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Abstract: This work focuses on the consensus problem for multi-agent systems (MASs) with actuator
failures and time-varying state constraints, and presents a fixed-time self-triggered consensus control
protocol. The use of time-varying asymmetrical barrier Lyapunov functions (BLF) avoids the violation
of time-varying state constraints in MASs, ensuring stability and safety. Meanwhile, the system’s
performance is further enhanced by leveraging the proposed adaptive neural networks (NNs) control
method to mitigate the effects of actuator failures and nonlinear disturbances. Moreover, a self-
triggered mechanism based on a fixed-time strategy is proposed to reach rapid convergence and
conserve bandwidth resources in MASs. The mechanism achieves consensus within a predefined fixed
time, irrespective of the system’s initial states, while conserving communication resources. Finally,
the proposed method’s effectiveness is confirmed through two simulation examples, encompassing
diverse actuator failure scenarios.

Keywords: multi-agent systems; self-triggered mechanism; actuator failures; time-varying state
constraints; fixed-time consensus control

1. Introduction

Consensus control in multi-agent systems (MASs) is currently a prominent issue in
the field of control. It refers to the continuous updating of their own states through mutual
communication and local collaboration among agents in MASs, so that each agent reaches
the same state [1–3]. Based on graph theory, MASs can achieve distributed communication
by utilizing the state information and connectivity between corresponding agents and their
neighbors. Distributed topology structures have advantages such as easy scalability and
high fault tolerance, which have attracted extensive research [4–8]. In Ref. [6], a consensus
constraint control method for MASs with random disturbances was proposed based on
an undirected graph. Ref. [7] investigated a two-layer distributed control strategy for
nonlinear MASs with unknown control directions. This strategy only requires relatively
weak communication conditions. Ref. [8] proposed a consensus tracking protocol for a
class of incommensurate fractional-order MAS with directed switching topologies.

The convergence speed is a key focus for the consensus control of MASs, and the afore-
mentioned references mostly employed finite-time consensus control methods. Specifically,
these methods facilitate the attainment of consensus and the fulfillment of the desired
control objectives by MASs within a finite time period. Such methods offer notable ad-
vantages, including robustness, rapid convergence, and high precision in control [9,10].
However, it is important to note that the convergence time upper bound of finite-time
control methods is contingent upon the initial states of the system. In situations where
the initial states are unknown or exceedingly large, guaranteeing the convergence time
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becomes challenging [11]. Meanwhile, in practical applications, MASs may require achiev-
ing consensus within a specific time or achieving predictive convergence when the initial
states are unknown. In response to these demands, fixed-time consensus control methods
have been developed [12]. These methods alleviate the limitation of convergence time
being dependent on the system’s initial values in MASs and allow for designing the desired
fixed convergence time according to specific needs. At present, fixed-time control methods
have been extensively utilized in the control of MASs [1,13–16]. In Ref. [13] and Ref. [14],
fixed-time consensus control methods were developed for leaderless and leader-following
MASs, respectively. In Ref. [15], a practical fixed-time consensus control method was
introduced, which can reduce the state disagreement at the settling time by fine-tuning
the parameters of time base generator. Ref. [16] presented a fixed-time control method for
heterogeneous MASs, which was based upon only local information.

It is well known that MASs are evolving towards precise and efficient intelligence.
Consequently, there is an imminent need to explore and address various factors that
impact system control performance, with actuator failures being one such issue [17]. The
effectiveness of control relies heavily on the normal operation of actuators in active control
systems. However, in practical operations of industrial systems, actuators may fail due to
various reasons [18]. If proper compensation is not employed when actuator failures occur,
it may result in a range of consequences from decreased control performance to catastrophic
system failures [19]. Consequently, numerous compensatory methods have been suggested
to address the issue of actuator failures in MASs [20–22]. Ref. [20] developed a fault-tolerant
consensus control protocol based on NNs and observer framework to prevent disturbances
caused by actuator failures. In Ref. [21], an adaptive output-feedback consensus strategy
was developed that took into account both actuator failures and unmatched actuator
redundancy. In Ref. [22], the compensations for actuator faults, including gain fault, bias
fault and unknown control direction, were achieved by using the Nussbaum function.

Furthermore, constraints that are frequently encountered in practical systems pose
a significant influence on system performance. Constraints related concerns arise due to
inherent system limitations or other factors, demanding careful consideration during the
controller design process. Mishandling constraint issues may potentially result in safety
hazards and economic losses [19]. In Ref. [23], the actuator input saturation constraints
in the spacecraft formation were considered, and a distributed Lyapunov-based model
predictive controller that was resilient against actuation attacks was proposed, eliminating
the impact of input saturation constraints on the spacecraft formation control system.
However, the design of the controller became more challenging when considering full-state
constraints. Presently, research in the field of state constraints control primarily revolves
around the incorporation of appropriate barrier Lyapunov functions (BLFs) to prevent
the system from violating the corresponding constraint conditions [24–27]. To list a few,
Ref. [24] utilized logarithmic asymmetric BLF (ABLF) to avoid the influence of full-state
constraints in nonlinear systems. In Ref. [25], a higher-order tan-type BLF was formulated
to address the limitation of traditional BLF in accommodating higher-order systems. In
Ref. [26], a novel obstacle function was introduced to accommodate stochastic higher-order
nonlinear systems with a non-triangular structure. Ref. [27] proposed a robust adaptive
control scheme that can eliminate the restrictive conditions required for BLF-based control
methods. It should be noted that the BLFs proposed in the aforementioned references
were only applicable to constant constraints and cannot be directly applied to time-varying
constraints. In order to achieve generality, this work constructs time-varying ABLFs based
on the methodologies presented in Refs. [28,29].

On the other hand, the intermittent and missing data during the data transmission
process, caused by the limited processing and storage capacity of individual agents, as well
as the limited system network bandwidth, have attracted the attention of scholars. In com-
monly used time-triggered control, agents activate controllers at given time intervals [30].
Compared to continuous trigger methods, this approach can save communication resources
to some extent. However, it still has many unnecessary triggers. In contrast, the event-
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triggered mechanism (ETM) does not need to adhere to a fixed trigger interval. It is based
on a set of trigger conditions, and the controller communication is only updated when
the agent meets those trigger conditions [10]. It is evident that, by designing appropriate
trigger conditions, the sampling frequency can be effectively reduced, thereby conserving
communication resources. Nevertheless, in practical terms, ETM requires a significant
amount of detection hardware, increasing hardware costs. In Ref. [31], a sample-based ETM
was proposed, which eliminated the need for the continuous detection of trigger conditions
by only detecting them at sampling moments. However, detection hardware is still required
in practical applications. Conversely, the self-triggered mechanism (STM) relies solely on
information from the current time to calculate the next trigger instant [32–34]. They do not
require continuous monitoring of error values, as in the case of ETM, to determine if the
trigger conditions have been met. Specifically, the STM proposed in Ref. [32] only measures
the states of itself and all neighboring agents at the triggering moment and calculates the
next triggering moment according to the average measured states. The STMs proposed
in Refs. [33,34] utilize the rate of change of control signals to calculate the next triggered
time. These methods can effectively save communication resources. However, when the
temporal derivative of control signals is too drastic, it may lead to system instability.

Guided by the above discussions, this work investigates the issue of consensus control
in MASs with actuator failures and time-varying state constraints, and proposes a fixed-
time self-triggered control strategy. This work makes contributions to the following aspects
when compared to previous literature:

• In contrast to the finite-time control methods ([8–10,12,18,19]), a fixed-time STM is
implemented, whose convergence time is unaffected by initial states. Additionally,
the conservation of bandwidth resources makes the mechanism more practical. In
comparison to prior studies ([33,34]), the proposed STM addresses the issues of system
instability caused by rapid changes in the control signal.

• Different from the control schemes ([20–22]), this paper presents an adaptive NN con-
trol approach that effectively addresses both actuator failures and time-varying state
constraints within a fixed-time framework. By combining radial basis function NNs
with barrier Lyapunov functions, effective compensation can be achieved for actuator
failures while ensuring that the system’s states do not violate time-varying constraints.

The outline of this article is as follows. Section 2 presents the system model and
lemmas. Section 3 describes the design process and stability proof of the fixed-time self-
triggered controller. To validate the effectiveness of the proposed method, Section 4
conducts two sets of simulation experiments and two sets of actuator failure cases. Section 5
provides a summary conclusion of this article.

2. System Modelling and Problem Formulation
2.1. Model Description

Consider a class of MASs as follows:
ẋi,ḡ = xi,ḡ+1 + n̄i,ḡ(x̄i,ḡ), ḡ = 1, . . . , n− 1,

ẋi,n =
r
∑

j=1
gi,j`i,j(x̄i,j)ui,j + n̄i,n(x̄i,n),

yi = xi,1.

(1)

The MASs consist of one virtual leader and l agents. In (1), n and r(> 1) represent the num-
ber of system’s states and actuators, respectively; xi,g(g = 1, . . . , n) and x̄i,g = [xi,1, . . . , xi,g]

T

denote the state vectors of the i-th agent for i = 1, . . . , l; ui,j represents the output of the j-th
actuator, yi denotes the agent output, n̄i,g(x̄i,g) and `i,j(x̄i,j) are respectively unknown and
known nonlinear functions, and gi,j represents an unknown constant.
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In practical applications, actuators may experience failures. The fault model for the
j-th actuator is defined as {

ui,j = σi,jūi,j + κi,j, ∀t ