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Abstract: Complex systems composed of multiple interconnected sub-systems need to be controlled
with specialized control algorithms. In this paper, two classes of control algorithms suitable for such
processes are presented. Firstly, two distributed model predictive control (DMPC) strategies with
different formulations are described. Afterward, a coalitional control (CC) strategy is proposed, with
two different communication topologies, i.e., a default decentralized topology and a distributed
topology. All algorithms were tested on the same simulation setup consisting of eight water tanks.
The simulation results show that the coalitional control methodology has a similar performance to the
distributed algorithms. Moreover, due to its simplified formulation, the former can be easily tested
on embedded systems with limited computation storage.

Keywords: distributed model predictive control; coalitional control; networked systems

1. Introduction

Distributed model predictive control (DMPC) is a preferred control strategy when
dealing with complex systems. Such processes are composed of multiple sub-systems, more
often completely or partially interconnected, either physically or through common shared
resources or goals [1]. To control such systems, centralized control is not a reliable strategy,
due to the sheer size of the computational burden, for solving a unique optimization
problem [2]. Decentralized control can be applied only in the particular case of a weak
interconnection between sub-systems since, from the control point of view, all of them are
independently treated, deliberately ignoring the interdependent connections [3]. Thus,
distributed control is a control strategy of compromise between the aforementioned ones, by
independently controlling the sub-systems while also taking into account the links between
them. The DMPC methodology was developed within the mature model predictive control
(MPC) research field [4], in which each sub-system solves a coupled MPC optimization
problem, considering both local and inter-shared information.

The subject is ongoing and in fast development, evidenced by extensive research in
the DMPC field. During the last decade (i.e., publication years 2013–2023), in the Web Of
Science Core Collection, around 1000 DMPC-related papers were published, with more
than 500 articles published in prestigious journals such as Annual Reviews in Control,
Automatica, IEEE Transactions on Control Systems Technology, Systems & Control Letters
and IEEE Control Systems Magazine, among others.

The DMPC strategy was successfully applied in various domains, such as micro-
grids [5,6], smart grids [7,8], traffic control [9–14], vehicle platooning [15–18] wind
farms [19–21], wastewater treatment plants [22,23], chemical processes [24,25] or network
systems [26], just to name a few. In [27], a robust DMPC algorithm for energy management
optimization in a multi-microgrid system was presented. The stability of an independent
microgrid with respect to the uncertainties introduced by the renewable energy sources
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was ensured using the advantages of robust MPC optimization. Moreover, a robust DMPC
strategy was used to dynamically develop an energy schedule for the multi-microgrid
system, using the advantage of power transactions between independent units. In [28], a
DMPC approach for the online scheduling involved in the coordination problem between
demand response and alternating current optimal power flow in a smart grid was proposed.
In [29], a DMPC strategy for high-speed train traffic control was developed. To ensure
smaller traveling distances between each train, a virtual coupling was considered, and
proofs for feasibility and terminal invariant set constraint stability were provided. In [30], a
DMPC approach for a vehicle platoon with two string stability criteria based on l∞− and
l2− norms was investigated. In [31], an economic DMPC strategy for a large-scale wind
farm was introduced. For each wind turbine, a local Nash optimal solution was reached
using an iterative algorithm while also ensuring the dynamic global economic target for
the overall wind farm. In [22], an economic DMPC method for a wastewater treatment
plant was presented. Two design approaches for the economic DMPC were proposed, with
the difference consisting in the model used in the local controller. In one case, for each
subsystem, the centralized plant model was used in the optimization problem, whereas
the other approach used the corresponding local model defined for each subsystem in the
local controller. The simulations performed in various weather conditions showed that
the first approach outperforms the second one in terms of control performance. In [32], an
explicit DMPC design for chemical processes was introduced. The strategy was used to
handle the constraints in a matrix form, while dividing them into two sets. When compared
with a classical DMPC, the simulation results obtained for a coke oven pressure control
system showed the efficiency of the explicit DMPC formulation. In [33], a robust DMPC
for networked control systems with uncertainties and time delays was presented. By
decomposing the network optimization problem in multiple optimization sub-problems,
each one described using an upper bound robust objective, the computational complexity
of the algorithm was decreased.

A comprehensive recent review work on DMPC strategies classified depending on
their robustness in the presence of system faults (in sensors and actuators), external cyber-
attacks on the communication network or internal attacks from malignant agents inside the
network that share false information is given in [34].

A highly cited review work in the DMPC field, which early on envisioned the future
research trends for the next decade, is provided in [35]. Furthermore, the DMPC algorithms
are classified depending on the optimization problem to be solved as:

• Non-cooperative DMPC—if each agent (or controller) solves a local cost function
using both local information from its sub-system and information received from the
interconnected sub-systems;

• Cooperative DMPC—if each agent solves a global cost function, taking into account
both local information and information received from the entire system.
Depending on the communication protocols established between different agents, the
cooperative architectures are further classified as:

– Iterative DMPC—if each agent exchanges information with other agents mul-
tiple times within a sampling period; to this end, the communication flow is
bidirectional.

– Non-iterative or sequential DMPC—if each agent exchanges information with
other agents only once during a sampling period; in this case, the communication
flow is unidirectional.

Moreover, based on the topology of the communication network, DMPC methods are
categorized as [36]:

• Fully connected DMPC—if each agent is connected with all other agents from
the network;

• Partially connected DMPC—if each agent is connected with only a group of agents
within the network, called neighbours.
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All the above mentioned DMPC strategies have one common denominator, namely
that the communication and controller topologies are fixed, i.e., once established in the
beginning, they do not change during operation. However, this characteristic is rather
restrictive, and thus another methodology was introduced, called coalitional control (CC),
using the principle of flexible architecture [37]. In this methodology, rather than having to
choose between a fully connected or a partially connected communication network, the
idea is that, during operation, in a fully connected topology, certain communication links
can be disabled (if they are not necessary), thus obtaining a partially connected topology.
A group of agents partially connected (through communication link activation) is called
a coalition (or cooperative group), and, within the coalition, a cooperative optimization
problem is solved. When the links are disabled, the coalition is dissolved, and the agents
solve a non-cooperative optimization problem [38,39].

In this work, we extended the comparative performance analysis provided in [40] for
two DMPC methodologies to also include a coalitional control algorithm. The contributions
of this work are the following:

• A comprehensive performance analysis was performed for two non-cooperative
DMPC algorithms (one formulated using a state-space model, and another formulated
using an input–output model) and a CC method, described using a state-space model.

• All three algorithms were tested in simulation on the same process, i.e., the eight-tank
process introduced in [40].

• The CC algorithm was based on a matrix gain feedback controller, computed by
solving a gradient-based optimization problem. The basic principle of computing the
gains was firstly presented in [41].

