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Abstract: In this paper, we present a parallel structure controller for flexible ball screw drive systems
with dynamic variations mainly caused by variations in table position and workpiece mass. The
controller consists of two parts: a linear quadratic regulator (LQR) controller with the aim of tracking
reference trajectories with high response and accuracy and an interpolated gain-scheduled controller
used to restrain system vibration. To damp out the varied resonant modes, the controller is obtained
by a set of µ-synthesis linear time-invariant (LTI) controllers interpolated via Youla parameterization.
Comparison experiments are conducted to confirm the performance of the proposed controller with
a ball screw drive experimental setup. We demonstrate that the parallel structure controller achieves
high performance in tracking, vibration suppression and disturbance rejection.

Keywords: flexible ball screw drive system; parallel structure controller; gain-scheduled controller; µ
synthesis; Youla parameterization

1. Introduction

Ball screws are widely used in machine tool feed systems owing to their outstanding
advantages like high stiffness, accuracy and transmission efficiency [1]. As machine tools
are prevalent equipment for machining metal parts in industry [2], high-speed machining,
which can accomplish cost-effective parts manufacturing, is the primary development
trend. Therefore, high-performance ball screw drives are required that can operate under
high-speed operating conditions. To achieve this goal, two aspects should be considered as
prerequisite points. First, the desired cutting trajectory must be followed with fast response
and high accuracy for position tracking of the table. Second, the system vibration caused
by high-speed operations and external disturbances should be suppressed effectively [3].

Removing the obstacles that affect the high-speed machining performance in tracking
and vibration suppression control of flexible ball screw drive systems is difficult. First,
under the influence of fast movements with high acceleration, the torsional and axial
vibration modes can be excited and produce structural vibrations, which are the definitive
factors limiting the achievable bandwidth and deteriorating the accuracy performance of
tracking and positioning in a closed-loop system [4]. The system dynamics mainly incited
by the table position and workpiece mass variations also act as an important obstacle in
high-speed positioning and tracking performance [5,6]. Applied external disturbances like
nonlinear friction and cutting force also hinder the trajectory-tracking accuracy [7]. External
disturbances applied near resonant frequencies can also cause structural vibrations in the
machine. Therefore, to satisfy the requirements of high-speed machining, the mentioned
obstacles should be removed in the design of ball screw drive controllers.

With classical controllers, the demands of high-precision control with tracking and
vibration suppression cannot be realized [8]. In recent decades, various tracking and
vibration control methods for ball screw drive systems have been proposed. Erkorkmaz
and Kamalzadeh [9] designed a sliding-mode controller for tracking control and a notch
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filtering in a rigid model of a ball screw drive system to filter out the first-order vibration.
Combined with pole-placement principle, they further developed an adaptive sliding-mode
controller with a two-degrees-of-freedom model, which has a substantial improvement in
terms of both vibration control and tracking performance [10]. Okwudire and Altintas [11]
proposed a robust discrete-time sliding-mode controller to compensate for the vibration
modes by considering the structural flexibility and disturbance effect. Considering the
time-varying parametric uncertainties of flexible ball screw drive systems, Dong [12]
proposed an adaptive backstepping sliding-mode controller that improved the tracking
accuracy. The pole-placement technique was employed by Gordon and Erkorkmaz [13]
to compensate for active structural vibrations and then achieve high bandwidth and
positioning accuracy. Altintas and Khoshdarregir [14] eliminated residual vibrations in a
CNC machine by applying input-shaping filters to the reference commands. Fujimoto [15]
proposed a repetitive perfect tracking controller with an n-times learning filter for a ball
screw drive system to achieve high precision. To avoid excitation of resonant modes in
high-precision machining, a learning controller was employed by Tsai et al. [16] to filter out
undesired signals from reference commands. Zhang [17] used disturbance-rejection control
and equivalent error-model-based feedforward control to ensure tracking performance
and compensate for the uncertainties of a ball screw drive system. Rajabi et al. [18]
proposed trajectory-tracking control of a ball-screw-driven servomechanism based on a
sliding-mode approach with state estimation by an extended/unscented Kalman filter. A
predefined performance-constrained, non-singular sliding-mode control was proposed by
Park et al. [19], in which the assumed feedforward dynamic method and super-twisting
state observer are combined to compensate for unknown dynamics and unmeasured
velocity signals in ball screw drive systems. Sun et al. [20] presented a cascade-structured
controller consisting of a weakly set motor speed controller, a disturbance observer with the
feedback velocity of ball screw drives and a PD position controller. For precise control of
ball screw drives, Hayashi et al. [21,22] used projection-based iterative learning control to
deal with both variation in position reference and rolling friction compensation. Sencer and
Dumanli [23,24] presented an optimal non-collocated control stage for flexible ball screw
feed drives designed with only load (table)-side feedback signals to achieve high tracking
bandwidth, disturbance rejection and modal damping. Yang et al. [25] proposed a dual-
position feedback control method by introducing the drive-side position information to the
position loop feedback channel with a filter and an adaptive backlash error compensation
method, which can reduce the over-quadrant error. Recently, Shirvani et al. [26] used
adaptive feedforward cancellation to address the problem of harmonic positioning error
suppression in ball screw drives.

