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Abstract: Exoskeleton robots are functioning in contexts with more complicated motion control needs
as a result of the technology and applications for these robots rapidly developing. This calls for novel
control techniques to accommodate their employment in a range of real-world settings. This paper
proposes a bionic control method for a human–exoskeleton coupling dynamic model based on the
CPG model, utilizing a model on the dynamics of the human–exoskeleton interaction. The CPG
network is established as an oscillator by two neurons inhibiting one another, which approximates the
torques simulated in the inverse dynamic analysis as the input to the exoskeleton robot. The findings
of the simulation assessment suggest that the bionic control strategy may improve the robot’s ability
to move quickly and steadily, as well as better adapt to challenging environments.

Keywords: exoskeleton; CPG; bionic control

1. Introduction

An exoskeleton robot is a type of integrated human–machine equipment that supports
the human body in accordance with user demands. It is utilized as an adjunct rehabilitation
tool in the field of medical rehabilitation to carry out rehabilitation training for patients [1],
as well as to lessen the stress on the human body [2] in the civil realm. As a wearable human
mobility aid and function-augmentation equipment, exoskeleton robots have recently been
a research hotspot due to their wide range of potential applications. Since the exoskeleton
system is designed to reduce the unnecessary physical consumption of the human body
during exercise, motion control is a key technology in the research and application fields of
exoskeleton robots [3].

The traditional approach of motion control involves manual planning [4], which
necessitates extensive online computation and measurement to make the robot move in
accordance with the predetermined motion mode [5,6]. The controllers are typically viewed
as external agents with the intention of moving in coordination with the human in robotic
exoskeleton control systems [3]. For the exoskeleton robot system with multiple degrees of
freedom, it is quite challenging to realize real-time multi-degree-of-freedom coordinated
control in this conventional way [7]. The exoskeleton controller should ideally work in
tandem with the human, according to embodiment principles, so that the nervous system
can accurately simulate the input–output dynamics of the exoskeleton controller. Exoskele-
ton development and prototyping procedures should include measuring the embodiment
of exoskeletons [8,9]. The working environment of the robot is becoming increasingly
complicated, and motion control needs are escalating as a result of the exoskeleton robot
technologies and applications quick growth. To address the needs of the robot in varied
practical contexts, more succinct and organic motion control approaches are required [10,11].
It has been discovered via observation that creatures exhibit a wide variety of fixed peri-
odic motions, including limb movements and physiological actions, known as rhythmic
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movements. There is currently no robot that can match the steadiness and flexibility of this
rhythmic movement. Therefore, applying the rhythmic movement control mechanism of
animals to exoskeleton robots is a promising research direction [12].

The central pattern generator, which is located in the spinal cord, plays a crucial role
in the striking similarities between biological locomotion gaits and the evolution of phase
patterns in linked oscillatory networks [13]. It is generally believed by biologists that the
rhythmic movement of animals is a self-excited behavior of the lower nervous center, which
is controlled by CPG located in the spinal cord of vertebrates or the thoracoabdominal
ganglion of invertebrates [14–17]. CPG is a distributed oscillatory network composed of
intermediate neurons, which realizes self-excited oscillations through mutual inhibition
between neurons, generates multi-channel or single-channel periodic signals with stable
phase locking, and controls the rhythmic movement of limbs or related body parts [18,19].
The synaptic connections between neurons in the CPG are plastic and can produce different
output modes, allowing animals to exhibit a variety of rhythmic motor behaviors. The
activity of the CPG can be triggered by the descending signal from the brainstem mesen-
cephalic locomotor region (MLR) to produce a stable rhythmic output. The continuous
oscillation of the CPG does not depend on the commands of the high-level nerve center,
nor on the peripheral sensory signal; however, the oscillation mode can be adjusted by
the upper command and the peripheral feedback signal to make appropriate changes and
adapt to the external environment [20].

CPG itself can produce stable rhythm signals. Through the coupling with the physical
system of the mechanical body controlled by it, the rhythm is transmitted between the
nervous system and the physical system, and a stable limit cycle can be formed in the state
space. Different from the motion obtained by traditional one-cycle planning [21], the motion
generated by CPG control is continuous. Moreover, the nonlinearity of CPG itself and
the existence of a state limit cycle make the system have a certain anti-interference ability
and can enter stable operation from any random state. The CPG network produces self-
organizing characteristics through the coupling connection between its internal functional
units, which can homogenize errors and coordinate multiple degrees of freedom. This is
fully reflected in the multi-joint limb movement coordinated by animals in nature [22].

