity of the controller; yk is the center of the fuzzy set
generated for the rule; A(yk) is the area under the membership function corresponding to
the rule; m is the number of output variables.

Fuzzy PID controller has the ability of adaptive adjustment, but the ability of adaptive
adjustment is uncertain. Although the fuzzy PID controller can make the system have a
certain stability through real-time adaptive adjustment, the rough and redundant rules of
the controller design will prolong the adjustment time of the system. Therefore, this paper
adds a scaling factor on the basis of fuzzy PID control to adjust the system online in real
time, so that the system can obtain appropriate parameter values to improve the adaptive
ability of the system and enhance the fault tolerance of the system.

From Equation (10), the values of Kp, Ki, Kd affect the output of the controller, but the
values of Kp, Ki that have a greater impact on the control effect. Therefore, when designing
the variable domain adaptive control algorithm in this paper, it mainly carries out variable
domain analysis on the values of Kp, Ki. According to the analysis of two-dimensional input
and output variables of fuzzy PID controller, the membership function of input variables
can be regarded as the constraint input domains, which can weaken the quantization factors.
Therefore, the scale factor and integral factor that have significant influence are selected
to adjust adaptively on the system. The structure block diagram of VUF-PID controller is
shown in Figure 3, where K1 and K2 are the scaling factors of the domain.

The commonly used methods to design scaling factors are mainly based on adaptive
function and fuzzy language. The method based on adaptive function has simple structure
and control of the scaling factor of the domain, which is difficult to be applied to complex
practical engineering applications. Therefore, this paper chooses the method based on
fuzzy language to scale the domain.
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The input variables are e, ec, the same as the basic fuzzy controller, the fuzzy set theory
domains are both [−6, 6], and the fuzzy language variables are both represented by {BN,
MN, SN, ZE, SP, MP, BP}. The output variables are the scale factors K1 and K2, and the
fuzzy set theory domains are both [0, 1]. The fuzzy language variables are represented by
{zero, small, small, small, large, large, maximum}, namely {ZE, VS, LS, S, LB, B, VB}, and
the membership functions select trigonal function. The input-output relation surface of
VUF-PID controller is shown in Figure 4.
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4. Simulation Results and Discussion

The mathematical model of EMB system is established in MATLAB/Simulink software
in this paper, as shown in Figure 5. The parameters of the VUF-PID controller and simula-
tion model are shown in Tables 4 and 5 respectively. In order to verify the advantages of
the VUF-PID control strategy designed for clamping force control, the differences between
VUF-PID and PID and fuzzy PID (F-PID) control are analyzed by simulation comparison.
The comparison simulation results are shown in Figures 6–8. The simulation analysis
of step braking condition, brake gear switching condition and sine braking condition is
carried out.
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Table 4. The fuzzy rules control table of ∆Kd.

Parameter Symbol Value Parameter Symbol Value

Initial parameters of the
scale factor Kp0 10 Quantification factor of ∆e Kec 0.0025

Initial parameters of the
integral factor Ki0 0.02 Scale factor of ∆Kp Kup 0.17

Initial parameters of the
differential factor Kd0 0.002 Scale factor of ∆Ki Kui 0.017

Quantification factor of e Ke 0.00025 Scale factor of ∆Kd Kud 0.00033

Table 5. The fuzzy rules control table of ∆Kd.

Parameter Symbol Value

Static friction torque (N·m) Ts 0.0387
Coulomb friction torque (N·m) Tc 0.0192

Coefficient of viscous friction (N m (rad/s)−1) B 1.086 × 10−3

Ball screw drive efficiency ηs 0.92
Planetary gearing efficiency ηp 0.97

Ball Screw Guide (mm) L 5
Planetary gear ratio ip 13
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(1) Simulation analysis of step braking condition
Step signals of 6000 N, 12,000 N, 18,000 N and 24,000 N are respectively applied to the

input end of the target clamping force of the EMB system actuator. The simulation curves
of clamping force response characteristics in the control system are shown in Figure 6. By
comparison with Figure 6, simulation effect parameters of the three EMB control strategies
are shown in Table 6.

By comparing the simulation parameters of the three EMB control strategies shown in
Table 6, it can be seen that the maximum adjustment time of PID control is 0.274 s and the
maximum overshoot is 2.28%. The maximum adjustment time of F-PID control is 0.272 s
and the maximum overshoot is 2.85%. The maximum adjustment time is 0.209 s and the
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maximum overshoot is 0.17%. Before the target clamping force is 12,000 N, the effect of
PID control is better than that of F-PID control. However, with the increasing clamping
force, F-PID control will gradually be stronger than PID control. In addition, when PID
control controls the clamping force with large amplitude, there will be oscillation and
large steady-state error. The VUF-PID controller designed in this paper has good tracking
performance for different target clamping forces. The adjustment time and overshoot of
EMB system are effectively reduced, and the dynamic and steady state performance are
significantly improved.