The controller design mentioned above does not explicitly focus on dynamic time-
variant characteristics of the ball screw drives. The gain-scheduled method is capable
of handling a linear parameter-varying (LPV) system. Considering the stiffness varia-
tions of ball screw drives, Symens [27] first proposed the gain-scheduled H∞ controller.
Then, Silva [28] and Paijmans [29] designed an LPV gain-scheduled controller using an
interpolating technique to realize system-varying dynamic compensation.

Previous works only aimed at a single-input–single-output (SISO) system with single
scheduling parameter situation. Sepasi [30] synthesized a robust gain-scheduling con-troller
for tracking control of ball screw drive systems to cope with the dynamic variations of a
multi-input–multi-output (MIMO) system, but external disturbances were not considered
in the study. Dong et al. [31] extended an interpolation-based approach to the design of a
gain-scheduled H∞ loop-shaping controller for ball screw drives with table position and
workpiece mass as the two scheduling parameters; however, they did not consider the effect
of the cutting force disturbances. Hanifzadegan [32] proposed a switching gain-scheduled
controller with an extensive range of applications using an analytical LPV model of flexible
ball screws. He also [33] proposed a parallel structure feedback controller that contained
a robust LTI tracking controller and a robust switching gain-scheduled LPV controller
for vibration suppression. Recently, Zhang et al. [34] presented an LPV-model-based
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gain-scheduling control method considering the time-varying and rigid–flexible coupling
dynamic characteristics of ball screw feed drives. Nevertheless, the LPV gain-scheduled
approach has a complex structure, and the solving process is difficult.

Above all, the controller designed for LTI models cannot explicitly deal with dynamic
variation of ball screw drives, such as sliding-mode control, pole-placement control, positive
position feedback control, optimal non-collocated control, etc., as mentioned previously. In
addition, a gain-scheduling controller can cover a large range of parameter variations in
vibration suppression, but transient behavior of the controller at switching instants might
degrade the tracking performance. The goal of this paper is to propose a controller structure
suitable for ball screw drives with significant dynamic variations in order to achieve
high tracking and vibration suppression performance. A parallel structure controller
composed of two controllers is adopted to obtain the respective objectives: one is an LTI
linear quadratic regulator (LQR) controller with full-state feedback, which takes charge of
improving tracking accuracy and speed for reference trajectories, whereas the other is an
interpolating gain-scheduled controller used to damp out the flexible modes with varying
resonant frequencies according to the table position and the workpiece mass variations.
During the control process, several local µ-synthesis controllers are adopted first to suppress
the varying flexible modes in each table position subregion and load masses. Then, the
gain-scheduled controller can be obtained by dynamic transition between µ-synthesis
controllers, which is termed controller interpolation. Because switching robust controllers
may induce undesirable transients and lead to performance losses and instability [35–37],
Youla controller parameterization is used to ensure transient performance and system
stability. The comparative experiments are also designed to verify the effectiveness of the
overall control strategy in comparison with a proportional–integral (P-PI) controller.

The content of this paper is organized as follows. The LPV model for a flexible ball
screw drive system is presented in Section 2. In Section 3, a tracking controller based on
LQR is designed. In Section 4, we present an interpolating gain-scheduled µ-synthesis
controller designed for structural vibration suppression. The experimental setup and
results are presented in Section 5, and conclusions are drawn in Section 6.

