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Abstract: As the core component of the automobile braking system, brake pads have a complex
structure and high failure rate. Their accurate and effective state monitoring can help to evaluate
the safety performance of brake pads and avoid accidents caused by brake failure. The wear process
of automobile brake pads is a gradual, nonlinear, and non-stationary time-varying system, and it is
difficult to extract its features. Therefore, this paper proposes a CNN-LSTM brake pad wear state
monitoring method. This method uses a Convolutional Neural Network (CNN) to complete the deep
mining of brake pad wear characteristics and realize data dimensionality reduction, and a Long Short-
Term Memory (LSTM) network to capture the time dependence of the brake pad wear sequence, so
as to construct the nonlinear mapping relationship between brake pad wear characteristics and brake
pad wear values. At the same time, the artificial Gorilla Troops Optimization (GTO) algorithm is
used to perform multi-objective optimization of the network structure parameters in the CNN-LSTM
model, and its powerful global search ability improves the monitoring effect of the brake pad wear
status. The results show that the CNN-LSTM model based on GTO multi-objective optimization
can effectively monitor the wear state of brake pads, and its coefficient of determination R2 value is
0.9944, the root mean square error RMSE value is 0.0023, and the mean absolute error MAE value is
0.0017. Compared with the BP model, CNN model, LSTM model, and CNN-LSTM model, the value
of the coefficient of determination R2 is the closest to 1, which is increased by 8.29%, 5.52%, 4.47%,
3.30%, respectively, which can more effectively realize the monitoring and intelligent early warning
of the brake pad wear state.

Keywords: GTO; CNN-LSTM; brake pads; wear; condition monitoring

1. Introduction

The performance of the brake pads directly affects the safety and reliability of the
whole braking system. When the remaining thickness of the brake pads exceeds the critical
threshold, it will greatly reduce the braking effect of the car and even produce major braking
accidents, which is undoubtedly a major safety hazard for civilian vehicles [1]. Therefore, it
is necessary to carry out real-time monitoring and health management of the wear state of
the brake pads, so that the management system can intelligently alarm according to the
predicted results and guide the driver to replace the brake pads before they reach the end
of their life cycle, which can greatly improve the passive safety of vehicle driving. At the
same time, this has a certain practical significance for China′s automobile manufacturing
industry and automobile maintenance industry in providing scientific support for the
maintenance strategy and health management means.

The wear process of automobile brake pads has the characteristics of gradual change,
nonlinearity, and instability, and there is no fixed life cycle. It is a great challenge to monitor
the wear state of automobile brake pads. In its early stage, the research on brake pads
focused on material performance analysis [2], experimental simulation [3] or simulation,
and optimization of brake system control [4], and made certain achievements. Z. K. Li
et al. [5] used the material characteristics of brake pads to construct a three-dimensional
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physical model, and they proposed a wear life prediction method for automobile brake
pads based on the visual features of the image. The results indicated that the method had
high detection accuracy and prediction reliability.

With the increasing demand for the reliability and safety of automobiles, the data-
driven method combining sensor monitoring data with machine learning technology is
widely used in the condition monitoring and fault diagnosis of brake systems. Its essence
is to use computer vision technology to extract the characteristics that can characterize the
degradation of a certain brake state. Machine learning technology can accurately simulate
the whole process of brake performance degradation and compare it with historical data
to complete the condition monitoring and fault diagnosis [6]. The most commonly used
machine learning methods mainly include the BP neural network [7], artificial neural
network (ANN) [8], support vector machine (SVM) [9], and so on.

S. Zhang et al. [10] used a BP neural network to construct a correlation prediction
model between vehicle braking characteristics and braking deceleration. Through data
verification, the accuracy and effectiveness of the model for vehicle deceleration prediction
were confirmed. K. P. Babu et al. [11] used an artificial neural network (ANN) as a tool
to control the anti-lock braking system to obtain the optimal braking pressure so as to
minimize the stopping distance, the impact, and the final system stability. Compared with
the hysteresis controller, the proposed model had obvious superiority. J. Liu et al. [12]
proposed a support vector machine (SVM) model including feature vector selection, model
construction, and decision boundary optimization and applied the model to the fault
diagnosis of a high-speed train braking system. The results showed that the proposed
model could better diagnose the braking system fault using several public unbalanced data
sets. Although the use of machine learning technology has achieved certain results in the
condition monitoring of the braking system, the generalization ability of the prediction
model is insufficient, the prediction accuracy and accuracy are not high, and the model is
more dependent on signal processing technology and expert experience.

A high-precision prediction model can very effectively improve the monitoring effect
of the brake pad wear state, which is of great significance to realize intelligent early warning
when the brake pad wear thickness is at the critical threshold. Therefore, a large number
of experts and scholars have applied deep learning theory to the research on brake pad
wear state monitoring, such as the Recurrent Neural Network (RNN) [13], Long Short-
Term Memory (LSTM) network [14], Convolutional Neural Network (CNN) [15], etc., and
its prediction effect is significantly higher than that of mechanical learning technology.
Compared with machine learning methods, these prediction models have more powerful
feature learning and mapping capabilities and can automatically mine deep features for
prediction without prior knowledge or the help of human experts. Recently, tool life
prediction based on a Long Short-Term Memory (LSTM) network was gradually carried
out. J. Kang et al. [16] proposed a method to detect the abnormal braking system of
metro vehicles based on a Long Short-Term Memory (LSTM) autoencoder. The formed
subsequences were input into two LSTM modules to complete the diagnosis of the abnormal
braking system. The results showed that the LSTM autoencoder could diagnose the
anomaly in BOU data more effectively. However, for the samples with stronger nonlinearity
and more prominent non-stationarity, the LSTM network can only mine the shallow features
of the sample data owing to the defects in the network structure, which are difficult to
effectively monitor and diagnose [17].