Robot biological control is an engineering application technology based on biological
control theory, which belongs to a research direction in the interdisciplinary field of biology,
physiology, robotics, mathematics and so on. The biological control method is to use
the entire biological nervous system model as a mapping approach, and the core is the
introduction of the CPG neural circuit model. The biological control of the robot is to realize
the rhythmic motion with environmental adaptability as the control target. Through the
mathematical modeling or engineering simulation of some biological models or control
mechanisms, such as biological CPG, high-level control center, reflection mechanism, etc.,
and simplification and improvement, as the control model of the robot, it is applied to the
motion control of the robot to improve the motion performance and practicability of the
robot [23].

The 1980s saw the emergence of the CPG-centered strategy for the biological control
of robots in the USA and Japan. Numerous academic institutions and research centers
have recently carried out in-depth investigations on theoretical methods for the biological
control of robots. For example, a CPG-based gait theory for multipedal robots and a
biological control technique for quadrupedal robots was presented [11]. A novel biological
control approach on how to fully utilize the properties of the CPG mechanism to improve
the environmental adaptability in the walking control of a bipedal robot was described
in [12]. In addition, many attempts to use dynamically coupled systems to create CPGs for
humanoid robots [24] and lower-limb exoskeleton control [25] have been made. However,
none of them incorporate particular robot mathematical dynamic modeling techniques
with control methods. They also did not evaluate control approaches using human–robot
coupling moments as a reference.
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As discussed above, the wearable lower limb exoskeleton robot is taken as the research
object, the influence of the wearer on the exoskeleton is taken into account, and the human–
exoskeleton interaction force is modeled by linear damped springs to establish the dynamic
model of the coupling of the human body and the exoskeleton in this paper. Based on the
human–exoskeleton coupling dynamic model, the CPG model is constructed as a signal
generator that can generate stable rhythm output, which is used as the motion controller of
each degree of freedom of the robot. Then, a CPG network composed of multiple oscillators
is established to realize that changing the topology of the network can change the output
mode of the coupled oscillation signal. By introducing the feedback mechanism into the
CPG model, the output of the rhythm signal is adjusted to make the exoskeleton robot adapt
to the changes of the external environment and generate adaptive motion. The derived
theoretical findings are then compared, demonstrating consistency in the tracking errors
and coupling forces of the exoskeleton robot.

2. Materials and Methods
2.1. Human–Exoskeleton Coupling Dynamics Model

During the rehabilitation process, there is a complex physical coupling between the
patient and the exoskeleton, and this behavior is concentrated in the human–exoskeleton
interaction forces. The proper evaluation of patient recovery, comfort, and exoskeleton
performance depends on a thorough investigation of the dynamics of human–exoskeleton
interaction [10]. The interaction behavior between the patient and the exoskeleton cannot
be accurately modeled by a straightforward kinetic model of the exoskeleton or human
body. Therefore, it is essential to create a dynamic model that considers the behavior of the
human–exoskeleton connection. It is then necessary to develop a dynamic model that takes
into account the coupled human–exoskeleton behavior.

In order to simplify the issue, several assumptions are made. Since the sagittal plane
accounts for the majority of typical human motion, only that motion is preserved. The
geometric lengths of the human and exoskeletal lower limbs are considered to be the same.
These presumptions lead to a simplification of the swing models of the exoskeleton and the
human lower limb to a planar system made up of two homogenous connecting rods [26].

In Figure 1, a wearer’s thigh and shank are attached to a lower-limb exoskeleton with
two actuated degrees of freedom (DoF). Where li1,i2 , ci1,i2 , si1,i2 , mi1,i2 and Ii1,i2 (i1 ∈ {h, r}
and i2 ∈ {t, s}) are, respectively, the lengths, the position coordinates of the rods’ center
of mass, the locations of human–exoskeleton linkage connection, the weights and the
moments of inertia of human (i1 = h), and exoskeleton robot’s (i1 = r) thigh (i2 = t) and
shank links (i2 = s). θi1,i3 (i1 ∈ {h, r} and i3 ∈ {h, k}) are the angles of the human (i1 = h)
and exoskeleton (i1 = r) hip joints (i3 = h) and knee joints (i3 = k), which with respect to
the direction of gravity (i.e., vertical) in the former, the later with respect to the thigh links,
and the positive direction of the angles are set to be counterclockwise. Additionally, based
on the presumptions before, we also have

sh,t = sr,t, lh,t + sh,s = lr,t + sr,s (1)