2. LPV Model for a Flexible Ball Screw Drive System

The fundamental ball screw drive system is powered by a servomotor by applying
a voltage; then, a torque is generated to drive the screw, which is connected to the motor.
The screw rotational motion is translated to the table linear motion actuated by the nut. An
external disturbance such as a cutting force or friction is applied onto the table under actual
working conditions. Therefore, the flexible ball screw drive system can be modeled as a
two-input–two-output system. Because the focus of this paper is on the compensation of
the first-order vibration mode, the transfer functions (GL(m, lt)) between inputs and outputs
can be expressed as [

l(s)
θ(s)

]
= GL(m, lt)

[
u(s)
d(s)

]
(1)

GL(m, lt) =
RL

s(js + b)
× PL(m, lt) + QL(m, lt)s

s2 + 2ζω(m, lt)s + ω2(m, lt)
(2)

where the inputs are the command voltage (u) and external disturbances (d), whereas the
outputs are the rotating displacement of the motor (θ) and the linear displacement of the
table (l). The table position (lt) is time-varying during the working process, whereas the
workpiece mass (m) is assumed to be constant in this study. m and lt are the gain-scheduling
variables of the LPV model. The parameter j represents the equivalent inertial of the rigid
body mode, and parameter b represents the damping. ω and ζ are the natural frequency
and damping ratio of the first flexible mode. PL, QL and RL are the 2 × 2 matrices that
determine the gain and zeros of transfer functions.
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The transfer functions of ball screw drives can be converted to a two-degrees-of-
freedom system as shown in Figure 1. The state space function of the system can be
written as 

.
x(t) = AL(m, lt)x(t) + BL(m, lt)

[
u(t)
d(t)

]
[

l(t)
θ(t)

]
= CLx(t)

(3)

AL(m, lt) =



0 0 1 0

0 0 0 1

− k(m, lt)
m2(m)

k(m, lt)
m2(m)

− b2 + c(m, lt)
m2(m)

c(m, lt)
m2(m)

k(m, lt)
m1(m)

− k(m, lt)
m1(m)

c(m, lt)
m1(m)

− b1 + c(m, lt)
m1(m)



BL(m, lt) =


0 0
0 0

0
1

m2(m)
1

m1(m)
0

, CL(m, lt) =
[

1 0 0 0
0 1 0 0

]
(4)

where x(t) =
[
x2 x1

.
x2

.
x1
]T is the state vector, and x1 and x2 represent the motor

rotational displacement and table displacement, respectively. k(m, lt) is the overall axial
stiffness coefficient affected by the preloaded nut, thrust bearing and screw. c(m, lt) is the
damping coefficient induced by the preloaded nut. k(m, lt) and c(m, lt) are continuous time-
varying functions that are significantly dependent on table position (lt) and workpiece mass
(m). m1(m) and m2(m) represent the equivalent inertia of rotating parts and the equivalent
inertia of the table, respectively, and are functions only subjected to the workpiece mass
(m). b1 is the viscous damping coefficient of rotating parts, such as the motor and bearings,
and b2 is the viscous damping coefficient of the guideways.
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Figure 1. Two-degrees-of-freedom model.

3. Parallel Controller Structure

In this paper, we separate the multi-objective control problem (tracking and vibration
suppression) into two subproblems. (1) One controller is responsible for accurate reference
trajectory tracking in the low-frequency range, and (2) another controller is responsible for
vibration suppression near the resonant frequencies.

The parallel structure of controllers is shown in Figure 2. As previously mentioned,
it consists of two controllers: a tracking controller (KTrack) and a vibration suppression
controller (KVib). The KTrack controller is used to increase the closed-loop bandwidth and
minimize the tracking error. On the other hand, the vibration suppression controller
(KVib) is used to reduce the structural vibration caused by external disturbances (d) by
feeding back the table linear displacement (l) and the motor rotating displacement (θ). Two
controller outputs (uTrack and uVib) are summed and applied to the servo motor.
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Figure 2. Block diagram of a parallel controller structure.

Compared to MIMO controllers without any specific structure, the parallel structure
of controller shown in Figure 2 has several advantages. (1) For most multi-objective control
problems, the designed controller parameters need to be iteratively tuned to balance the
different control objectives. In contrast, for the parallel structure controller, the parameters
of the two controllers can be adjusted separately to improve the corresponding control per-
formance without considering other parameters that influence other performance aspects,
which simplifies the controller design. (2) The unduly high degrees generated by a general
MIMO controller introduce considerable computational pressures in the microcontroller.
However, the designed controller consists of two relatively low-degree controllers that
reduce computational burdens in its implementation with a microcontroller. (3) In the
manufacturing industry, servo drives with tracking controllers are already common. There-
fore, adding a vibration controller to an existing tracking controller can reduce structural
vibration without reducing tracking performance if using a parallel structure.