With respect to our previous works, the following novelties are listed:

• The eight-tank process model introduced in [40] was extended with the nonlinear
mathematical description based on Bernoulli’s law and the mass balances.

• The DMPC strategies given in [40] are presented in an extended version.
• The gradient-based methodology for computing the gain feedback matrix in the coali-

tional control framework provided in [41] was reformulated to achieve comparative
results with respect to the DMPC strategies. To this end, the feedback gain matrices
used in the coalitional control methodology were computed solving a cost function,
which minimizes the error between the coalitional state trajectories, with respect to
a set of DMPC state trajectories. Moreover, a closed-loop stability constraint was
also introduced.

• Two communication topologies were designed for the CC algorithm (with different
sets of feedback matrices optimally computed), i.e., a default decentralized commu-
nication topology without communication between sub-systems, and a distributed
topology with communication links between sub-systems.

• A procedure that automatically switches between the distributed and decentral-
ized communication topologies designed for the coalitional control methodology
is introduced.

The remainder of this paper is structured as follows: Section 2 introduces the state-
space DMPC algorithm, Section 3 describes the input–output DMPC algorithm, and, in
Section 4, the CC algorithm is provided. The process model description, followed by the
simulation results and discussion, is given in Section 5. The conclusions and future work
ideas are presented in Section 6.

2. DMPC Algorithm with State-Space Model (DMPCSS)

In this section, a non-cooperative DMPC algorithm with velocity-form formulation,
designed for a system composed of N sub-systems, is presented. This algorithm was firstly
introduced in [42] for a two-agent system and then extended to N sub-systems in [40].
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2.1. Problem Formulation

Let us introduce a class of linear-time-invariant (LTI) systems consisting of N sub-
systems, interconnected through inputs signals. Each sub-system i, ∀i ∈ N , with N the set
{1, . . . , N} ⊆ N, has the following dynamics:

xpi (k + 1) = Api xpi (k) + Bpii ui(k) + ∑
j∈Ni

Bpij uj(k) (1)

yi(k) = Cpi xpi (k), ∀i ∈ N (2)

with xpi ∈ Rnx , ui ∈ Rnu , uj ∈ Rnu and yi ∈ Rny the state, input, coupling inputs and
output vectors for the process, respectively; k is the discrete-time index; Api , Bpii , Bpij and
Cpi are matrices with adequate dimensions. All the sub-systems coupled with sub-system i
are included in the set Ni = {j ∈ N : Bpij 6= 0}. Within this neighbourhood set, between
sub-systems i and j, relevant information pertaining to the input vectors is exchanged.

Both input and output vectors are constrained as:

ui ∈ Ui, yi ∈ Yi, ∀i ∈ N (3)

where Ui and Yi denote sets of linear inequalities.
As previously mentioned, the proposed DMPC strategy has velocity-form formulation

to ensure the presence of an integral action in the control loop. This is achieved using the
difference operation on both sides of (1), obtaining:

xpi (k + 1)− xpi (k)︸ ︷︷ ︸
∆xpi (k+1)

= Api

(
xpi (k)− xpi (k− 1)

)︸ ︷︷ ︸
∆xpi (k)

+Bpii

(
ui(k)− ui(k− 1)

)︸ ︷︷ ︸
∆ui(k)

+

+ ∑
j∈Ni

Bpij

(
uj(k)− uj(k− 1)

)︸ ︷︷ ︸
∆uj(k)

, ∀i ∈ N (4)

with the compact form as:

∆xpi (k + 1) = Api ∆xpi (k) + Bpii ∆ui(k) + ∑
j∈Ni

Bpij ∆uj(k), ∀i ∈ N (5)

Using the same operation on (2), and substituting (5), we obtain:

yi(k + 1)− yi(k)︸ ︷︷ ︸
∆yi(k+1)

= Cpi ∆xpi (k + 1)

= Cpi

(
Api ∆xpi (k) + Bpii ∆ui(k) + ∑

j∈Ni

Bpij ∆uj(k)
)

, ∀i ∈ N (6)

The new state variable is selected as xi(k) =
[
∆xpi (k)

T yi(k)
]T, obtaining the velocity-

form model:[
∆xpi (k + 1)

yi(k + 1)

]
︸ ︷︷ ︸

xi(k+1)

=

[
Api O

Cpi Api I

]
︸ ︷︷ ︸

Ai

[
∆xpi (k)

yi(k)

]
︸ ︷︷ ︸

xi(k)

+

[
Bpii

Cpi Bpii

]
︸ ︷︷ ︸

Bii

∆ui(k) + ∑
j∈Ni

[
Bpij

Cpi Bpij

]
︸ ︷︷ ︸

Bij

∆uj(k)

yi(k) =
[

O I
]︸ ︷︷ ︸

Ci

[
∆xpi (k)

yi(k)

]
, ∀i ∈ N (7)



Actuators 2023, 12, 281 5 of 23

where I and O are the identity and zero matrix, respectively, with adequate dimensions.
In a compact form, model (7) can be written as:{

xi(k + 1) = Aixi(k) + Bii∆ui(k) + ∑j∈Ni
Bij∆uj(k)

yi(k) = Cixi(k), ∀i ∈ N
(8)

where ∆ui(k) and ∆uj(k), ∀i ∈ N , ∀j ∈ Ni, are the inputs in velocity form.

2.2. Optimization Problem

Each agent ∀i ∈ N solves the following cost function Ji:

Ji(xi(k), ∆Ui(k), {∆Uj(k)}j∈Ni ) =
(

Rspi −Yi
)T(Rspi −Yi

)
+ ∆Ui(k)TRi∆Ui(k) (9)

The optimal input sequence

∆U∗i (k) = [∆u∗i (k|k) . . . ∆u∗i (k + Nc − 1|k)]T

is computed minimizing (9), defined based on the output predictor:

Yi =
[
yi(k + 1|k) . . . yi(k + Np|k)

]T, ∀i ∈ N

where Np is the prediction horizon and Nc ≤ Np is the control horizon. Rspi ∈ RNp is the
predicted reference trajectory, imposed constant over the prediction window, equal to the
imposed setpoint at sampling time k. Ri = αi INc , αi ≥ 0 is the input weight matrix.

The output predictor Yi is interactively calculated from (8), obtaining the following
compact form:

Yi = Ãixi(k) + B̃ii∆Ui(k) + ∑
j∈Ni

B̃ij∆Uj(k) (10)

in terms of the current state xi(k) (and, implicitly, the measured process state xpi (k)),
and the input trajectories ∆Ui(k), ∀i ∈ N , and {∆Uj(k)}j∈Ni . Ãi, B̃ii and B̃ij are the
predictor matrices.