This schematic illustration shows how the human–exoskeleton coupling swing dy-
namics in sagittal plane work. An equation for the position coordinates of the human–
exoskeleton linkage connection may be written using this double-joint coupling model.
The coupling position in task space has coordinates pi1,t at the thigh and pi1,s at the shank
of human (i1 = h) and exoskeleton robot (i1 = r)

pi1,t =

(
si1,t sin

(
θi1,h

)
−si1,t cos

(
θi1,h

))
pi1,s =

(
li1,t sin

(
θi1,h

)
+ si1,s sin

(
θi1,h + θi1,k

)
−li1,t cos

(
θi1,h

)
− si1,s cos

(
θi1,h + θi1,k

)) (2)
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Figure 1. Schematic of the 2-DoF exoskeleton supporting the swinging motion of the human lower limb.

For the coupling position, the wearer’s tissue, such as skin, fat, and muscle, is par-
ticularly soft in comparison to the stiff exoskeleton and human skeleton. By choosing the
inertia necessary for the lower limb’s inherent inertia in the current state, the control goal,
i.e., the interaction force between the wearer and exoskeleton Fi2 at the thigh (i2 = t) and
the shank (i2 = s), is calculated without the need for force feedback in the control loop [27].
Therefore, in accordance with the above rationale, the connection between the human limb
body and the exoskeleton is equated in this paper to the linear damped spring model as

Fi2 = −ki2 ∆pi2 − bi2 ∆
.
pi2 (3)

where ki2 and bi2 denotes the stiffness coefficient (or elasticity coefficient) and the damping
coefficient between the human and the robot, ∆pi2 and ∆

.
pi2 is the displacement difference

between the human and the robot coupling and the derivatives with respect to the time of
it, respectively.

By deriving the coupling positions for θi1,h and θi1,k, respectively, the conversion from
task space to joint space can be achieved, from which the Jacobians matrix of the coupled
position coordinates of the linkage in human (i1 = h) and exoskeleton robot’s (i1 = r) thigh
and shank is derived as follows

Ji1,t =

(
si1,t cos

(
θi1,h

)
0

si1,t sin
(
θi1,h

)
0

)

Ji1,s =

(
li1,t cos

(
θi1,h

)
+ si1,s cos

(
θi1,h + θi1,k

)
si1,s cos

(
θi1,h + θi1,k

)
li1,t sin

(
θi1,h,h

)
+ si1,s sin

(
θi1,h + θi1,k

)
si1,s sin

(
θi1,h + θi1,k

)) (4)

Using the Jacobians, the coupling forces that are applied to the joints of human (i1 = h)
and exoskeleton (i1 = r) during interactive torques τi

i1
may be mapped onto joint space

τi
h =

(
τi

h,h
τi

h,k

)
= JT

h,tFt + JT
h,sFs

τi
r =

(
τi

r,h
τi

r,k

)
= −JT

r,tFt − JT
r,sFs

(5)



Actuators 2023, 12, 321 5 of 16

The exoskeleton and the lower limb of a human may be simulated using the same
dynamics. The dynamics model of human–exoskeleton can be represented with the external
torques by the following equation, which uses Lagrange’s equation Mh(θh)

..
θh + Ch

(
θh,

.
θh

) .
θh + Gh(θh) = τh

Mr(θr)
..
θr + Cr

(
θr,

.
θr

) .
θr + Gr(θr) = τr

(6)

For human (i1 = h) and exoskeleton robot (i1 = r), Mi1 is the symmetric positive
definite inertia matrix, Ci1 is taken into account as the centripetal and Coriolis matrix, Gi1
is the gravity matrix, and τi1 is the total joint torque. The exact shape of each matrix in the
human–exoskeleton coupling model may be stated in this instance by concentrating the
joint masses on the position of the connecting rod’s center of mass

Mi1
(
θi1
)
=

(
M11 M12
M21 M22

)
Ci1

(
θi1 ,

.
θi1

)
= mi1,sli1,tci1,s sin

(
θi1,k

)(− .
θi1,k −

.
θi1,k −

.
θi1,h.