4. Tracking Controller Design Based on LQR

To ensure tracking performance, a full-state feedback tracking controller based on
LQR is designed. Because the frequencies of reference signal are much lower than first
axial resonant modes, the state space function (3) can be simplified as a nominal model
by ignoring the external disturbance and dynamic variations. The one-input–two-output
nominal model is expressed as

.
x(t) = AN x(t) + BNuTrack(t)[

l(t)
θ(t)

]
= CN x(t)

(5)

AN =



0 0 1 0

0 0 0 1

− kN
m2N

kN
m2N

− b2 + cN
m2N

cN
m2N

kN
m1N

− kN
m1N

cN
m1N

− b1 + cN
m1N


, BN =


0 0
0 0

0
1

m2N
1

m1N
0

,

CN =

[
1 0 0 0
0 1 0 0

]
(6)

The feedback structure with an LQR controller is depicted in Figure 3, where xref is the
reference signal, which contains the desired displacements and velocities of the table and
motor. In order to increase the closed-loop bandwidth and minimize the tracking error, the
cost function (J) should be minimized as follows:

J =
1
2

∫ ∞

0

((
xre f − x

)T
Q
(

xre f − x
)
+ uTRu

)
dt (7)
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where Q ≥ 0 and R > 0 are 4 × 4 and 1 × 1 symmetric, positive (semi-)definite matrices,
respectively, that can be chosen suitably to achieve the desired control effect. The proposed
LQR controller design can be solved by the MATLAB command lqr(AN, BN, Q, R).
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5. Structural Vibration Controller Design Based on Interpolating Gain-Scheduled µ
Synthesis
5.1. µ-Synthesis Design

The stiffness and damping coefficient of a ball screw drive system are varied depending
on the table location and workpiece mass, whereas the table location is time-varying during
machining. With the varying stiffness and damping coefficient, the ball screw system has
dynamic vibration modes. To suppress the dynamic vibration modes, a parallel controller
(KVib(m, lt)) that is gain-scheduled by lt and m is designed. First, a set of LTI controllers is
obtained through the µ-synthesis method to ensure the robustness of the system within a
certain variation range of lt. As shown in Figure 1, because the translating parts are affected
by external disturbances (d), they may induce vibration near the resonance frequencies
of the ball screw drive. Thus, the objective of the µ-synthesis controller is to evaluate the
control signal (uµ) in order to reduce the oscillations of the translating parts due to external
disturbances. The LTI control model (GVib) is integrated in the ball screw drive system LTI
model with stiffness and damping coefficient uncertainties caused by position variation
and the tracking controller (KTrack), as expressed by

.
x(t) = (ALTI − B1NKTrack)x(t) + BN

[
uµ(t)
d(t)

]
[

l(t)
θ(t)

]
= CN x(t)

(8)

ALTI =



0 0 1 0

0 0 0 1

− kN
m2N

kN
m2N

− b2 + cN
m2N

cN
m2N

kN
m1N

− kN
m1N

cN
m1N

− b1 + cN
m1N


(9)

where the values of stiffness (kN) and the damping coefficient (cN) are uncertain, with
nominal values of kN and cN, respectively, and can vary within a given range depending
on the variation of lt. B1N is the first column of the BN matrix. Then, the LTI control plant
(GVib) with parameter uncertainties can be derived as


.
x̃
· · ·
z
· · ·
y

 =



Ã
... B̃1

... B̃2
· · · · · · · · · · · · · · ·

C̃1
... D̃11

... D̃12

· · ·
... · · ·

... · · ·

C̃2
... D̃21

... D̃22


=


x̃
· · ·
w
· · ·
ũ

 (10)
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where x̃ is the total state vector, w = [wk wc]T is defined as the input uncertainties asso-
ciated with the stiffness (kN) and damping coefficient cN and z = [zk zc]T is the output
uncertainties. y = [l θ]T, ũ = [uµ d]T and the system matrices are given in Appendix A. The
feedback structure with a µ-synthesis controller is shown in Figure 4, where Wp represents
the frequency performance weight function, which is used to damp out the vibration
amplitude. Wu is defined as the control weight function to penalize the control signal (uµ)
at the specified frequency ranges due to external disturbance (d). Wdist is the disturbance
performance weight function, which is used to compensate for the effect of disturbances.
Then, the open-loop interconnected transfer function matrix (PLTI) shown in Figure 4 can
be partitioned as Equation (11).
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PLTI =