Explicitly, the cost function to be minimized by each agent ∀i ∈ N is:

Ji(xi(k), ∆Ui, {∆Uj(k)}j∈Ni ) =

(Rspi − Ãixi(k))T(Rspi − Ãixi(k)) + 2∆UT
i B̃T

ii ∑
j∈Ni

B̃ij∆Uj − 2∆UT
i B̃T

ii [Rspi − Ãixi(k)]

− 2 ∑
j∈Ni

∆UT
j B̃T

ij[Rspi − Ãixi(k)] + 2∆UT
i (B̃T

ii B̃ii + Ri)∆Ui + ∑
j∈Ni

∆UT
j (B̃T

ij B̃ij)∆Uj (11)

obtained by the substitution of (10) in (9). Note that, in (11), the unknown variable is
∆Ui(k), ∀i ∈ N , while we consider that {∆Uj(k)}j∈Ni is available inside the neighbourhood.

The optimal solution is obtained minimizing (11) subject to (3).

3. DMPC Algorithm with Input–Output Model (DMPCIO)

In this section, a non-cooperative DMPC with an input–output model, designed for
a system composed of N sub-systems, is presented. The algorithm was firstly tested on a
three-agent system in [43], and extended to N sub-systems in [40].

3.1. Problem Formulation

Let us introduce an LTI system, similar to the one given in Section 2.1, where each
sub-system i has the following dynamics:

yi(k) = Gii(q−1)ui(k) + ∑j∈Ni
Gij(q−1)uj(k) + wi(k) (12)
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with ui ∈ Rnu , yi ∈ Rny and wi ∈ Rnw the input, output and disturbance vectors, respec-
tively; q−1 is the backward shift operator; k denotes the discrete-time index; Gii(q−1) and
Gij(q−1) are discrete-time transfer functions with monic denominators.

All the sub-systems coupled with sub-system i are included in the set Ni = {j ∈ N :
Gij(q−1) 6= 0}. The disturbance term wi, ∀i ∈ N is considered as a white noise signal
filtered with an appropriate model [44]. To introduce an integral action in the control loop,
the disturbance model was chosen as an integrator:

wi(k) =
Ci(q−1)
Di(q−1)

ei(k) = 1
1−q−1 ei(k) (13)

where ei, ∀i ∈ N is a white noise signal.
The input and output vectors are constrained as (3).

3.2. Optimization Problem

Each agent ∀i ∈ N solves the following cost function Ji:

Ji(Yi(k), Ui(k), {Uj(k)}j∈Ni ) = (Rspi (k)−Yi(k))T(Rspi (k)−Yi(k))

+ ∆Ui(k)TRi∆Ui(k)
(14)

where Yi(k) =
[
yi(k + 1|k) . . . yi(k + Np|k)

]T is the output predictor; the input sequence
∆Ui(k) = [∆ui(k|k) . . . ∆ui(k + Nc − 1|k)]T is defined as the control increment over the
control horizon Nc ≤ Np; Rspi (k) ∈ RNp is the reference trajectory imposed constant over
the prediction horizon and equal with the set-point at the current time instant k; Ri = αi INc

is the input weight.
The input–output MPC formulation provided in [45], which is the basis for the DMPC

implementation, computes the output predictor by aggregating past and future effects:

Yi(k) = Ȳi(k) + Yopt
i (k), (15)

where Yopt
i (k) formulated in (16) represents the future actions, while Ȳi(k) = Xi(k) +Wi(k)

represents the past actions Xi(k) and the disturbance prediction Wi(k).
In compact matrix form, Yopt

i (k) is calculated as:

Yopt
i (k) = G̃iiUi(k) + ∑j∈Ni

G̃ijUj(k), ∀i ∈ N (16)

with

G̃ii =


hii

1 0 . . . gii
1−Nc+1

hii
2 hii

1 . . . . . .
. . . . . . . . . . . .
hii

Np
hii

Np−1 . . . gii
Np−Nc+1

 G̃ij =


hij

1 0 . . . gij
1−Nc+1

hij
2 hij

1 . . . . . .
. . . . . . . . . . . .
hij

Np
hij

Np−1 . . . gij
Np−Nc+1

 (17)

where {hij
1 hij

2 hij
3 . . .} are the impulse responses from input j, ∀j ∈ Ni, to output i, and

gij
Np−Nc+1 is the corresponding step response.

Explicitly, the cost function to be minimized by each agent i, ∀i ∈ N is:
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Ji(Yi, Ui, {Uj}j∈Ni )

= ((Rspi − Ȳi − G̃iiUi − ∑
j∈Ni

G̃ijUj)
T(Rspi − Ȳi − G̃iiUi − ∑

j∈Ni

G̃ijUj)

+ (ĀiUi + b̄i)
TRi(ĀiUi + b̄i))

= (UT
i (G̃

T
ii G̃ii + ĀT

i Ri Āi)Ui − 2[G̃T
ii(Rspi − Ȳi − ∑

j∈Ni

G̃ijUj) + ĀT
i Ri b̄i]

TUi

+ (Rspi − Ȳi − ∑
j∈Ni

G̃ijUj)
T(Rspi − Ȳi − ∑

j∈Ni

G̃ijUj) + b̄T
i Ri b̄i) (18)

where the incremental variable ∆Ui(k) is written in matrix form ∆Ui = ĀiUi + b̄i. Matrix
Āi and vector b̄i are recursively computed from the formula ∆ui(k|k) = ui(k|k)− ui(k− 1),
with ui(k− 1) being the actual input sent to the sub-system at the previous sampling instant.

Note that, in (14), the unknown variable is Ui(k), ∀i ∈ N , while we consider that
{Uj(k)}j∈Ni is available inside the neighbourhood.

The optimal solution Ui(k)∗ is obtained minimizing (18) subject to (3).

4. Coalitional Control with Gain Feedback Control (CC)

In this section, a coalitional control algorithm with gain feedback matrix formulation
based on a state-space model is presented. The algorithm was firstly introduced in [41].
As previously mentioned, the idea behind the coalitional control is to ensure a degree of
flexibility in the control architecture. This is obtained by enabling or disabling certain
communication links between different agents, thus obtaining different communication
topologies [41].

4.1. Problem Formulation

Consider the LTI system introduced in Section 2.1, where each sub-system i has the
dynamics (1) and (2) and the constraints (3).