θi1,h 0

)

Gi1
(
θi1
)
= g

(
mi1,tci1,t sin

(
θi1,h

)
+ mi1,sli1,t sin

(
θi1,h

)
+ mi1,sci1,s sin

(
θi1,h + θi1,k

)
mi1,sci1,s sin

(
θi1,h + θi1,k

) ) (7)

where gravitational acceleration g = 9.8 m/s2, and each exact element of Mi1
(
θi1
)

is

M11 = Ii1,t + mi1,tc2
i1,t + mi1,sl2

i1,t + 2mi1,sli1,tci1,s cos
(
θi1,k

)
+ Ii1,s + mi1,sc2

i1,s,
M12 = M21 = mi1,sli1,tci1,s cos

(
θi1,k

)
+ Ii1,s + mi1,sc2

i1,s,
M22 = Ii1,s + mi1,sc2

i1,s.
(8)

For human joints, the total torque is made up of the following active and interacting
components

τh =

(
τh,h
τh,k

)
= τa

h + τi
h (9)

where τh,i3 is the joints torque at the human hip (i3 = h) and knee joint (i3 = k), τi
h is the

vector of interactive torque given in Equation (5), τa
h is the vector of active torque produced

by muscular contraction. An individual without human–exoskeleton contact ought to
optimally offer the following active joint torques from inverse dynamics analysis (IDA) for
recording the ideal reference joint trajectory θd

τa
h = τida

h =

(
τida

h,h
τida

h,k

)
= Mh(θd)

..
θd + Ch

(
θd,

.
θd

) .
θd + Gh(θd) (10)

where τida
h,i3

is the active torques from IDA at the human hip (i3 = h) and knee joint (i3 = k).
For an exoskeleton robot, the total moment always contained the input moment (i.e.,

the control moment), the moment created during the interaction task with the environment
(or human), and the frictional moment as follows

τr = τc
r + τi

r + τf
r (11)

where τc
r is the control torque and τi

r is the interaction torque specified in Equation (5).
The friction torque τf

r includes Coulomb dry friction and viscous friction, which can be
written as

τf
r =

−sgn
( .

θr,h

)
kv,h − ks,h

.
θr,h

−sgn
( .

θr,k

)
kv,k − ks,k

.
θr,k

, (12)
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where sgn(∗) is the sign function of ∗, kv,i3 and ks,i3 is, respectively, the dry friction and the
viscous friction coefficient at the robot’s hip (i3 = h) and knee (i3 = k).

For the control moment delivered by the robot’s servo motor, we expect a simple
controller. Instead of the use of PID control, PD control will be adequate for the aforemen-
tioned system to meet our control needs and achieve steady state performance. Therefore,
we choose a straightforward PD controller that can compensate for the robot’s gravity,
as follows

τc
r = Gr(θr) + kper + kd

.
er (13)

where kp and kd is the parameters of the proportional element and differential element of
the PD controller, and

er =

(
er,h
er,k

)
= θd − θr (14)

is defined as the robot’s tracking error,
.
er is its derivatives with respect to time.

2.2. CPG Model and Its Characteristics

The study of the anatomical makeup and neural regulatory mechanisms of the animal
motor nervous system serves as the foundation for the biological control approach of the
robot. The corresponding physical or mathematical model is developed by the simplifi-
cation of the animals’ brain structure and simulation of the control mechanism; then, it
is implemented by the computer or electronic control system to accomplish robot motion
control. According to biological research, the animal’s motor control system is constructed
in this paper as a complex network that includes the central nervous system, receptors,
sensory organs, and skeletal–muscular executive system [28], as shown in Figure 2.
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Figure 2. The basic network structure of animal walking control.

Based on the system block diagram, there is a broad consensus among biologists
that the rhythmic movement of animals is caused by the lower nerve center’s self-excited
behavior, which is managed by the spinal cord’s central pattern generator (CPG). A local
network of intermediate neurons makes up the CPG, which may achieve self-excited
oscillation, produce a stable phase interlock connection, and then activate the rhythmic
movement of limbs. CPG plays the role of the basic control signal generator of the “muscle
bone” system in motion generation. It creates adaptive control signals by fusing peripheral
feedback data with high-level center control directives. Motion control signals generated
by CPG activate motor neurons to control every muscle in the “muscle bone” system to
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achieve real-time control of the limb. The motion control of a robot can be improved by
applying the animal motion control concept based on the CPG mechanism.

In order to recreate the mechanism of animal rhythmic movement, an effective mathe-
matical model of CPG is a necessity and a basis. The behavior of animal CPG has so far
been simulated using VLSI hardware circuits, artificial neural networks (such as cellular
neural networks, CNNs), and topological nonlinear oscillators. In this paper, an oscillator
is created by two neurons inhibiting one another [29] as in Figure 3.
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The CPG neural circuit is then thought of as a distributed system made up of a collec-
tion of mutually matched nonlinear oscillators. The two neurons represent, respectively,
the flexor and extensor control neurons in animals. By altering the coupling connection
between the neurons, sequence signals with various phase relationships can be produced
to actualize various motion modes. The output of the oscillator is linearly synthesized by
the state term of neurons, which can express the biological characteristics of CPG well [22].