P11 P12 P13

P21 P22 P23

P31 P32 P33

 =


GVib 0 0 0

WpGVib Wp WpWdist WpGVib

0 0 0 Wu

GVib I Wdist GVib

 (11)

The block matrix (∆P) is defined as

∆P =

{[
∆ 0
0 ∆F

]
: ∆ ∈ R2×2, ∆F ∈ C1×2

}
(12)

where the ∆ is diagonal matrix and corresponds to the uncertainties of stiffness and the
damping coefficient in the model. Another block (∆F) represents the fictitious uncertainty
used to achieve the performance requirements of the µ approach.

The aim of the controller design is to obtain a stabilizing Kµ so that for each frequency
(ω ∈ [0, ∞]) the structured singular value satisfies the following condition [38]:

µ∆P

[
FL
(

PLTI, Kµ

)
(jω)

]
< γ (13)

where FL
(

PLTI, Kµ

)
is the lower linear fractional transformation of PLTI and Kµ and γ is

normalized to 1. The procedure described above contains all the essential ingredients of µ
synthesis required for an LTI controller (Kµ) to be obtained.

5.2. Interpolating Gain-Scheduled Controller Design via Youla Parameterization

An interpolating gain-scheduled vibration controller is composed of a supervisor con-
troller and the corresponding interpolated controller, as shown in Figure 5. The supervisory
controller generates the interpolation signals (α(t) and β), which are assigned according to
the two scheduling parameters of table position (lt) and workpiece mass (m), respectively.
Interpolation signals describe which fraction of each local controller is active within the
interpolated controller. KVib(α,β) is the interpolated controller, which comprises of a set
of local controllers (Kµij, i = 1, . . ., n. j = 1, . . ., m). As switching among local µ-synthesis
controllers may lead to instability, the Youla parameters are applied to maintain the system
stability with gradual switching. The authors of [39] reported that any robust controller (K)
that internally stabilizes a plant (P) can be written as a linear fractional transform (LFT):

K(Q) = LFT(J, Q) (14)
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where the fixed subsystem (J) and the exponentially stable Youla parameter (Q ∈ RH∞) can
expressed as

J =


.
x̂ = Aµ x̂ + ZµPT

31y + (I + γ−2ZµXµ)P13û

u = Fµ x̂ + û

ŷ = −P31 x̂ + y

(15)

Q =

{ .
xq = Aqxq + Bqŷ

û = Cqxq + Dqŷ
. (16)

The Aµ, Fµ, Xµ and Zµ matrices are defined in Appendix B.
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Figure 5. The structure of an interpolating gain-scheduled vibration controller.

According to this theory, several µ controllers are allowed to switch with each other,
and the system stability is guaranteed by the fact that a convex combination of stable
transfer matrices (Qij) corresponding to Kµij is always stable. Because the workpiece mass
(m) is constant during the working process, the interpolation signals (βj) are defined as
discrete signals, i.e., βj = 0, 1, j = 1, . . ., m. For the interpolation signals (αj(t)), a smooth
transition during the switching phase is desirable. Given that the table position (lt) is
continuously variable, two functional blocks (F1j and F2j) are established; block F1j stores
the odd-numbered Youla parameters (Q1j, Q3j, . . ., Q(i−1)j, i = 1, . . ., n), and block F2j
contains even-numbered Youla parameters (Q2j, Q4j, . . ., Qij). Then, a smooth trajectory
of the interpolation signals (αj(t) ∈ [0, 1]) is applied. The supervisory control law is
demonstrated in Figure 6, which shows that block F1j is active when αj(t) = 0, whereas
αj(t) = 1 enables block F2j. When the table position (lt) passes through the switch point (li,i+1),
the controller enters into the switching phase from F1j to F2j or, conversely, αj(t) ∈ [0, 1]
changes from 0 to 1 or the inverse in the specified time interval. Then, the interconnection
of the gain-scheduling interpolated controller (KVib(α,β)) can be expressed as shown in
Figure 7. According to the Figure 6, the corresponding gain-scheduling Youla parameter
(Q) can be written as