In the proposed CC strategy, to ensure the presence of an integral action in the control
loop, an additional state was introduced. This state was defined as an integral of the control
error, denoted x̄pi , and defined as x̄pi (k + 1) = x̄pi (k) + ri(k)− Cpi xpi (k). This additional
state was used to extend the state vector, obtaining an extended model:[

xpi (k + 1)
x̄pi (k + 1)

]
︸ ︷︷ ︸

xi(k+1)

=

[
Api O
−Cpi I

]
︸ ︷︷ ︸

Ai

[
xpi (k)
x̄pi (k)

]
︸ ︷︷ ︸

xi(k)

+

[
O
I

]
︸ ︷︷ ︸

Rspi

ri(k)

+

[
Bpii

O

]
︸ ︷︷ ︸

Bii

ui(k) + ∑j∈Ni

[
Bpij

O

]
︸ ︷︷ ︸

Bij

uj(k) (19)

yi(k) =
[

Cpi O
]︸ ︷︷ ︸

Ci

[
xpi (k)
x̄pi (k)

]
, ∀i ∈ N (20)

where I and O are the identity and zero matrix, respectively, with adequate dimensions.
In a compact form, model (19) and (20) can be written as:{

xi(k + 1) = Aixi(k) + Bspi ri(k) + Biiui(k) + ∑j∈Ni
Bijuj(k)

yi(k) = Cixi(k), ∀i ∈ N
(21)

where ui(k) and uj(k), ∀i ∈ N , ∀j ∈ Ni, are the input and the coupling input, respectively.
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4.2. Optimization Problem

In the proposed coalitional control strategy, each agent ∀i ∈ N is controlled using
a state feedback gain matrix. Within the methodology, a given communication topology
will have a particular form for the corresponding overall gain matrix (comprising all
individual feedback matrices, correlated to each sub-system). As such, in the initialization
phase of the methodology, one must decide the communication topologies that will be
employed in the coalitional control. The difference between different topologies is the
uni-directional communication links that are enabled, thus resulting in different overall
gain feedback matrices.

Hereafter, we will formulate the following communication topologies:

1. A decentralized topology, where the control action of the sub-systems is computed
without external information; thus, all the communication links are disabled;

2. A distributed topology, where the control action of the sub-systems is computed using
relevant external information from the neighbours. This means that the communica-
tion links between neighbours are enabled.

In all tests, for each sub-system, the control action is obtained using the gain feedback
matrix formulation obtained as an optimal solution that minimizes the difference between
the DMPC algorithm and the feedback gain matrix solution.

Each feedback gain matrix K, corresponding to each communication topology, is
computed by solving the following cost function using gradient optimization:

J(K) = ∑
xDMPC

i ∈XDMPC

N
∑
i=1

JxDMPC
i

(K) (22)

with

JxDMPC
i

(K) =
M

∑
j=1
‖xi(j)− xDMPC

i (j)‖2
2, (23)

s.t. (21), (3),

max(|eig(Ai + BiiKi,i)|) < 1 (24)

with ui(k) = Ki,ixi(k). (25)

where XDMPC is a set of state trajectories denoted xDMPC
i , ∀i ∈ N , obtained from the

DMPCSS algorithm, simulated for M time samples.
The overall gain feedback matrix K is the optimal solution of problem (22).
Within the optimization, to compute the matrix K, a cost index is defined as the error

between the state trajectory xDMPC
i chosen as an imposed reference for the state trajectories

xi obtained using the control law (25) corresponding to the decentralized communication
topology. In this manner, we ensure that the closed-loop dynamics obtained using the
coalitional control strategy are similar to the closed-loop dynamics from DMPCSS (i.e., we
consider the response generated by the DMPCSS strategy to be the desired response for our
coalitional control method). Moreover, note that constraint (24) ensures that all eigenvalues
(computed with Matlab function eig.m) of the closed-loop system are within the unit circle,
i.e., the closed-loop stability is satisfied, with the control law based on the feedback gain
matrix Ki,i, ∀i ∈ N .

The set XDMPC contains manifold state trajectories obtained by testing the process in
multiple operating points feasible for the process functionality (i.e., respecting the imposed
hard constraints (3)). Using this set ensures that no bias from a particular simulation case
influences the computation of the optimal overall gain matrix K.

Since we wished to compare the distributed results obtained with the DMPCSS strategy
with the coalitional ones, a distributed communication topology was defined taking into
account the physical coupling between sub-systems. It resulted in an optimal feedback
matrix K, which has elements Ki,i, ∀i ∈ N , on the main diagonal, corresponding to each
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sub-system and elements off-diagonal Ki,j, ∀i, j ∈ N , ∀j ∈ Ni, corresponding to the
communication links enabled between neighbours.

The overall gain matrix K for the distributed topology was computed by minimiz-
ing the same cost function (22), where (25) was rewritten as ui(k) = Ki,ixi(k) + Ki,jxj(k),
and (24) was rewritten as max(|eig(Ai + BiiKi,i + BijKi,j)|) < 1, so that the interaction
between neighbours is considered.

Note that, for the proposed coalitional control strategy, we designed two commu-
nication topologies. From the coalitional point of view, these two case studies can be
regarded as: (i) the default test without coalitions, where the sub-systems do not exchange
information, and the overall gain matrix is diagonal, and (ii) the test with uni-directional
coalitions only between each two neighbours, which are coupled directly through inputs.
In this case, the overall gain matrix has only one non-zero element on each row, placed
off-diagonal.

As previously mentioned, the main advantage of the proposed coalitional control
methodology is to minimize the communication burden of the algorithm. This is managed
by opening additional communication links only when needed. In this framework, a
coalitional control strategy with switching communication topologies was designed, in
which the sub-systems can work either in a decentralized or in a distributed manner.

An important aspect of the coalitional control test is the criteria that switching between
the two topologies are based on. In our case, we decided on a time-based framework in
which, during the simulation, at each T sample times, each communication topology was
re-evaluated (i.e., a cost index was computed). The evaluation was performed for the next T
samples horizon, starting from the current initial conditions (i.e., similar with the receding
horizon principle in DMPC). The topology that has the ‘future’ smallest cumulative cost
was used for the next T sample times.

Let us denote with Jdist(K) the cumulative cost for the distributed communication
topology, computed as follows:

Jdist(K) =
N
∑
i=1

Jxi (Ki) (26)

with

Jxi (Ki) =
T

∑
j=1
‖ri(k + j)− Cixi(k + j)‖2

2 + β‖ui(k + j)‖2
2 + γ|Ki| (27)

s.t. (21), (3),

with ui(k) = Ki,ixi(k) + Ki,jxj(k) (28)

where |Ki| denotes the number of off-diagonal, non-zero elements from gain matrix Ki
corresponding to sub-system i. The weight γ is selected by the user, and influences the
importance given to the communication cost involved within a given topology (i.e., to
provide a balance between performance and the number of enabled communication links).

In an analogous manner, the cumulative cost for the decentralized communication
topology Jdec(K) can be computed using (26) by replacing (28) with (25) and selecting
γ = 0, since no communication links are opened.

5. Numerical Analysis on an Eight-Tank Process

The proposed control strategies (i.e., DMPCSS, DMPCIO and CC) were tested in simu-
lation on a process consisting of eight interconnected water tanks.