Tr
.
u f

i + u f
i = bv f

i + aye
i +

n
∑

j=1
wijy

f
j +

m
∑

k=1
sikgk + c,

Ta
.
v f

i + v f
i = y f

i ,

Tr
.
ue

i + ue
i = bve

i + ay f
i +

n
∑

j=1
wijye

j −
m
∑

k=1
sikgk + c,

Ta
.
ve

i + ve
i = ye

i ,

wij =

{
±1, (i 6= j),
0, (i = j),

y f ,e
i = max(u, 0),

yi = p
(

u f
i − ue

i

)
,

(i, j = 1, 2, · · · , n; k = 1, 2, · · · , m), (• = d/dt).

(15)

In the equation, i, f , e stand in for the oscillator, flexor, and extensor neurons, respec-
tively. n stands for the number of oscillators and m stands for the quantity of feedback
terms. The left side of the formula represents the cell state term, where ui represents the
internal state of the neuron. The first term on the right side is the intracellular fatigue term,
vi indicates the level of neuronal exhaustion (self-inhibition), and b is the fatigue coefficient,
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which shows the extent to which the fatigue term has an impact on the internal state of
cells; the second term is the coefficient of reciprocal inhibition between cells, a is often
known as the coupling term; the third term is the coupling term between oscillators, where
wij stands for the connection weight between oscillators i to j and y f ,e

i denotes the output
of neurons; the fourth term is the CPG control network’s external feedback term, where
sik stands for the reflection information which represents the k-th feedback input from the
oscillator i, and gk is the coefficient of reflection; the fifth component c is the continuous
excitation input from the upper level; Tr is the rise time constant, which represents the rise
time under step input; Ta represents the fatigue time constant, which is the lag time of the
fatigue effect; yi, the output of the i-th oscillator, is synthesized from the states of the flexor
and extensor neurons, which may be utilized as position or torque control signals for robot
joints; p is the limiting coefficient used to alter the oscillator output to make it equal to the
DC input c.

The differential equations mentioned above are represented by the matrix form as follows

Tr
.

U
f ,e

+ U f ,e = bV f ,e + aYe, f + W · Y f ,e + S ·G f ,e + cE

Ta
.
V

f ,e
+ V f ,e = Y f ,e

y f ,e
i = max

(
u f ,e

i , 0
)

Y = p
(

U f −Ue
)

U f ,ε, V f ,`, Y f ,ε, Y ∈ Rn, W ∈ Rn×n, S ∈ RRn×m
, G ∈ Rm

E = [1, 1, . . . , 1]T︸ ︷︷ ︸
n

, i = 1, 2, . . . , n

(16)

The terms S ·G and the parameters W(wij) are quite important. W =

 w11 · · · w1n
...

. . .
...

wn1 · · · wnn


stands for the connection weight matrix of the CPG network, which establishes the CPG
model’s output mode and directs the robot to move in various ways. The CPG model’s
feedback term, S · G, regulates how the CPG model interacts with the outside world
to produce biological reflex function. The reflection information matrix S(sjk) and the
reflection coefficient vector G make up the feedback term. Rows in the reflected information

matrix, S =

 s11 · · · s1m
...

. . .
...

sn1 · · · snm

, stand in for each leg, and columns for each input signal

from feedback. Each leg of the n-legged robot receive m feedback data, which is combined
to generate the n×m order reflection information matrix. The gain from incorporating
the matching reflection data into the CPG model is represented by each element of the
reflection coefficient vector G = [g1 · · · gm]

T . A regular expression and unambiguous
implementation strategy may be obtained by using the reflection information matrix and
reflection coefficient vector for the CPG model’s feedback terms.

The output of CPG exhibits a wide range of events, including divergence, sluggish start
and stop, high-order resonance phase-locking and oscillations of identical amplitude. These
phenomena are obtained from the significant nonlinearity, output coupling, parameter
coupling, and starting value dependency of the CPG differential equations, which are
complex dynamic properties. The CPG equation can, however, provide a stable limit cycle
for a given set of parameters, causing the system to generate steady oscillation output.
The CPG model is capable of transmitting the external signal’s mode and producing the
appropriate output in response to it. These are the basis of engineering applications.