Compared with the Long Short-Term Memory (LSTM) network, the Convolutional
Neural Network (CNN) can improve the ability to mine deep features of complex data in the
prediction model by convolution and pooling operations [18]. However, the CNN network
can only extract the spatial features of brake pad wear, avoid the temporal information,
extract single features, and easily produce an overfitting phenomenon. It can be seen
that it is difficult to achieve ideal results by using only one algorithm to construct a
prediction model. Because of the limitations of a single algorithm prediction model,
different algorithms are often fused and optimized to monitor the condition of complex
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systems in order to achieve higher prediction effects. Therefore, the combination of a
Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network
has become an inevitable trend. The CNN model is used to mine the deep features of the
sample in space, and the LSTM model is used to capture the temporal information in time,
so that the temporal and spatial features of the data are fully utilized.

Up to now, there has been little research on using the CNN-LSTM model to monitor
the wear state of brake pads. However, R. D. Gabriel et al. [19] used a CNN-LSTM
model to complete the remaining useful life monitoring of an electric vehicle bidirectional
converter, and the model could fully mine the effective features of bidirectional converter
data. The research results indicated that the CNN-LSTM model has higher robustness and
prediction accuracy, which can improve the safety and reliability of the system, proving
that it is also feasible to use the CNN-LSTM model to monitor the wear state of brake
pads. In order to further improve the prediction effect of the model, it is necessary to
optimize the hyperparameters in the CNN-LSTM model. In the early stage, the common
hyperparameter optimization methods included random optimization, gradient-based
optimization [20], genetic algorithm optimization [21], particle swarm optimization [22],
Bayesian optimization [23], etc. However, the above methods were only suitable for the
optimization of single or double objective hyperparameters in the prediction model, and
it was difficult to obtain the optimal solution set for nonlinear, high-dimensional, and
non-derivable multi-objective complex optimization problems. The artificial Gorilla Troops
Optimization (GTO) algorithm is a new metaheuristic optimization algorithm proposed by
Ben et al., 2021 [24], which can complete multi-objective optimization of multiple sets of
solutions through a single learning. The algorithm is often used to solve multi-objective
optimization problems (MOPs) with conflicting optimization objectives that need to be
optimized at the same time. Its search performance and multi-objective optimization ability
are better than other algorithms, and it has been widely used and studied by scholars in
recent years [25].

Therefore, based on computer vision, deep learning, data-driven, and other technolo-
gies, this paper proposes a CNN-LSTM brake pad wear condition monitoring method based
on multi-objective optimization of a GTO algorithm. The Convolutional Neural Network
(CNN) is used as feature extractor in this method. The Long Short-Term Memory (LSTM)
network is used as the trainer to predict the brake pad wear thickness in real time, and the
GTO algorithm is used to perform multi-objective optimization on the network structure
parameters in the model to achieve global optimization and improve the prediction effect
of the model.

The rest of this paper is structured as follows. Section 2 mainly discusses the method
and principle of brake pad wear state monitoring based on the CNN-LSTM-GTO model.
Section 3 introduces the construction process of a brake pad wear sample data set and
uses the method proposed in this paper for experimental testing and evaluation. Section 4
presents some important conclusions of this paper.

2. Brake Pad Wear Condition Monitoring Method

This section introduces the method of brake pad wear condition monitoring based on
the CNN-LSTM-GTO model, mainly including the improved scheme, prediction process,
and working principle of the CNN-LSTM-GTO model.

2.1. Improvement Scheme of the CNN-LSTM-GTO Model

In order to improve the precision and accuracy of the brake pad wear condition
monitoring model, this paper proposes a CNN-LSTM brake pad wear condition monitoring
method based on multi-objective optimization of the GTO algorithm. This method can
not only deeply mine the spatial features of brake disc speed, brake pressure, brake disc
temperature, and other wear information, but also retains the effective information in the
time dimension. A nonlinear mapping relationship is constructed with the wear thickness
of the brake pads to output the wear thickness of the brake pads in real time, so as to
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calculate the residual thickness of the brake pads according to the initial thickness of the
brake pads. When the residual thickness exceeds the wear threshold, a failure alarm will be
generated. This monitoring method will have certain practical significance for realizing the
predictive maintenance of automobile brake pads and improving the working reliability of
brake pads. The improvements are as follows:

(1) The detection of single wear information cannot contain all the wear characteristics of
brake pads. Therefore, the data preprocessing part of the prediction model performs
information fusion and batch normalization on the detected brake disc speed, brake
pressure, and brake disc temperature, which improves the generalization ability of
the model, avoids overfitting, and improves the convergence speed of the model.

(2) The Convolutional Neural Network (CNN) is used as the feature learner of the condi-
tion monitoring model. The unique structure of the CNN model with local connection
and weight sharing reduces the complexity of the network, and the spatial continuity
of the sample features is maintained after convolution and pooling operations.

(3) In order to capture the time series information in the process of brake pad wear,
the Long Short-Term Memory (LSTM) network is used as the trainer. The Long
Short-Term Memory (LSTM) network is a further optimization of the traditional RNN
network, which can deal with longer time series data and avoid the phenomenon of
gradient disappearance or gradient explosion.

(4) The artificial Gorilla Troops Optimization (GTO) algorithm is used to optimize the
network structure parameters in the CNN-LSTM model, which can automatically
adjust the parameters while ensuring the training error is as small as possible, reduce
the subjective influence of artificial selection parameters, and improve the prediction
accuracy of the brake pad wear model. The CNN-LSTM hybrid prediction model
based on GTO multi-objective optimization is shown in Figure 1.
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Figure 1. CNN-LSTM hybrid prediction model based on GTO multi-objective optimization.

2.2. Operation Process of CNN-LSTM-GTO Model

As shown in Figure 1, monitoring the wear state of brake pads mainly includes four
main modules, which are the data preprocessing module, the artificial Gorilla Troops
Optimization (GTO) algorithm multi-objective optimization module, the Convolutional
Neural Network (CNN) module, and the Long Short-Term Memory (LSTM) network
module. The brake pad wear prediction process of the CNN-LSTM-GTO model is shown
in Figure 2, and the specific steps are as follows:
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Step 1: The data preprocessing module performs information fusion and batch nor-
malization on raw data such as the monitored brake disc speed, brake pressure, brake
disc temperature, and the characterized brake disc wear values to form a spatiotemporal
correlation sample data set.

Step 2: The GTO multi-objective optimization module is used to initialize the 11 hy-
perparameters to be optimized in the CNN-LSTM network structure, in order to prepare
for finding the best hyperparameter solution set of the CNN-LSTM model.

Step 3: The brake pad wear sample data set formed in step 1 is divided into training set,
validation set, and test set, and the division ratio is 7:1:2. At the same time, the initialized
hyperparameters are input into the CNN-LSTM model.

Step 4: The training set is input into the CNN module for convolution and pooling
operations, the deep features of the original data are extracted, and a compressed brake
pad wear feature mapping vector after PCA dimension reduction is obtained.

Step 5: The compressed feature vector is input to the Long Short-Term Memory
(LSTM) network module, and the LSTM network further captures the time-dependent
characteristics of brake pad wear data.

Step 6: The 11 initial parameters provided in step 2 are used to train the CNN-LSTM
network, and the fully connected layer and SoftMax layer are used to obtain the probability
sequence and calculate the objective function. If the training termination condition is not
reached, the above calculation is returned to step 4 until the maximum number of iterations
is reached or the objective function converges.

Step 7: The validation set formed in step 3 is input into the trained CNN-LSTM
model and the mean square error (MSE) between the predicted value and the actual
value is calculated. If the termination condition is not reached, the GTO multi-objective
optimization module iteratively updates the position of the population individuals through
the exploration process and the development process until the optimal network structure
parameter solution set is found.

Step 8: The test set formed in step 3 and the optimal network structure parameter
solution set obtained in step 7 are input into the trained CNN-LSTM model for regression
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prediction of brake pad wear values, and then the prediction effect of the CNN-LSTM-GTO
model proposed in this paper is evaluated.

2.3. Working Principle of CNN-LSTM-GTO Model

The CNN-LSTM hybrid model based on GTO multi-objective optimization combines
the advantages of deep mining of the spatial features of the CNN network with the advan-
tages of real-time capture of time series information of the LSTM network, and uses the
GTO algorithm to perform multi-objective optimization on the network structure param-
eters in the model, so as to more accurately characterize the degradation trend of brake
pad wear. The brake pad wear state monitoring model constructed in this paper has the
characteristics of fast convergence, good stability, a repeatable training process, and high
prediction accuracy. It can monitor the wear state of brake pads without prior knowledge
or the help of human experts.

2.3.1. Convolution Neural Network (CNN)

With the explosive development of industrial big data, compared with traditional
machine learning prediction methods, deep learning methods have shown more and more
significant capabilities and advantages in dealing with nonlinear and large amounts of
data [26]. As a typical representative of deep learning, the main difference between the
Convolutional Neural Network (CNN) and other condition monitoring methods is the
convolution operation and pooling operation, which can realize local connection and
weight sharing and mine the deep features hidden in the sample [27]. Therefore, the
pre-processing part of the condition monitoring model uses the CNN network to extract
and fuse the spatial features of the sample data set, and its output is a one-dimensional
sequence feature vector, which lays a foundation for using the LSTM network to monitor
the wear state of brake pads. The principle of the model is as follows:

(1) The sample data set after multi-channel feature fusion is input into the Convolutional
Neural Network (CNN), and the convolutional layer convolved the data of the input
layer with multiple convolution kernels to reduce the number of training parameters
of the model. The weight value of each layer obtained by the convolution operation
of the sample feature indirectly represents the local features of the sample. The higher
the level is, the more detailed the local feature extraction is, and the spatial continuity
of the sample can be maintained. The convolution operation is shown in Equation (1):

Xk
i =

n

∑
j=1

Wkj
i ⊗ X j

i−1 + bk
i (1)

where Xk
i represents the feature matrix of the kth neuron output by the ith layer, Wkj

i
represents the weight value of the kth neuron output by the ith layer, ⊗ represents the
convolution operator, X j

i−1 represents the feature matrix of the jth neuron output by
the i − 1 layer, and bk

i is the bias coefficient of the kth neuron output by the ith layer.
(2) In order to improve the prediction accuracy of the brake pad wear condition mon-

itoring model, the CNN network uses the Relu function for nonlinear activation,
which has good unsaturated characteristics and avoids the phenomenon of gradient
disappearance. The activation function is shown in Equation (2):

Vk
i = Relu

(
Xk

i

)
=

{
0, xk

i < 0
xk

i , xk
i > 0

(2)

where xk
i is each eigenvalue in the feature matrix.

Each tool wear feature datum is input into the pooling layer after the convolution
operation, and the pooling type is selected as the maximum pooling, which can not only
retain the original features but also reduce the size of the feature layer, simplify the com-
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plexity of the neural network, and improve the robustness of the sample features. The Max
pooling is shown in Equation (3):

Ck
i
(
s, t

)
= Max

1 + (s− 1)Q ≤ d ≤ sQ
1 + (t− 1)P ≤ h ≤ tP

{
Vk

i (d, h)
}

(3)

where Vk
i (d, h) is the eigenvalue of row d, column h of the ith feature matrix input by

the pooling layer, Ck
i
(
s, t

)
is the eigenvalue of row s, column t of the ith feature matrix

obtained after the pooling process, P and Q are the length and width of the pooling region,
respectively.

(3) The n feature matrices with dimension S × T obtained from each row of the sample
data set after two convolution and pooling operations are input into the global average
pooling layer. The dimension of the pooling kernel of the global average pooling
layer is consistent with the dimension of the feature matrix, and the dimension of
the n feature matrices is reduced to reduce the collinearity of the sample features and
avoid the influence of redundant features, thereby reducing the training time of the
LSTM network. Therefore, the entire CNN model finally outputs a feature vector
Xt = {x1, x2, . . ., xi, . . ., xj,} where xi is calculated as shown in Equation (4):

xi =
1

ST

S

∑
s=1

T

∑
t=1

Ck
i (s, t) (4)

2.3.2. Long Short-Term Memory (LSTM) Neural Network

The CNN can mine the local spatial features related to brake pad wear, but it is difficult
to extract longer time series data [28]. Therefore, this paper uses the LSTM network to
further process the feature vector output by the CNN model and construct the relationship
between the sample features and the time series. The LSTM network was proposed by
Hochreiter and Schmidhuber in 1997, which was a further improvement of the traditional
RNN network. In the input, output, and forget the past information, the memory cells
are introduced to construct a new unit state to realize data transmission, and the logic
operation is carried out through the input gate, output gate, and forget gate. It controls
the path of data transmission so as to complete the processing of long time series data [29].
The LSTM network structure is shown in Figure 3.
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In this paper, the LSTM network is used to extract the temporal features of the sample,
and the specific principle is as follows:
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(1) The memory feature Ct−1 of the input of the previous layer unit is forgotten or
memorized through the forget gate ft. The calculation method of the forget gate ft is
shown in Equation (5):

ft = σ
(

W f · [Ht−1, Xt] + b f

)
(5)

where Ht−1 is the time series information output at the previous time, Xt is the sample
feature input at this time, σ is the sigmoid function, Wf is the weight value of the
forgetting gate training, and bf is the bias coefficient of the forgetting gate training.

(2) The input sample feature Xt is logically calculated through input gate it to update
the memory of the whole system. The calculation method of input gate it is shown in
Equation (6):

it = σ(Wi · [Ht−1, Xt] + bi) (6)

where Wi is the weight value of the input gate training, and bi is the bias coefficient of
the input gate training.

(3) According to the path set by the system, a new memory feature Ct is generated. The
calculation method of the new memory feature Ct constructed by the input gate and
the forget gate is shown in Equation (7).

Ct = ft ⊗ Ct−1 + it ⊗ tanh(Wc · [Ht−1, Xt] + bc) (7)

where Ct−1 is the memory feature output at the last moment, tanh is the activation
function, Wc is the weight value of the memory feature training, and bc is the bias
coefficient of the memory feature training.

(4) The output gate ot controls the memory feature Ct and outputs the timing feature Ht,
which is transmitted to the next layer unit. The calculation methods of output gate ot
and timing feature Ht are shown in Equations (8) and (9):

ot = σ(Wo · [Ht−1, Xt] + bo) (8)

Ht = ot ⊗ tanh(Ct) (9)

where Wo is the weight value of the output gate training, and bo is the bias coefficient
of the output gate training.

(5) The brake pad wear feature vector Mt = {H1, H2, H3. . ., Ht. . ., Hn} is constructed and
input into the fully connected layer to predict the remaining life of the brake pads,
and the wear value yt of the brake pads is obtained. The calculation method is shown
in Equation (10):

yt = Ws Mt + bs (10)

where yt is the predicted value of brake pad wear, Ws and bs are the weight and bias
value of the fully connected layer, respectively.

2.3.3. Artificial Gorilla Troops Optimization (GTO)

The CNN-LSTM model can monitor the wear state of brake pads, but it is prone to
overfitting when dealing with data samples with many features [30]. It is necessary to
use some optimization algorithms to determine the optimal hyperparameters of the CNN-
LSTM model, so as to increase the nonlinear fitting performance and prediction accuracy of
the model. The artificial Gorilla Troops Optimization (GTO) algorithm can effectively solve
the problem of finding the global optimal solution set, has better applicability for solving
large-scale nonlinear integer programming problems, and is widely used in multi-objective
hyperparameter optimization [31]. The two core parts of the multi-objective optimization
process of the GTO algorithm are the exploration process and the development process.
In the exploration process, the optimal individual is selected by adjusting the migration
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position of the individual gorilla, and the development process completes the optimization
of the multi-objective solution set by the two means of submission and competition. The
specific principle is as follows:

(1) In the first iteration of the GTO algorithm, the population is initialized first, and each
individual gorilla in the initialized gorilla group is the network structure parameter to
be optimized in the CNN-LSTM model. There are 11 hyperparameters to be optimized
in this paper, and the mathematical model of population initialization is shown in
Equation (11).

X0 = Lb + rand(Ub − Lb) (11)

where Lb and Ub represent the minimum value and maximum value of a hyperpa-
rameter value range, respectively; rand () represents a random number in the range
[0, Ub − Lb].

(2) The exploration process of the GTO multi-objective optimization algorithm needs to
set the probability coefficient P of the population reaching the final known position in
each migration scheme, and its value range is [0, 1]; P is 0.03 in this paper. According
to the relationship between the random number rand and the coefficient P, the gorillas’
migration schemes can be divided into three types, which are migration to unknown
coordinates, migration to other gorillas’ position coordinates, and migration to known
coordinates. When the obtained random number rand is less than the probability
coefficient P, the first scheme is adopted, and the individual migrates toward the
unknown coordinates. The mathematical model is shown in Equation (12):

GX(t + 1) = (Ub − Lb)× r1 + Lb (12)

where GX(t + 1) is the candidate position coordinates of the individual gorilla in the
next iteration; r1 represents a random number, whose value range is [0, 1].

When the random number rand is greater than or equal to 0.5, the second scheme
is adopted, and the relocation is carried out toward the location coordinates of the other
gorillas. The mathematical model is shown in Equation (13):

GX(t + 1) = (r2 − C)× Xr(t) + L× H (13)

C = {cos(2× r3) + 1} × (1− Iter
Itermax

) (14)

L = C× rand(−1, 1) (15)

H = Z× X(t) (16)

where X(t) is the current position coordinate of the individual gorilla; Xr(t) represents the
current position coordinate of the randomly selected gorilla individual; r2 and r3 represent
two random numbers in the range [0, 1]; Iter represents the current iteration number; Itermax
is the set maximum number of iterations; Z is a random value in the range [−C,C] in the
problem dimension.

When the random number rand is obtained between the coefficient P and 0.5, the third
scheme is adopted, and the individuals migrate toward the known coordinates. In this
paper, P is 0.03, and the mathematical model is shown in Equation (17):

GX(t + 1) = X(t)− L× {L× [X(t)− GXr(t)] + r4 × [X(t)− GXr(t)]} (17)

where GXr(t) represents the candidate position coordinates of a randomly selected individ-
ual gorilla; r4 represents a random number whose value range is [0, 1].

In summary, the essence of the whole exploration process is to calculate the fitness
value of each scheme GX individual. If GX(t) < X(t) is satisfied, the GX(t) individual
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replaces the X(t) individual to become the optimal individual, and the optimal individual
is called silverback gorilla.

(1) The development process of the GTO multi-objective optimization algorithm mainly
includes two schemes: obeying silverback gorillas and competing for female mates.
When C ≥M, the development process of the GTO algorithm adopts the strategy of
obeying the silverback gorilla in Scheme 1, and its mathematical model is shown in
Equation (18):

GX(t + 1) = L×M× [X(t)− XS] + X(t) (18)

M =

[∣∣∣∣∣ 1
N

N

∑
i=1

GXi(t)

∣∣∣∣∣
g] 1

g

(19)

g = 2L (20)

where GX(t + 1) is the candidate position coordinate of the individual gorilla in the
next iteration; X(t) is the current position coordinate of the individual gorilla; Xs
represents the position coordinate of the silverback gorilla; N is the number of gorillas
in the population.

When C < M, the development process of the GTO algorithm adopts the competitive
female mate strategy of Scheme 2, and its mathematical model is shown in Equation (21):

GX(t) = XS − [XS ×Q− X(t)×Q]× A (21)

Q = 2× r5 − 1 (22)

A = β× E (23)

E =

{
N1 rand ≥ 0.5
N2 rand<0.5

(24)

where Q is used to simulate the impact force; A is the coefficient vector of the violence level
in the conflict; r5 is a random number in the range [0, 1]. β represents a given coefficient,
which is 3 in this paper; N1 represents the normal distribution and random values in the
scheme dimension; N2 denotes a random value in a normal distribution.

At the end of the development process, a group optimization operation is carried
out, in which the fitness values of all GX individuals are calculated again, and the relative
size of the fitness value directly determines the result of this time to discard or cover the
optimal individuals that were previously found. Through multiple iterations, the optimal
hyperparameter solution set of the CNN-LSTM model is finally output.

3. Verification and Evaluation of Brake Pad Wear Condition Monitoring Experiment

This section mainly takes the constant speed friction and wear testing machine as the
experimental platform, uses sensor technology to collect the raw data of brake pad wear
in real time, constructs the sample data set after multi-channel data fusion, and inputs it
into the hybrid model of CNN-LSTM-GTO proposed in this paper to complete the brake
pad wear state monitoring experiment. It mainly includes the construction of a brake pad
wear sample data set, the multi-objective optimization hyperparameter process of the GTO
algorithm, and the verification and evaluation of the CNN-LSTM-GTO model.

3.1. Construction of the Sample Dataset

The experimental platform for brake pad wear condition monitoring used the JF150-
S-II fixed-speed friction and wear test device, which includes three parts: power drive
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system, braking system, and measurement and control system. The construction of the
brake pad wear sample data set mainly relied on the measurement and control system,
which is mainly composed of sensors, data acquisition devices and computers, which can
realize off-machine testing and automatic temperature control. The temperature control
error was small and the precision was high. The experimental platform for brake pad wear
state monitoring is shown in Figure 4.
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The input of the sample data set in this paper mainly included three braking param-
eters: brake disc speed, brake pressure, and brake temperature. In order to simulate the
real braking situation in the driving process of the car, the driving speed of the car was
controlled between 40 and 120 km/h according to the national road safety regulations. The
brake disc speed refers to the relative speed of sliding friction between the brake pads and
the brake disc. Through calculation, it was determined that the brake disc speed control
range was 354 to 1061 r/min. Brake pressure refers to the brake system to lock the brake
pad pressure; this paper calculated the relevant requirements of automobile brake perfor-
mance to control the brake pressure at 0.8 to 1.6 MPa, the measurement and control system
through the pressure sensor to control the brake pressure. The brake temperature refers to
the instantaneous temperature caused by the friction between the brake pads and the brake
disc. The real-time temperature of the brake pads was extracted through the temperature
sensor, and the extracted temperature range was 47.4 to 84.7 ◦C. The monitoring range of
the three brake parameters is shown in Table 1.

Table 1. Selection range of brake parameters.

Brake Parameters Sensor Parameter Range

Brake disc speed Speed sensor 354 r/min to 1061 r/min
Brake pressure Pressure sensor 0.8 MPa to 1.6 MPa

Brake disc temperature Temperature sensor 47.4 ◦C to 84.7 ◦C

The original data of the above three braking parameters and the wear amount of the
brake pads after braking were extracted. However, the wear amount of the brake pads after
a single braking was very small and difficult to measure, so the extraction experiment for
the braking characteristics was carried out every ∆t time. In this experiment, the number of
braking times in ∆t time was 300, and each brake parameter was kept unchanged. Therefore,
the three brake disc wear characteristics including brake disc speed, brake pressure, and
brake disc temperature were obtained in each feature extraction experiment. Every 50
feature extractions in the experimental process were set as one group, that is, the brake
pad reaching its life after 50 feature extraction experiments, and each group of experiments
obtained a feature sample matrix of 50 × 3. At the same time, the thickness of the brake
pads before and after braking in ∆t time was measured, and the wear amount of the brake
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pads after each braking was divided by the braking times, so a target sample matrix of
50 × 1 was obtained. The whole life process experiment of the brake pads was repeated
three times, so three groups of sample data sets characterizing the wear state of the brake
pads were obtained, with a dimension of 150 × 4.

In order to improve the generalization ability of the prediction model and determine
the influence degree of the three brake parameters on brake pad wear, the first set of charac-
teristic sample matrix and brake pad wear values were normalized, and the normalization
processing method is shown in Formula (25):

Xn =
X− Xmin

Xmax − Xmin
(25)

where X is the sample of each feature, Xmin is the minimum value of the sample feature,
and Xmax is the maximum value of the sample feature.

Figure 5 shows the influence of each brake parameter on brake pad wear after normal-
ization. It can be seen from Figure 5 that, according to the above requirements, with the
increase in brake disc speed, brake pressure, and brake temperature, there was an average
increase trend of brake pad wear. However, the brake speed and temperature had a great
influence on the brake pad wear, while the brake pressure had no significant influence
on the brake pad wear. This was because with the increase in brake pressure, this will
theoretically cause the brake pad wear to be more intense, but at the same time, it will also
make the braking time relatively shorter, so the brake pressure has less impact on the brake
pad wear for other parameters.
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3.2. GTO Multi-Objective Optimization Hyperparameter Process

The essence of multi-objective optimization of artificial Gorilla Troops Optimization
(GTO) algorithm is to find the maximum or minimum value of the fitness function. In this
paper, the mean square error (MSE) between the predicted value and the actual value of
the CNN-LSTM network was minimized as the fitness function; that is, a set of optimal
hyperparameter solution sets were found to minimize the mean square error of the CNN-
LSTM network. The process of multi-objective optimization of the CNN-LSTM network
hyperparameters by the GTO algorithm consisted of three branches, which were the GTO
algorithm, CNN-LSTM network, and sample data set.

First, the CNN-LSTM network decoded the input parameters of the GTO algorithm
and initialized all the hyperparameters. Second, the sample data set was divided into
training set and validation set, and the training set was used to complete the training of
the CNN-LSTM network. Finally, the validation set was used to complete the prediction,
and the mean square error between the actual value and the predicted value was obtained,
and the mean square error value was returned to the GTO algorithm as the fitness value.
The GTO algorithm optimized according to the fitness value, realized the iterative update
of the individual gorilla candidate position coordinates, and finally output the optimal
network structure parameter solution set. Figure 6 shows the fitness curve of the CNN-
LSTM network optimized by the GTO algorithm. It was found that with the increase in
the number of iterations, the mean square error (MSE) value of the CNN-LSTM network
became smaller and smaller, and the globally optimal network structure parameter solution
set appeared at the sixth iteration.
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The 150 × 4 brake pad sample data set was input into the CNN-LSTM network, and
the artificial Gorilla Troops Optimization (GTO) algorithm was used to complete the global
optimization of the model hyperparameter set. The hyperparameter set contained a total
of 11 parameters, which were the initial learning rate (Lr), training times (Epochs), the
number of samples per batch (BatchSize), the number of kernels in convolutional layer 1
(Kernel_num), the number of kernels in convolutional layer 1 (Kernel_size), the number
of kernels in pooling layer 1 (Pool1_size), the number of kernels in convolutional layer 2
(Kerne2_num), the number of kernels in convolutional layer 2 (Kerne2_size), the number of
kernels in pooling layer 2 (Pool2_size), the number of nodes in the LSTM layer (Lstm_node)
and the number of nodes in the fully connected hidden layer (Fc_node). The setting range
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of the hyperparameter set and the optimization results of the sixth iteration are shown in
Table 2.

Table 2. Hyperparameter results of the GTO multi-objective optimization CNN-LSTM model.

Sequence Number Hyperparameters Setting Range Optimize Results

1 Lr [1 × 10−4, 1 × 10−2] 0.0036
2 Epochs [10, 100] 81
3 MiniBatchSize [8, 64] 25
4 Kernel_num [1, 20] 5
5 Kernel_size [1, 10] 4
6 Pool1_size [1, 5] 2
7 Kerne2_num [1, 20] 10
8 Kerne2_size [1, 10] 7
9 Pool2_size [1, 5] 2
10 Lstm_node [1, 50] 42
11 Fc_node [1, 200] 90

3.3. Prediction Results of CNN-LSTM-GTO Model

The constant speed friction and wear test rig were used to carry out the experiment,
and the 150 × 4 brake pad wear sample data set was input into the CNN-LSTM model
based on GTO multi-objective optimization to complete the regression prediction of brake
pad wear thickness by MATLAB software. The network structure of the CNN-LSTM-GTO
model constructed parameter is shown in Table 3. Figure 7 shows the loss function curve of
the brake pad wear state monitoring model. It can be seen that the loss value of this model
showed a rapid decline trend in the first 60 iterations, and then the loss value tended to be
stable, which means that the objective function could not be improved by continuing the
iterative operation.

Table 3. CNN-LSTM-GTO model constructed parameter.

Flow Chart Network Structure Parameter Settings
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To quantify the prediction performance of the brake pad wear condition monitoring
model, it was necessary to develop evaluation indicators. Three objective evaluation
indicators were selected, which were the mean absolute error MAE, the root mean square
error RMSE, and the coefficient of determination R2. Among them, MAE obtains an
evaluation value, but only through the comparison between the different models can it
reflect the pros and pros of the model. Both mean square error RMSE and coefficient of
determination R2 directly characterize the quality of the model. The smaller the mean
square error RMSE, the closer the value of the coefficient of determination R2 is to 1, the
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higher [32] the precision and accuracy of the prediction model. The calculation formula of
the three evaluation indicators is as follows:

MAE =
∑m

t=1|yt − ŷt|
m

(26)

RMSE =

√
∑m

t=1(yt − ŷt)
2

m
(27)

R2 = 1− ∑m
t=1(yt − ŷt)

2

∑m
t=1(yt − yt)

2 (28)

where m is the number of samples output by the fully connected layer, and the number of
samples was 150; ŷt is the predicted value of tool wear; yt is the actual value of tool wear;
yt is the average value of tool wear.
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The sample data set was divided into a training set, validation set, and test set, and
the ratio was 7:1:2. The fitting effect of the test set is shown in Figure 8. The red line
represents the equation y = x; it can be seen that the error between the true value and the
predicted value was very small, which indicated that the CNN-LSTM model based on GTO
multi-objective optimization had strong generalization ability and robustness. Figure 9
shows the test errors of the CNN-LSTM-GTO model for 20 samples in the test set. It can be
seen from the figure that the error values were controlled between −0.002 and 0.006, which
indicated that it was safe and reliable to use this model to monitor the wear state of brake
pads. Figure 10 shows the prediction results of the CNN-LSTM-GTO model for the test
set. The determination coefficient R2 value of the brake pad condition monitoring model
was 0.9944, the root mean square error RMSE value was 0.0023, and the mean absolute
error MAE value was 0.0017. In summary, the CNN-LSTM model based on multi-objective
optimization of the GTO algorithm can effectively monitor the wear state of brake pads
and achieve good results.
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where m is the number of samples output by the fully connected layer, and the number of 
samples was 150; ˆty  is the predicted value of tool wear; ty  is the actual value of tool 
wear; ty  is the average value of tool wear. 