5.1. Process Description

Let us introduce a benchmark process that can be decomposed into four input-coupled
sub-systems. Namely, two quadruple-tank processes, described in [46] (consisting of two
sub-systems each) were connected in a circular architecture (i.e., sub-system 1 coupled with
sub-system 4, which is coupled with sub-system 3, which is coupled with sub-system 2,
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which is coupled with sub-system 1), obtaining an eight-tank process, introduced in [40].
In Figure 1 (from [40]), the schematic diagram of the eight-tank process is provided. For
this process, the idea is to control the water level in the lower tanks (L2, L4, L6, L8) by
manipulating the corresponding water flows (i.e., implicitly, by changing the voltages of the
four pumps Vp1, Vp2, Vp3, Vp4). Note that, the sub-systems are coupled through the inputs
(marked in Figure 1 with dashed coloured lines). Thus, a percentage of the water flow
provided by pump Vp1 from sub-system 1, influences the water level L4 from sub-system 2
(see the water flow marked with red dashed arrow).

Figure 1. Schematic diagram of the eight-tank process [40].

The nonlinear mathematical model corresponding to sub-system 1 (ensemble of two
water tanks, denoted Tank 1 (upper level) and Tank 2 (lower level)) is described using the
Bernoulli’s law and the mass balances, obtaining:

dL2

dt
=

(1− γ4)kp

At2︸ ︷︷ ︸
a4

Vp4 −
Ao2

At2︸︷︷︸
D2

√
2gL2 +

Ao1

At2︸︷︷︸
D1

√
2gL1 (29)

dL1

dt
=

γ1kp

At1︸ ︷︷ ︸
b1

Vp1 −
Ao1

At1︸︷︷︸
D1

√
2gL1 (30)

where g = 981 cm/s2 is the gravitational constant on Earth, and Aoi = π
D2

oi
4 cm2 and

Ati = π
D2

ti
4 cm2 are the cross-section of the outflow orifice and the cross-section of Tank i,

i = {1, 2}, respectively. The voltage applied to Pump i, i = {1, 4}, is Vpi and the corre-
sponding flow is kpVpi. The parameters γi ∈ (0, 1), i = {1, 4} represent the percentages of
the flow from Pump i through inlets Out 1 and Out 2, respectively, and are defined as:

γ1 = Ai1
(Ai1+Ai2)

, γ4 = Ai7
(Ai7+Ai8)

(31)

where Ai1 = Ai7 = πOut12

4 cm2 and Ai2 = Ai8 = πOut22

4 cm2 are the upper and lower
tanks inlet areas. The numerical values for the set-up parameters are derived from the user
manual for the quadruple tank process provided by Quanser and are given in Table 1. Note
that sub-system 1 defined with (29) and (30) is coupled with sub-system 4 through input
Pump 4, since the water level L2 depends on the flow kpVp4, which is the control input in
sub-system 4. The water level L1 for the upper tank Tank 1 depends on the flow provided
by Pump 1, e.g., kpVp1 (see Figure 1).

Following this reasoning and the schematic diagram of the process, which indicates
the interconnection between sub-systems, the remaining models for sub-systems 2, 3 and 4
can be easily derived.
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The nonlinear sub-system’s model was linearized in Taylor expansion in the desired
equilibrium value for the lower tank level (i.e., L20 = 10 cm). Same equilibrium point
values were used for sub-systems 2, 3 and 4.

The process states were chosen as deviations from the equilibrium point xi := Li − Li0,
i = {1, . . . , 8}, (i.e., the upper tanks equilibrium points were chosen as: L10 = 3.69 cm,
L30 = 6.76 cm, L50 = 2.89 cm and L70 = 4.86 cm). The inputs variables were defined also as
deviations ui := Vpi −Vpi0, i = {1, . . . , 4}, (i.e., with the equilibrium values Vp10 = 3.73 V,
Vp20 = 9.71 V, Vp30 = 6.35 V and Vp40 = 8.24 V).

Table 1. Eight-tank process from Quanser model parameters.

Variable Value Unit Description

Out 1 0.635 cm “Out 1” Orifice diameter
Out 2 0.476 cm “Out 2” Orifice diameter

Dti 4.445 cm Inner diameter Tank i, i ∈ {1, . . . , 8}
Doi 0.476 cm Outlet diameter Tank i, i ∈ {1, . . . , 8}
γi 0.6402 - Flow ratio parameter for Pump i, i ∈ {1, . . . , 4}

Ai1, Ai3, Ai5, Ai7 0.316 cm2 Inlet area Tank i, i ∈ {1, 3, 5, 7}
Ai2, Ai4, Ai6, Ai8 0.178 cm2 Inlet area Tank i, i ∈ {2, 4, 6, 8}

Ati 15.517 cm2 Inside cross-section area Tank i, i ∈ {1, . . . , 8}
Aoi 0.178 cm2 Outlet area Tank i, i ∈ {1, . . . , 8}
kp 3.3 cm3/s/V Pump flow constant
g 981 cm/s2 Gravitational constant on Earth

Further on, after the linerization procedure, we obtained the following overall lin-
earized state-space model for the eight-tank process:

ẋ =



−η1 0 0 0 0 0 0 0
η1 −η2 0 0 0 0 0 0
0 0 −η3 0 0 0 0 0
0 0 η3 −η4 0 0 0 0
0 0 0 0 −η5 0 0 0
0 0 0 0 η5 −η6 0 0
0 0 0 0 0 0 −η7 0
0 0 0 0 0 0 η7 −η8


︸ ︷︷ ︸

Āc

x +



b1 0 0 0
0 0 0 a4
0 b2 0 0
a1 0 0 0
0 0 b3 0
0 a2 0 0
0 0 0 b4
0 0 a3 0


︸ ︷︷ ︸

B̄c

u,

y =


0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


︸ ︷︷ ︸

C̄c

x

(32)

where x = [x1 . . . x8]
T is the state vector, u = [u1 . . . u4]

T is the input vector and

y = [y1 . . . y4]
T is the output vector. The parameters ηi =

Di
√

2g
2
√

Li0
, i ∈ {1 . . . 8} were

computed with partial derivatives.
By replacing all the numerical values provided in Table 1, we obtained the following

system matrices:
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Āc =



−0.13 0 0 0 0 0 0 0
0.13 −0.08 0 0 0 0 0 0

0 0 −0.09 0 0 0 0 0
0 0 0.09 −0.08 0 0 0 0
0 0 0 0 −0.14 0 0 0
0 0 0 0 0.14 −0.08 0 0
0 0 0 0 0 0 −0.11 0
0 0 0 0 0 0 0.11 −0.08



B̄c =



0.13 0 0 0
0 0 0 0.07
0 0.13 0 0

0.07 0 0 0
0 0 0.13 0
0 0.07 0 0
0 0 0 0.13
0 0 0.07 0



(33)

The overall state-space continuous time model (32) was discretized with the sampling
period Ts = 1 s using the MATLAB function c2d.m, and the discretization method zero-
order-hold, obtaining:

xd(k + 1) = Ādxd(k) + B̄dud(k)
yd(k) = C̄dxd(k)

(34)

where Ād, B̄d and C̄d are the discrete-time counterparts for the continuous-time system
matrices from (32).