Aspects such as amplitude, period, phase, waveform, and others can be used to define
periodic signals. The CPG equation’s parameters may be categorized into four groups based
on their primary uses: the amplitude influence parameter c, period influence parameter
Tr, Ta, waveform influence parameter a, and phase influence parameter W. The effect of
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CPG equation parameters on output and the coupling relationship between parameters
are depicted in Table 1 and Figure 4, respectively. The succinct summary of the effect on
output can be written as follows{

A = f (c, b, a, Ta, W)
T = f (Tr, Ta, a, b, W)

(17)

In other words, the output amplitude A is dependent on five factors, c, a, b, Ta, W,
namely c, and the oscillation duration T is dependent on five parameters, Tr, Ta, a, b,
W, primarily Tr. The corresponding CPG signal can be produced by determining the
aforementioned parameters.

In addition, the phase of the CPG-generated signal needs to be selected. In this
paper, the phase of the CPG signal is ascertained using an optimization approach, the
genetic algorithm. This is due to the great degree of optimization capabilities and adaptive
optimization technique of the genetic algorithm. In this paper, an improved genetic
algorithm is used [12], which is mainly developed by improving and optimizing the
basic genetic algorithm. This algorithm primarily increases search efficiency and optimizes
results by revising crossover and genetic methods that are better suited for CPG signals.

Table 1. CPG model parameter-coupling relationship.

Tr Ta a b c W

Tr T bounded
Ta/Tr

value
ranges

value
ranges − −

Ta
bounded

Ta/Tr
T, A value

ranges
value
ranges slope of c-A −

a slope of
(Ta, Tr)-T

slope of
(Ta, Tr)-T

T, A
waveform − slope of c-A phase

sequence

b slope of
(Ta, Tr)-T

slope of
(Ta, Tr)-T

− T, A slope of c-A phase
sequence

c − − − − A −

W value
ranges

value
ranges

value
ranges

value
ranges slope of c-A T, A gait

− represents no influence or weak influence, T is the impact duration and A is the impact amplitude.
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3. Experimental Validation

In order to validate the model put forth above, we constructed an experimental lower-
limb exoskeleton with two degrees of freedom (DoF) and its hip fixed to a rigid frame.
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As seen in Figure 5, the primary construction was built of steel, and two servo motors
(GDM1- 100N2/120N2) were used to move the hip and knee joints. The robot’s joint angles
are monitored by two absolute encoders, the INC-4-150 and INC-3-125, while the forces
that interact with the human exoskeleton are measured by four 3D force sensors (JNSH-
2-10kg-BSQ-12). The sampling frequency of the platform is 100 Hz.

In this section, a 55 kg/1.7 m healthy adult female served as the data-acquisition
experiment’s subject. The subject was standing during the trial, enabling the entire leg to
swing and the knee to be in a natural posture. The support leg was raised by putting a plate
beneath the wearer’s foot in order to prevent contact between the swing leg and the ground.
Only when the subject could maintain the stability of her support leg were data obtained.
Once the subject began to feel fatigued or when data clearly indicated non-periodicity,
she was urged to take a break. The human body swing data set was then established by
gathering the real-time angle, angular velocity, and angular acceleration information of the
subject’s lower limb joints during single leg swings.
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The parameters of the exoskeleton and human limb are estimated based on the two-
joint dynamic model of the exoskeleton robot and human lower limb coupling in Figure 1.
The unknown parameters matrices provided in Equation (7), which can be written as non-
linear groups, and the frictional force coefficients listed in Equation (12), are identified using
the offline least squares optimization method. Notably, this identification can only retrieve
the values of the parameter as groups in Tables 2 and 3. For the model-based dynamics
design, Neighborhood Field Optimization (NFO) is suggested as a way for parameter
identification, and more details are given in [30].

Table 2. Parameters of exoskeleton.

Parameter Groups Values [Unit]

mr,tc2
r,t + Ir,t + mr,sl2

r,t + mr,sc2
r,s + Ir,s 5.00175 [kg m2]

mr,sc2
r,s + Ir,s 2.0653 [kg m2]

mr,scr,s 0.52645 [kg m]

mr,tcr,t + mr,slr,t 2.3319 [kg m]

kv,h 31.38 [N m]

kv,k 43.67 [N m]

ks,h 15.55 [N m s−1]

ks,k 27.51 [N m s−1]
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Table 3. Parameters of human body.