Table 6. Comparison of simulation results of three EMB control strategies.

Target Clamping
Force (N)

PID F-PID VUF-PID

Adjustment Time Overshoot Adjustment Time Overshoot Adjustment Time Overshoot

6000 0.154 s 2.28% 0.191 s 2.85% 0.128 s 0.17%
12,000 0.199 s 1.57% 0.229 s 1.58% 0.162 s 0.16%
18,000 0.238 s 1.33% 0.246 s 1.31% 0.176 s 0.16%
24,000 0.274 s 1.06% 0.272 s 0.37% 0.209 s 0.15%

(2) Simulation analysis of brake gear switching condition
When the car is braking, it also needs to switch the brake gear. At this time, the EMB sys-

tem needs to quickly follow the target clamping force expected by the driver of different gear
within a certain period of time. The dynamic simulation conditions are as follows: (a) Brake
gear increasing switching conditions, applying brake gear 0–12,000–24,000 N. (b) Brake gear
decreasing switching condition, applying brake gear 24,000–12,000–0 N. Figure 7 shows
the simulation curves of clamping force response under increasing brake gear switching
condition and decreasing brake gear switching condition.

Figure 7a shows the clamping force response characteristic curve of EMB system under
increasing brake gear switching condition. In the process of actual clamping force jumping
from 12,000 N to 24,000 N, the clamping force response time with VUF-PID, F-PID, and
PID control are 0.0755 s, 0.1083 s, and 0.1291 s. The control effect of VUF-PID is 30.28%
and 41.52% faster than the other two kinds, respectively. Figure 7b shows the clamping
force response characteristic curve of EMB system under increasing brake gear switching
condition. In the process of actual clamping force jumping from 24,000 N to 12,000 N, the
clamping force response time with VUF-PID, F-PID, and PID control are 0.0471 s, 0.0512 s,
and 0.0603 s. The control effect of VUF-PID is 8.01% and 21.89% faster than the other two
kinds respectively. It can be seen that the VUF-PID control proposed in this paper still has
a good adaptive adjustment ability under the braking gear switching conditions, especially
in the initial stage of response, the gain parameters can be better adjusted according to
the error and error change rate, so that the desired clamping force can be reached stably,
quickly and accurately.

(3) Sinusoidal working condition simulation analysis
Sinusoidal signal with amplitude 24,000 N and a frequency of 1 Hz and 2 Hz applied

to the target clamping force input of the EMB system actuator. The simulation curve of
clamping force response characteristics in the control system is shown in Figure 8.

Figure 8 shows the clamping force response characteristic curve of EMB system under
sinusoidal condition. PID control has better clamping force control effect in sinusoidal con-
dition than F-PID control, because the target clamping force value in sinusoidal condition is
changing all the time, the adaptive adjustment capability of F-PID control requires a certain
adjustment time, so there is a certain delay in following the target clamping force in the
heel sine condition, and there will be an error when following the clamping force value
of the target at the next moment. However, PID control has certain jitter when following
the clamping force of time-varying target, because PID control lacks the ability of adaptive
adjustment in the face of changing errors. The proposed VUF-PID control introduces
stretching factors into the design, which improves the following ability to cope with the
moment change of the target clamping force condition, can adjust the proportional factor
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and integral factor in time, shorten the adaptive adjustment time, and quickly reach the
target clamping force value at the moment, indicating that VUF-PIF control has stronger
tracking performance and robustness performance.

5. Conclusions

The quality of clamping force control is an important factor affecting the braking
performance of EMB system, which is also the focus and difficulty of current research on
EMB system. In order to improve the clamping force control performance of EMB system,
an EMB clamping force control method based on VUF-PID controller is proposed, and
stretching factors are added to improve the fuzzy PID control. According to the running
state of the controlled object, the fuzzy domain can be adjusted in real time to keep the
system in the proper parameter value and improve the adaptive ability of the system.
Finally, the response characteristics and effectiveness of clamping force under step braking
condition, gear switching braking condition and sinusoidal braking condition are verified
by simulation experiments. The simulation results show that, compared with PID control
and F-PID control, VUF-PID control has the advantages of short response time, good
following effect and strong adaptability for different clamping force target values, which
can meet the braking requirements under different braking conditions.
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