Next, the system was decomposed into four input-coupled sub-systems, hereafter
denoted by Si, i ∈ {1, . . . , 4}, with the following components:

S1 :


xS1 = [xd1 xd2]

T

uS1 = u1
NS1 = {4}
yS1 = xd2

S2 :


xS2 = [xd3 xd4]

T

uS2 = u2
NS2 = {1}
yS2 = xd4

S3 :


xS3 = [xd5 xd6]

T

uS3 = u3
NS3 = {2}
yS3 = xd6

S4 :


xS4 = [xd7 xd8]

T

uS4 = u4
NS4 = {3}
yS4 = xd8

(35)

where xS1 , uS1 , NS1 and yS1 are the states, input, neighbourhood set and output for S1,
respectively. Similar definitions correspond to sub-systems S2, S3 and S4.

With the state, input and output partitions given in (35), the discrete-time matrices of
sub-systems Si, i ∈ {1, . . . , 4}, are the following:

S1 :
{

Ād1 =

[
0.8761 0
0.1189 0.9227

]
B̄d11 =

[
0.1275
0.0084

]
B̄d14 =

[
0

0.0735

]
C̄d1 =

[
0 1

]
S2 :

{
Ād2 =

[
0.9069 0
0.0894 0.9227

]
B̄d22 =

[
0.1297
0.0063

]
B̄d21 =

[
0

0.0735

]
C̄d2 =

[
0 1

]
S3 :

{
Ād3 =

[
0.8612 0
0.1333 0.9227

]
B̄d33 =

[
0.1265
0.0094

]
B̄d32 =

[
0

0.0735

]
C̄d3 =

[
0 1

]
S4 :

{
Ād4 =

[
0.8912 0
0.1045 0.9227

]
B̄d44 =

[
0.1286
0.0074

]
B̄d43 =

[
0

0.0735

]
C̄d4 =

[
0 1

]
(36)

Each sub-system Si, i ∈ {1, . . . , 4}, with the state-space model matrices given in (36),
was converted to a minimal realization of its corresponding transfer function form using
the MATLAB functions ss2tf.m and minreal.m, obtaining:
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S1 : Ḡd11 =
0.00839q−1 + 0.007816q−2

1− 1.799q−1 + 0.8084q−2 Ḡd14 =
0.07351q−1

1− 0.9227q−1

S2 : Ḡd22 =
0.006274q−1 + 0.005912q−2

1− 1.83q−1 + 0.8368q−2 Ḡd21 =
0.07351q−1

1− 0.9227q−1

S3 : Ḡd33 =
0.009428q−1 + 0.008733q−2

1− 1.784q−1 + 0.7946q−2 Ḡd32 =
0.07351q−1

1− 0.9227q−1 (37)

S4 : Ḡd44 =
0.007351q−1 + 0.006887q−2

1− 1.814q−1 + 0.8223q−1 Ḡd43 =
0.07351q−1

1− 0.9227q−1

Since DMPCSS has a velocity-form formulation, each sub-system Si, i ∈ {1, . . . , 4},
with the state-space model matrices given in (36), was converted to the augmented state-
space model (8). Moreover, since the CC algorithm has an extended model with an integra-
tor, each sub-system Si, i ∈ {1, . . . , 4}, with the state-space model matrices given in (36).
was converted to the extended state-space model (21).

5.2. Simulation Results

The proposed DMPC and CC strategies have the following optimization parameters
and constraint limits:

• The sampling period Ts = 1 s, the prediction horizon Np = 30 samples and the control
horizon Nc = 30 samples;

• The input weight matrices Ri = αINc , with α = 10, ∀i ∈ {1, . . . , 4}.
• The input weight β = 0.01, the communication cost γ = 0.01 and the horizon T = 20

samples.
• The input constraints are 0 V ≤ ui ≤ 22 V, ∀i ∈ {1, . . . , 4};
• The output constraints are 0 cm ≤ yi ≤ 25 cm, ∀i ∈ {1, . . . , 4}.

All proposed methodologies were compared in a setpoint tracking test, performed on
the eight-tank process described in Section 5.1. The test had a length of M = 1000 s and
was designed as a series of step changes as follows:

• During the first 200 s, all references ri for all sub-systems Si, i ∈ 1, . . . , 4 are equal to
5 cm.

• At time 201 s, the references values are: r1 = 8 cm, r2 = 10 cm, r3 = 12 cm and
r4 = 15 cm.

• At time 401 s, the references values are: r1 = 15 cm, r2 = 12 cm, r3 = 10 cm and
r4 = 15 cm.

• At time 601 s, the references values are: r1 = 10 cm, r2 = 15 cm, r3 = 15 cm and
r4 = 12 cm.

• At time 801 s, the references values are: r1 = 10 cm, r2 = 20 cm, r3 = 15 cm and
r4 = 15 cm.

Remark 1. For the DMPC strategies, the numerical values for the optimization parameters were
empirically chosen, after several numerical simulations, taking into account various factors such as:
the open-loop dynamics of the process, the compromise between a good closed-loop performance and
small control effort, etc.

The prediction horizon Np was selected as large enough such that the prediction will cover
part of the transient response of the open-loop sub-system. However, a larger prediction horizon will
result in a slower closed-loop response, with the benefit of a smaller control effort.

The input weight matrix Ri was chosen as a compromise between a good tracking error and
smaller control effort. A smaller value will put more emphasis on the minimization of the tracking
error at the detriment of the value of the control effort. Taking into account that the used process is
hard-constrained in the input values, it makes more sense to influence the optimization toward the
minimization of the input, and the second priority is given to the tracking error.
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Remark 2. For the CC strategy with switching topologies, the values for the parameters from the
cumulative cost (26) used for the evaluation of the topologies were also empirically chosen, after
several tests.

Similar to the prediction horizon parameter from the DMPC, the value of the horizon T was
selected as large enough to cover part of the transient response of the open-loop system. A larger
value for the horizon T will influence the switching rate between topologies.

The weight γ was selected taking into account that the decentralized topology has γ = 0
(i.e., no links enabled). This results in a non-zero, positive value influencing the evaluation result
with respect to the cumulative cost corresponding to the distributed topology. A larger value can
excessively penalize the communication, forcing only the activation of the decentralized topology.

The comparative simulation results for the DMPCSS and DMPCIO strategies are
given in Figures 2 and 3, depicting the outputs and inputs, respectively. As expected,
despite the fact that these two DMPC algorithms have different implementations, using the
same optimization parameters and in identical simulation conditions, we obtained quasi-
indistinguishable transient performances. This is because the distributed methodologies
are similar, exchanging the optimal input between coupled sub-systems.