The sample data set was divided into a training set, validation set, and test set, and 
the ratio was 7:1:2. The fitting effect of the test set is shown in Figure 8. The red line repre-
sents the equation y = x; it can be seen that the error between the true value and the predicted 
value was very small, which indicated that the CNN-LSTM model based on GTO multi-
objective optimization had strong generalization ability and robustness. Figure 9 shows 
the test errors of the CNN-LSTM-GTO model for 20 samples in the test set. It can be seen 
from the figure that the error values were controlled between −0.002 and 0.006, which in-
dicated that it was safe and reliable to use this model to monitor the wear state of brake 
pads. Figure 10 shows the prediction results of the CNN-LSTM-GTO model for the test 
set. The determination coefficient R2 value of the brake pad condition monitoring model 
was 0.9944, the root mean square error RMSE value was 0.0023, and the mean absolute 
error MAE value was 0.0017. In summary, the CNN-LSTM model based on multi-objective 
optimization of the GTO algorithm can effectively monitor the wear state of brake pads 
and achieve good results. 
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Figure 11 shows the comparison results of the CNN-LSTM model before and after
optimization, where the blue curve is the prediction result of the CNN-LSTM model without
optimization. The 11 hyperparameters in this model were manually selected, and their
values were the median values of each value range. The green curve is the CNN-LSTM
model optimized by the multi-objective GTO algorithm. It can be seen that the CNN-LSTM
model optimized by the GTO algorithm had a better monitoring effect on brake pad wear
condition, and the error curve between the predicted value and the real value of each
sample had a lower fluctuation range and a higher degree of agreement. The CNN-LSTM
model with manual selection of parameters had a wide fluctuation range and unstable
prediction results, which was mainly because the GTO algorithm obtained a more accurate
hyperparameter solution set after multi-objective optimization of the hyperparameters of
the CNN-LSTM model, and found the most critical attribute that affected the accuracy of
brake pad wear prediction, avoiding the blindness of setting parameters. Therefore, the
prediction effect was improved.
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In order to further verify the prediction performance of the CNN-LSTM brake pad
wear condition monitoring model based on GTO multi-objective optimization, it was
compared with past traditional prediction models, such as the BP neural network, CNN
model, LSTM model, and CNN-LSTM model. Figure 12 shows the comparison results of
the four traditional condition monitoring models. It can be seen from Figures 10 and 12 that
the brake pad wear curve predicted by the CNN-LSTM model with GTO multi-objective
optimization was closer to the real brake pad wear curve than the other four prediction
models, and the fluctuation range of the error curve was the smallest. The prediction effects
of the five brake pad condition monitoring models were CNN-LSTM-GTO > CNN-LSTM
> LSTM > CNN > BP. It can be seen that the prediction performance of the CNN-LSTM
brake pad wear condition monitoring model based on GTO multi-objective optimization
proposed in this paper had certain advantages. This was because of the single algorithm of
the BP neural network, CNN model, and LSTM model, incomplete feature extraction, and
poor generalization ability. Although the prediction effect of the CNN-LSTM model was
better than those of the BP neural network, CNN model, and LSTM model, the network
structure parameters in the prediction model were not optimized by the GTO algorithm
and were not the global optimal solution set, so it was still not as good as the prediction
effect of the CNN-LSTM-GTO model proposed in this paper. This result once again proved
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the role of the artificial Gorilla Troops Optimization (GTO) algorithm in the process of
brake pad wear condition monitoring.
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Table 4 contains the calculation results of the five model evaluation indexes. Compared
with other traditional prediction models, the mean absolute error MAE value of the CNN-
LSTM-GTO brake pad wear condition monitoring model proposed in this paper was the
smallest. Compared with the BP model, CNN model, LSTM model, and CNN-LSTM model,
the MAE value of the proposed CNN-LSTM model was reduced by 76.1%, 69.1%, 67.3%,
and 65.3%, respectively. The root mean square error (RMSE) value was the smallest, which
was reduced by 74.7%, 69.7%, 66.7%, and 61.7% compared with the BP model, CNN model,
LSTM model, and CNN-LSTM model, respectively. The value of determination coefficient
R2 was closest to 1, which was 8.29%, 5.52%, 4.47%, and 3.30% higher than those of the
BP model, CNN model, LSTM model, and CNN-LSTM model, respectively. These three
results once again proved that the CNN-LSTM method based on GTO multi-objective
optimization proposed in this paper had higher accuracy in predicting brake pad wear
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thickness and more effectively realized brake pad wear state monitoring and intelligent
early warning. This was because this method could not only mine the deep spatial features,
but also retained the effective features of the time series. At the same time, the model
accurately found the best matching of the model hyperparameters after multi-objective
optimization of the GTO algorithm, which made the generalization ability of the whole
model stronger and further improved the accuracy of brake pad condition monitoring.

Table 4. Comparison of the prediction performance results of the five models.

Algorithm Test Set Prediction Results
MAE RMSE R2

BP Neural Network 0.0071 0.0091 0.9121
CNN Network 0.0055 0.0076 0.9396
LSTM Network 0.0052 0.0069 0.9500

CNN-LSTM Network 0.0049 0.0060 0.9617
CNN-LSTM-GTO Network 0.0017 0.0023 0.9945

4. Conclusions

In this paper, the sensor technology was used to collect the original data of brake disc
speed, brake pressure, and brake disc temperature that characterize the wear characteristics
of brake pads, and the wear thickness of brake pads was measured at the same time. The
brake disc wear sample data set was constructed after feature extraction and fusion. Then,
a CNN-LSTM prediction model based on GTO multi-objective optimization was proposed
to monitor the wear state of brake pads and, compared with other traditional prediction
models, the results showed that:

(1) With the increase in braking speed, braking pressure, and braking temperature, the
average trend of brake pad wear was increasing; however, the brake speed and
temperature had a great influence on the brake pad wear, and the brake pressure had
no significant effect on the brake pad wear.

(2) The global multi-objective optimization of 11 parameters of the CNN-LSTM model
was completed by the artificial Gorilla Troops Optimization (GTO) algorithm, and a
set of optimal hyper-parameter solution sets was finally obtained, which reduced the
subjective influence of the artificial selection parameters, avoided the blindness of the
parameter setting, and improved the prediction accuracy.

(3) The CNN-LSTM-GTO model was used to regression predict the wear thickness of
brake pads. The coefficient of determination R2 value was 0.9944, the root mean
square error RMSE value was 0.0023, and the mean absolute error MAE value was
0.0017. This showed that the model effectively monitored the wear state of brake pads
and achieved good results.

(4) Compared with the BP model, CNN model, LSTM model, and CNN-LSTM model, the
mean absolute error MAE and root mean square error RMSE values of the CNN-LSTM-
GTO model proposed in this paper were reduced, and the determination coefficient
R2 value was improved, which was closest to 1. This showed that the constructed
brake pad life prediction model had fewer errors, better accuracy, and better effect.

In the future, the CNN-LSTM-GTO brake pad wear condition monitoring model can
be widely used in automobile manufacturing and automobile maintenance. By real-time
monitoring the brake disc speed, brake pressure, and brake disc temperature, the model
outputs the wear amount of the brake pads after each braking and accumulates the wear
amount after braking to calculate the residual thickness of the brake pads. When the
residual thickness of the brake pads exceeds the wear threshold, a failure alarm prompt
will be generated to avoid accidents caused by brake failure. The research on this method
will play an important role in improving the level, safety, and reliability of the brake system
in China′s automobile manufacturing industry and automobile maintenance industry and
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seize the strategic highland of the development of new science and technology in the
international competition.
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