Q =
m

∑
j=1

β j((1− αj)F1j + αjF2j) (17)
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6. Experimental Results
6.1. Experimental Setup

The ball screw drive experimental setup is powered by a 9 kW Mitsubishi servo motor
and driven by an NSK ball screw with 20 mm pitch and a 20 mm diameter. A 50 kg working
table travels in the range of 0 to 560 mm. A Heidenhain incremental rotary encoder is
available on the motor side of the ball screw, which delivers 5000 P/Rev and can be reliably
interpolated 25 times in the Heidenhain IBV660 interpolation and digitizing electronics,
resulting in a position measurement resolution equivalent to 0.04 µm. A Heidenhain
incremental linear encoder is installed on the table with a 5 µm signal period, which is
interpolated by 100 times with a 0.05 µm position measurement resolution. These devices
are used to communicate position and velocity feedback signals of both the table and the
screw. The dSPACE DS1103 controller is used as a development system for rapid control
prototyping. The structure of the experimental setup is shown in Figure 8.
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6.2. System Identification

Several two-degrees-of-freedom nominal models are identified. The parameters of
rigid body mode, including inertia (j) and viscous damping (b) were identified using least
squares identification techniques.

The length range of the ball screw was fixed at l ∈ [50,380] mm and divided into
eight intervals: [50,100] mm, [90,140] mm, [130,180] mm, [170,220] mm, [210,260] mm,
[250,300] mm, [290,340] mm and [330,380] mm. In order to identify the parameters of
the flexible-mode ball screw drive experimental setup, frequency response function (FRF)
measurements were performed by placing the table at the midpoint of the eight intervals
with the workpiece mass (m) equal to 0 kg and 25 kg. The frequency range of the sweeping
signal was from 2 Hz to 400 Hz with an increment of 2 Hz. The amplitudes and phases at
each frequency were calculated using least squares techniques. The frequency response
functions were converted into continuous time transfer functions. According to the param-
eters of the rigid body mode and flexible mode, the parameters of two-degrees-of-freedom
nominal models can be obtained by solving the overdetermined equations with the least
squares method. The FRF of the ball screw drive experimental setup at each of the eight
intervals with a 0 kg workpiece mass is shown in Figure 9, with the control voltage (u) and
table position (l) as the input and output, respectively.
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Figure 9. The FRFs of the ball screw drive experimental setup at eight intervals with a 0 kg workpiece
mass.

6.3. Controller Design for Experimental Setup

First, the tracking controller (KTrack) for the nominal model of the experimental setup
is designed. The parameters of the nominal model are listed in Table 1. Q and R are
selected suitably to improve the tracking performance of the system. Q is chosen as a
diagonal matrix, where q1, q2, q3 and q4 represent the effort made by each state variable to
theoretically reach the reference value. Similarly, R is used to adjust the balance between
control voltage (uTrack) and states. Finally, adjusting parameters through simulation and
experimentation is indispensable. Then, the parameters of weighting matrices Q and R are
selected as

Q =


320, 000

280, 000
0.00004

0.00003

, R = 0.00003 (18)
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Table 1. Parameters of the ball screw drive experimental setup nominal model.

Symbol Value Unit

m1 0.6512 (V·s2·m−1)
m2 0.0771 (V·s2·m−1)
b1 4.1571 × 10−4 (V·s·m−1)
b2 0.8052 (V·s·m−1)
k 2.1153 × 10−4 (V·m−1)
c 2.6775 (V·s·m−1)

Second, the gain-scheduled structural vibration controller (KVib) is synthesized. The
first step is to design distinct 8 × 2 LTI µ-synthesis controllers for 8 × 2 LTI control models
with uncertainties. The simulated FRF of the LTI control model combined with the LTI
experimental setup model with uncertainties in the position of l ∈ [170,220] mm with a
tracking controller (KTrack) is displayed in Figure 10, with the control voltage (uvib) and
the table position (l) as input and output, respectively. Wdist, Wp and Wu are selected
suitably to improve disturbance suppression and vibration suppression by damping out
resonant modes in local positions. Low-pass filters can be selected as Wp to shape the
sensitivity function (S). To improve the vibration suppression by damping out resonant
modes, high-frequency gain can be decreased and low-frequency can be increased of Wp,
and the crossing frequency can be set below the first resonant frequency of each position (l)
and mass (m) interval, an appropriate degree searched from low to high. For the control
weighting function (Wu), a constant can be used to limit the input voltage (uVib) and avoid
motor saturation. Wdist is usually selected based on the frequency domain characteristics
of the disturbance. Frequency domain analysis of the effect of machine tool cutting forces
on feed drive control is needed in real cutting processes. The next step is to synthesize a
structural vibration controller (KVib) based on the 8 × 2 µ-synthesis controllers according
to Section 5.2.
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Figure 10. The FRF of the LTI control model in a position of l ∈ [170,220] mm with a tracking controller
(KTrack).

6.4. Tracking Performance Experiments

With a displacement of 330 mm, a jerk continuous trajectory is considered as the
reference signal. The maximum speed is 0.25 m/s, and the maximum acceleration is 0.25 g
m/s2, as shown in Figure 11. As a comparison, the KTrack controller and the P-PI controller
with velocity feedforward are applied in the performance experiments. The purpose of
using the KTrack controller alone is to investigate the influence of KVib controllers in parallel
structures. Otherwise, a P-PI controller is chosen for comparison because it is widely
used in the motion control industry. In the P-PI controller, the velocity loop adopts PI
(proportional–integral) control, in which the input is the velocity error. The position loop
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relies on proportional control, in which the input is the position-tracking error. The output
of the P-PI controller is the motor voltage. To improve the tracking performance, velocity
feedforward is added to the P-PI controller with a velocity reference signal. The velocity-
proportional, integral and position-proportional gains are selected as 1000, 200 and 8000,
respectively, and the velocity feedforward coefficient is tuned as 1. Each test was conducted
three times in order to confirm the reliability and repeatability of the experimental results
and observe a consistent performance. The experimental results provide a comparison of
the performance in cases 1 and case 3 with that in case 2.

• Case 1: only a KTrack controller;
• Case 2: both a KTrack controller and a KVib controller;
• Case 3: a P-PI controller with velocity feedforward.

The experimental tracking error is shown in Figures 12 and 13. The maximum tracking
error occurs in the acceleration and deceleration processes. In comparison with case 1 and
case 3, the absolute value of maximum tracking error is reduced by about 20% and 40%,
respectively, in case 2. Furthermore, as shown in Figure 12, the tracking error of case 1
is larger on both sides in the uniform process. This phenomenon may occur due to the
system dynamics caused by motion changes. Case 2 significantly outperforms case 1, in
which the tracking error is distributed near zero and remains almost stable in the uniform
process. As shown in Figure 13, the tracking error of case 3 fluctuates considerably in the
uniform process. As a result, case 2 has lower root-mean-square (RMS) error values than
case 1 and case 3, as indicated in Table 2. In the case of structural vibration, the linear
displacement and the rotary displacement can vary considerably in the working process.
This displacement difference means that the screw is undertaking a large shaft torque and
generates deformation. In this study, the error between linear and rotary displacement is
used to characterize structural vibration, as shown in Figure 14. The vibration suppression
performance of case 2 is better than that of case 1 and case 3, as demonstrated by the lower
absolute maximum error and RMS error values reported in Table 2.
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Table 2. Experimental tracking error values.

Case Max Abs. Error RMS

Tracking error with no workpiece (µm)
1 20.44 7.30
2 16.45 4.51
3 27.35 8.48

Tracking error with a 25 kg workpiece added (µm)
1 25.38 10.86
2 19.9 5.31
3 59.76 16.45

Tracking error with harmonic disturbance (µm)
1 27.70 9.28
2 17.60 5.22
3 41.15 10.96

Error between linear and rotary displacement (µm)
1 8.00 2.76
2 7.79 2.66
3 12.4 4.68

6.5. Robust Performance Experiments for Mass Variation

To verify the robust performance of the three controllers for mass variation, a 25 kg
workpiece was added to the table, with the system following the trajectory shown in
Figure 11. A comparison of the tracking performance with no workpiece and with a
25 kg workpiece is plotted in Figure 15 for three controllers. The maximum absolute and
RMS errors with a 25 kg workpiece added are listed in Table 2. For case 2, the tracking
performance is reduced by about 18% due to the adverse effect of mass variation. The
tracking performance is reduced by about 49% and 94% for case 1 and case 3, respectively.
These results demonstrate the robust performance of KVib in case 2, reducing the adverse
effect caused by load mass variation.
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6.6. Vibration Suppression Performance Experiments