Next, the decentralized CCK dec and the distributed CCK dist communication topolo-
gies designed for the coalitional control strategy were comparatively tested in the same
simulation scenario. The results obtained are given in Figures 4 and 5, depicting the outputs
and inputs, respectively. As previously mentioned, within the decentralized formulation,
there are no communication links enabled between coupled sub-systems.
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Figure 2. Comparative simulation results for DMPCSS (red lines) and DMPCIO (blue lines) strategies—
outputs for all sub-systems.
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Figure 3. Comparative simulation results for DMPCSS (red lines) and DMPCIO (blue lines) strategies—
inputs for all sub-systems.
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Figure 4. Comparative simulation results for CCK dec (green lines) and CCK dist (black lines)
strategies—outputs for all sub-systems.
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Figure 5. Comparative simulation results for CCK dec (green lines) and CCK dist (black lines)
strategies—inputs for all sub-systems.

For this reason, one can see that the control effort is more aggressive during the tran-
sient time when compared with the distributed topology (see Figure 5, at time 600 samples).
Because, in the latter, there are communication links opened between coupled sub-systems,
it results in a smoother output response.

Moreover, the strength of the proposed coalitional control methodology is the dynami-
cal configuration of the communication topology. Thus, the next step in our analysis was to
test the efficiency of the algorithm by automatically switching between the decentralized
and distributed communication topologies.

The obtained results are presented in Figures 6 and 7, depicting the outputs and inputs,
respectively. In Figure 8, the switching times between the two topologies are presented.
It is interesting to notice in this figure that the distributed topology is activated when
the need for coupling information is more stringent to ensure a better response. Thus,
between time 0 samples and time 390 samples, the topology is decentralized. When the
simulation conditions are more challenging (see Figure 6, in the interval 390–600 samples
and 790–1000 samples), the communication topology switches to distributed and shares
information between sub-systems. This is partially due to the fact that sub-systems S2 and
S3 are coupled and have opposite setpoint changes.

Another remark is the fact that, for this setup, if a decrease in the water level in a
tank is desired, this results in a decrease in the water flow, and implicitly a lower pump
voltage. However, if the coupling sub-system has a significant water level increase, due to
the physical coupling between sub-systems, this can evolve to a pump saturation on the
lower limit of 0 volts (see Figure 7 at time 200 samples for sub-system S1).
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Figure 6. Simulation results for CCK switch strategy—outputs for all sub-systems.
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Figure 7. Simulation results for CCK switch strategy—inputs for all sub-systems.



Actuators 2023, 12, 281 18 of 23

0 100 200 300 400 500 600 700 800 900 1000

Time (samples)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
-C

C
K

 d
e

c
/1

-C
C

K
 d

is
t

Figure 8. Switching dynamics for CCK switch strategy—1 corresponds to CCK dist, whereas 0 corre-
sponds to CCK dec.

5.3. Discussion

The performance of the proposed strategies was analyzed with respect to the following
performance index:

Jcost =
1
M

M

∑
k=1

4

∑
i=1

(
ri(k)− yi(k))2 + βui(k)2) (38)

where M is the length of the simulation time and yi(k), ri(k) and ui(k) are the measured
output, the imposed reference and the computed input of sub-system Si, ∀i ∈ {1, . . . , 4},
at sample time k. As the numerical values given in Table 2 show, the DMPCSS has a
slightly smaller cost index than the DMPCIO. When comparing the coalitional strategies
using the same criteria, as expected, it results in the coalitional control with the switching
communication topology CCK switch outperforming the other two CC strategies, with the
smallest Jcost.

Table 2. Comparative analysis for DMPCSS, DMPCIO, CCK dist, CCK dec and CCK switch algorithms
based on performance index Jcost, overshoot (σ) and settling time (tt).

Algorithm Jcost σ (%) tt (s)

DMPCSS 4.6103 3.9102 33
DMPCIO 5.0120 2.3250 31
CCK dec 4.4757 0 29
CCK dist 5.4070 4.6806 54

CCK switch 4.4682 0 30

What is noteworthy is the fact that, from this cost analysis, it results in the coalitional
control methods with the gain feedback formulations having similar performances to the
DMPC strategies. This outcome was expected since the CC algorithms were designed using
as the results obtained with the DMPCSS method as a reference.

In terms of transient response performances (i.e., overshoot and settling time), for
simplicity, only sub-system S1 was analyzed, at the beginning of the experiment (first
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100 samples). The results are also given in Table 2, and confirm that the DMPC strategies
have comparable results with the coalitional control. The latter algorithm, based on gain
feedback matrix control, provides an alternative control strategy to the optimization-based
distributed model predictive control methods, and can be easily implemented on embedded
systems due to its simpler formulation.

The time resource required for the local controller to compute the solution at each
sampling time is: DMPCSS 6.75 × 10−3 s, DMPCIO 5.75 × 10−3 s, CCK dec 6.3609 × 10−8 s,
CCK dist 6.4234 × 10−8 s and CCK switch 6.8371 × 10−8 s. These numerical values show that
the CC strategy is more time-efficient that the DMPC methods.

Note that the numerical value of the Jcost for CCK switch given in Table 2 depends on
the simulation test (i.e., the switching dynamics from Figure 8). Another simulation test,
with other references, can give different results. The overall index value will be influenced
by which topology is ‘dominant’ in the switching test depending on the corresponding
simulation scenario.

To this end, an additional analysis was performed to evaluate the performance cost
for multiple tracking scenarios. Hence, a set of 50 references was generated with the
following characteristics:

• Length of the simulation time M = 500.
• The input weight β = 0.001.
• During the first 100 s, reference r1 = 10 cm, at time 101 s, r1 has a step change to a

randomly generated value between 5 and 15 cm.
• During the first 200 s, reference r2 = 10 cm, at time 201 s, r2 has a step change to a

randomly generated value between 5 and 15 cm.
• During the first 300 s, reference r3 = 10 cm, at time 301 s, r3 has a step change to a

randomly generated value between 5 and 15 cm.
• During the first 400 s, reference r4 = 10 cm, at time 401 s, r4 has a step change to a

randomly generated value between 5 and 15 cm.

For clarity, only the first 4 out of 50 references are depicted in Figure 9. For all
50 references, the Jcost was computed and is provided in Table 3. The results show that there
are situations (see ref1 and ref11) in which the switching dynamics for CCK switch selects
only one strategy for the entire simulation. In this case, for that reference, there are two
equal values for Jcost. For each algorithm, the mean of Jcost values from Table 3 is 7.32 for
DMPCSS, 4.08 for DMPCIO, 6.96 for CCK dec, 8.39 for CCK dist and 7.02 for CCK switch. These
mean values reinforce the initial findings, i.e., that the coalitional control strategy has a
similar performance to DMPCSS.

Another analysis was performed to investigate the influence of the horizon T value
within the switching algorithm. Using the same reference scenarios provided in Table 3,
the algorithm CCK switch was tested for T = 40 and T = 70. For simplicity, only the mean
of Jcost values are provided. Thus, algorithm CCK switch has an average Jcost of 6.98 and
6.97 for T = 40 and T = 70, respectively. This small difference when compared with the
average cost of 7.02 corresponding to T = 20 implies that there is no gain in using larger
horizon values when evaluating the topologies.

With respect to satisfying the imposed hard input and output constraints, only the
lower limit of the input constraint was reached and respected, whereas the upper limits
were never touched.

In the coalitional control strategy, when computing the optimal K for each topology
(distributed and decentralized), a closed loop stability constraint (24) was imposed within
the problem. After the computation of matrix K, for each topology, the stability constraint
value denoted ρ was computed. Thus, the closed-loop stability of the coalition control
strategy was assessed numerically for both communication topologies, obtaining two values
within the unit circle, i.e., ρ = 0.9506 for CCK dec and ρ = 0.9596 for CCK dist.

Remark 3. Both DMPC and CC algorithms were tested using an academic simulation benchmark.
The simulations were performed using MATLAB R2021a on Windows 10, 64-bit Operating System
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with a laptop Intel Core i5-9850H CPU @ 2.60 GHz460 and 8 GB RAM. Thus, the DMPC
algorithms were not yet optimized to be executed on embedded devices and to be tested in a real-
time setup, but this is a subject of future work. However, the simplicity of the coalitional control
formulation, as well as its reduced computation burden, makes it suitable for controlling various
coupled sub-systems, using embedded devices with limited storage and computation capabilities.
This endeavor is subject to ongoing work.
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Figure 9. First 4 out of 50 reference sets scenarios used for the performance analysis provided in
Table 3.

Table 3. Comparative analysis for DMPCSS, DMPCIO, CCK dist, CCK dec and CCK switch algorithms
based on performance index Jcost for 50 reference tracking scenarios.

Algorithm ref1 ref2 ref3 ref4 ref5 ref6 ref7 ref8 ref9 ref10

DMPCSS 7.06 6.9232 7.234 6.9941 7.4663 7.1101 6.2858 7.5058 7.1761 7.2923
DMPCIO 3.8399 3.7616 3.9228 3.7897 4.0333 3.8603 3.4247 4.5454 3.9086 3.9745
CCK dec 6.6852 6.5503 6.9014 6.6434 7.1358 6.7618 5.8971 7.1275 6.7765 6.957
CCK dist 8.0269 7.9341 8.3214 7.9283 8.6276 8.1404 7.1244 8.4239 8.1521 8.3999
CCK switch 6.6852 6.6496 6.9014 6.6434 7.2027 6.708 5.8971 7.1338 6.9815 7.0748

Algorithm ref11 ref12 ref13 ref14 ref15 ref16 ref17 ref18 ref19 ref20

DMPCSS 7.1924 7.8314 7.9128 6.8795 7.1698 7.5848 7.3844 6.8498 6.684 7.3929
DMPCIO 3.906 4.6893 4.278 3.7476 3.8727 4.1029 4.0108 3.7335 3.6424 4.0175
CCK dec 6.8137 7.4959 7.5955 6.529 6.8305 7.2667 7.0623 6.4549 6.3308 7.0272
CCK dist 8.1562 10.0325 9.0328 7.8895 8.2037 8.7419 8.5967 7.7314 7.6851 8.5349
CCK switch 6.8137 7.3403 7.5955 6.7604 6.8305 7.3402 7.0623 6.4549 6.3626 7.0342

Algorithm ref21 ref22 ref23 ref24 ref25 ref26 ref27 ref28 ref29 ref30

DMPCSS 6.6234 6.526 7.534 8.3664 8.869 6.8697 6.9339 7.4802 6.8035 6.4023
DMPCIO 3.6011 3.5644 4.2458 4.5478 6.5396 3.7348 3.7476 4.0698 3.7181 3.4967
CCK dec 6.2535 6.1489 7.1624 8.0334 8.5175 6.5079 6.588 7.1204 6.4382 6.016
CCK dist 7.4819 7.4183 8.8481 9.691 10.2905 7.8125 7.9544 8.5508 7.7259 7.2463
CCK switch 6.2535 6.1489 7.4142 8.434 8.5175 6.5079 6.588 7.1204 6.4382 6.016
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Table 3. Cont.

Algorithm ref31 ref32 ref33 ref34 ref35 ref36 ref37 ref38 ref39 ref40

DMPCSS 10.0696 7.6568 6.1639 6.9149 7.0216 6.7982 8.2884 7.6686 8.1218 6.5389
DMPCIO 7.3631 4.1428 3.3615 3.7589 3.8114 3.708 5.2155 4.1158 4.3801 3.5525
CCK dec 9.7118 7.2916 5.7669 6.5551 6.6673 6.4463 7.9295 7.3523 7.8033 6.1602
CCK dist 11.4071 8.7722 6.9522 7.8125 8.0195 7.795 9.2517 8.8459 9.3484 7.4062
CCK switch 9.9748 7.2916 5.7669 6.6249 6.7133 6.4463 7.9884 7.6813 7.8033 6.2888

Algorithm ref41 ref42 ref43 ref44 ref45 ref46 ref47 ref48 ref49 ref50

DMPCSS 7.9808 7.4112 7.6753 7.3881 8.3035 6.7645 7.0579 7.3141 7.4849 7.1852
DMPCIO 4.2934 4.347 4.1347 4.0217 4.5533 3.6815 3.8437 3.9524 4.035 3.8977
CCK dec 7.6536 7.0194 7.3547 7.0098 7.9717 6.4051 6.6749 6.9475 7.1379 6.7994
CCK dist 9.0457 8.8949 8.8047 8.3742 9.8268 7.7782 7.9759 8.2984 8.4842 8.1058
CCK switch 7.494 7.7026 7.3214 7.0098 7.8147 6.5034 6.6749 7.1071 7.2662 6.7994

6. Conclusions

In this paper, a comparative performance analysis for two classes of control strategies
was performed. When testing the DMPC and coalitional control strategies in a simulation
setup, chosen as an eight-tank process with interconnected sub-systems, the results reveal
that the coalitional methodology, based on feedback gain matrix control, is a suitable
replacement for the optimization-based DMPC algorithms. Since the DMPC algorithm is
based on online optimization and requires specialized optimization software, it is not trivial
to use it on embedded systems, with limited capabilities. This was the motivation behind
introducing the CC methodology, which has a simpler formulation based on a matrix gain
feedback controller, and, once computed offline, can be easily employed on embedded
systems. These findings are encouraging, and future work will test the proposed coalitional
control strategy in a challenging, real-time experimental setup.
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