Parameter Groups Values [Unit]

mh,tc2
h,t + Ih,t + mh,sl2

h,t + mh,sc2
h,s + Ih,s 5.29985 [kg m2]

mh,sc2
h,s + Ih,s 0.9504 [kg m2]

mh,sch,s 1.73995 [kg m]

mh,tch,t + mh,slh,t 3.2035 [kg m]

4. Results
4.1. The Performance of CPG Controller

In the first step, the performance of the CPG model is tested. For the design of the
CPG network, several steps are considered as follows: Firstly, for the unit model, the CPG
model is constructed as Equation (15). When it comes to the coupling technique of the
CPG units, or the design of the network architecture, the connection weight matrix is
made to be equal to one another in accordance with the inhibition relation regarding the
swing motion examined in this study. The relatively independent parameters indicated
in Table 1 and their impact on the output form the basis of the mathematical connection
between parameters and output. According to the relationship, the prime parameter can
be determined. The mathematical explanation of CPG above is provided in Table 4.

Table 4. Parameters of CPG models.

Parameters Values

Ta/Tr 10

a −1

b −2

c 0.23

W
[

0 −1
−1 0

]

In this instance, CPG generated the two joint torques with inverse dynamic analysis.
The basic parameters of the CPG model were derived from Table 4. The torques of the hip
joint and knee joint in a swing routine for both the CPG control model and the subject are
illustrated in Figure 6. It can be seen that the moment information predicted by CPG fits
the joint torques calculated by the inverse dynamic analysis accurately.

Actuators 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

W  
0 -1
-1 0
 
 
   

In this instance, CPG generated the two joint torques with inverse dynamic analysis. 
The basic parameters of the CPG model were derived from Table 4. The torques of the hip 
joint and knee joint in a swing routine for both the CPG control model and the subject are 
illustrated in Figure 6. It can be seen that the moment information predicted by CPG fits 
the joint torques calculated by the inverse dynamic analysis accurately. 

0 10 20 30 40 50
time [s]

−10

0

10

20

30

40

to
rq

ue
 [N

]

hip joint torques
human torque
CPG simulated torque

 
0 10 20 30 40 50

time [s]

−10

0

10

20

30

40

to
rq

ue
 [N

]

knee joint torques

human torque
CPG simulated torque

 
   (a)    (b) 

Figure 6. The joint torques of two joints generated from CPG controller and the subject: (a) Hip joint; 
(b) knee joint. 

4.2. Tracking Error 
The ranges of human joint flexion and extension are constrained. For instance, the 

hip can bend at a maximum angle of 90°  with the knee extended and at a maximum 
angle of 10° . To ensure the wearer’s safety, the desired trajectory, dθ , should be con-
strained [26]. In this section, a straightforward sinusoidal trajectory that indicates the de-
sired trajectory was used as follows 

d
25 21 sin( )
43 21 cos( )

t
t

ωθ
ω

 +
=  − + 

 

   (18)

where the swing frequency is =0.4ω π . 
In this section, the impact of the proportional gain of the PD controller, set previously 

on the control effect, is discussed using the control variable technique. Through simula-
tion, we determine the ideal differential gain value. For d =100k , Figure 7 compares the 
joint angles in the swing period acquired from simulation with the required trajectories. 
As comparing Figure 7a–c, further improving the tracking accuracy in both hip and knee 
joints is raising the proportional gain, pk , from 300 to 3000. We give here only the results 

for =300pk  and =3000pk . The exoskeleton may overcome friction for higher tracking 
accuracy by injecting human force. 

The tracking errors for both the human and the robot in each swing period are gath-
ered and presented in Figure 8. To provide a clearer overview of the accuracy, the root 
mean squared tracking errors in every swing period are collected and plotted in Figure 9 
as functions of the proportional gain. According to the simulation results in Figure 9, rais-
ing the proportional gain can reduce error, but its effectiveness becomes less significant 
as the gain is increased. 

Figure 6. The joint torques of two joints generated from CPG controller and the subject: (a) Hip joint;
(b) knee joint.



Actuators 2023, 12, 321 12 of 16

4.2. Tracking Error

The ranges of human joint flexion and extension are constrained. For instance, the hip
can bend at a maximum angle of 90◦ with the knee extended and at a maximum angle of
10◦. To ensure the wearer’s safety, the desired trajectory, θd, should be constrained [26].
In this section, a straightforward sinusoidal trajectory that indicates the desired trajectory
was used as follows

θd =

(
25◦ + 21◦ sin(ωt)
−43◦ + 21◦ cos(ωt)

)
(18)

where the swing frequency is ω= 0.4π.
In this section, the impact of the proportional gain of the PD controller, set previously

on the control effect, is discussed using the control variable technique. Through simulation,
we determine the ideal differential gain value. For kd= 100, Figure 7 compares the joint
angles in the swing period acquired from simulation with the required trajectories. As
comparing Figure 7a–c, further improving the tracking accuracy in both hip and knee
joints is raising the proportional gain, kp, from 300 to 3000. We give here only the results
for kp= 300 and kp= 3000. The exoskeleton may overcome friction for higher tracking
accuracy by injecting human force.

The tracking errors for both the human and the robot in each swing period are gathered
and presented in Figure 8. To provide a clearer overview of the accuracy, the root mean
squared tracking errors in every swing period are collected and plotted in Figure 9 as
functions of the proportional gain. According to the simulation results in Figure 9, raising
the proportional gain can reduce error, but its effectiveness becomes less significant as the
gain is increased.
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Figure 8. Tracking errors in human body (blue line) and the exoskeleton robot (orange line): (a) hip 
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Figure 7. Exoskeleton’s desired trajectories (yellow line), simulation results including human trajec-
tories (blue line) and exoskeleton robot’s trajectories (orange line): (a) hip and (b) knee angles for
kp= 300, and (c) hip and (d) knee angles for kp= 3000.
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Figure 9. Root mean squared tracking errors in human body (blue line) and the exoskeleton robot
(orange line) about proportional gains: (a) hip and (c) knee in human body, and (b) hip and (d) knee
in robot.

4.3. Coupling Force

Plotted in Figure 10 are the magnitudes of the coupling forces that correspond to the
movements in Figure 7. As seen in Figure 10, the coupling forces oscillate around a compa-
rable level of magnitude when kp climbs and the fluctuation amplitude is noticeably bigger.

Figure 10a,b provide the coupling forces both at the thigh and the shank, |Ft|,|Fs|, for
kp= 300 and 3000. In particular, when kp increases, the coupling force at the thigh increases
along with the oscillation amplitude, which results in a reduction in |Ft| from around 30 N



Actuators 2023, 12, 321 14 of 16

for kp= 300 to 35–40 N for kp= 3000; the coupling force at the shank has an insignificant
change in magnitude but an increase in oscillation amplitude.
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Figure 10. Magnitude of human–exoskeleton coupling forces at thigh (blue line) and shank (orange
line) for: (a) kp= 300, and (b) kp= 3000.

5. Conclusions

This study, utilizing a model of the dynamics of human–exoskeleton interaction,
proposed a new control method for the human–exoskeleton coupling dynamic model,
which is based on the CPG model. The output of the complete CPG network approximates
the torques as the input to the exoskeleton robot, which is computed by inverse dynamic
analysis in human motion, in the way of examining the coupling of the oscillators and
modifying the system setting parameters.

The experimental evaluation results show that the biological control approach may
enhance the robot’s motion performance, create quick and steady motion, and have a
better capacity to adapt to complicated settings. A considerable improvement in tracking
accuracy is also found as the proportional gain rose, but with coupling forces in the hip
joint increasing.

Based on the self-excitation of the CPG network, CPG may be used as a motion control
mechanism in open-loop or closed-loop adaptive control with feedback and high-level
modulation. By modifying the network settings, CPG provides distributed control of
various motion modes. The standard modeling–planning–control technological approach
is distinct from the biological control technique for robots. It does away with the time-
consuming and difficult dynamic modeling and moves past the incompatibility of single-
cycle planning and continuous control.

However, the application of the existing bionic control system based on the CPG mech-
anism has several issues. One of these is the non-linear coupling between the mechanical
system and the CPG network, where the dynamic properties of the mechanical system
interact with the control system’s features. The second is that sinusoidal signals cannot
adequately control joints for movements with high walking needs, such as exoskeleton
robots. The CPG network’s ability to create precise control signals will be crucial in enabling
the robot’s walking to be as flexible as possible. Therefore, this may be our future research.

Additionally, our dynamic model still has significant limits. Only a very basic PD
control was used, which has little potential to increase tracking precision or reduce coupling
force. The experimental exoskeleton’s hip is fixed to a hard frame, allowing researchers
to focus solely on the swing action. In order to study the entire walking dynamics, we
will attempt to present a high-dimensional model that is relevant for both the swing and
stance phases.
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