As an example to consider the effect of vibration excited by disturbance, a harmonic
disturbance input voltage signal (d = 1.2sin(630t)) V is applied to excite the flexible mode
of the experimental setup, which is between 75 and 110 Hz (see in Figure 9), following
the trajectory shown in Figure 11. The tracking error of three cases is plotted in Figure 16,
and the maximum absolute error and RMS are listed in Table 2. For case 2, the tracking
performance is reduced by about 16% due to the adverse effect of resonance. The tracking
performance is reduced by about 27% and 29% for case 1 and case 3, respectively. Further-
more, for case 1 and case 3, the tracking error fluctuates more severely than for case 2. This
result highlights the importance of vibration suppression in reducing the error in tracking
control and avoiding resonance.
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6.7. Disturbance-Rejection Performance Experiments

In the uniform process with 0.1 m/s, a 5 kg sudden thrust was exerted on the table to
simulate an external pulse disturbance. The experimental results are plotted in Figure 17.
The maximum absolute tracking error in case 2 is 30.05 µm, whereas that in case 1 and
case 3 is 36.05 µm and 29.7 µm, respectively. In addition, the setting time of case 2 is
much shorter than that of case 1 and case 3, as shown in Figure 16, indicating that the
proposed controller achieves the fastest response for disturbance rejection and highlighting
the importance of KVib in suppressing the influence of external disturbance. Therefore, case
2 has a better disturbance-rejection performance than case 1 and case 3.
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7. Conclusions

In this paper, a parallel structure controller was proposed to achieve high performance
in ball screw drive systems for both tracking and vibration suppression. An LPV model
for flexible ball screw drive systems was used to represent the dynamic variations caused
by variations in the table position and workpiece mass. Then, an LQR controller and an
interpolated gain-scheduled controller were designed to improve the tracking performance
and damp out the dynamic flexible modes, respectively. The experimental results confirmed
that the proposed controller achieves satisfactory performance for tracking, vibration
suppression and disturbance rejection.
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Appendix A

Suppose that the stiffness (kN) and damping coefficient (cN) change within a certain
range of lt, kN∈ [ki, ki+1] and cN∈ [ci, ci+1]; thus, the stiffness and damping coefficient can
be expressed as

kN = kN(1 + k̃Nδk), cN = cN(1 + c̃Nδc) (A1)

where δk(−1 ≤ δk ≤ 1) and δc(−1 ≤ δc ≤ 1) are the normalized real constant uncertainty of
stiffness and the damping coefficient, respectively, and k̃N and c̃N represent the percentage
of uncertainty of the stiffness and damping coefficient, respectively. The tracking controller
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KTrack = [k1 k2 k3 k4]. Then, the system matrices of the plant in Equation (10) can be
expressed as

Ã =


0 0 1 0
0 0 0 1
− kN

m2N

kN
m2N

− b2+cN
m2N

cN
m2N

kN−k1
m1N

− kN+k2
m1N

cN−k3
m1N

− b1+cN+k4
m1N

,

B̃1 =


0 0
0 0

− k̃N
m2N

− c̃N
m2N

k̃N
m1N

c̃N
m1N

,

B̃2 =


0 0
0 0
0 1

m2N
1

m1N
0

, C̃1 =

[
kN −kN 0 0
0 0 cN −cN

]
,

D̃11 =

[
0 0
0 0

]
, D̃12 =

[
0 0
0 0

]
C̃2 =

[
1 0 0 0
0 1 0 0

]
, D̃21 =

[
0 0
0 0

]
, D̃22 =

[
0 0
0 0

]

(A2)

Appendix B

The Aµ, Fµ, Xµ and Zµ matrices can be defined as follows [40].
Xµ and Zµ are bounded, non-negative definite matrices according to the coupled

Riccati equations:

−
.

Xµ = XµP11 + PT
11Xµ + Xµ(P12PT

12/γ2 − P13PT
13)Xµ + PT

21P21 (A3)

.
Zµ = ZµP11 + ZµPT

11 + Zµ(XµP13PT
13Xµ/γ2 − P31PT

31)Zµ + PT
12P12 (A4)

Aµ = P11 + P13Fµ + γ−2P12PT
12Xµ + NµLµP31,

Fµ = −PT
12Xµ, Lµ = −YµPT

31,

Yµ = (Z−1
µ + Xµ)−1, Nµ = (I −YµXµ)−1

(A5)
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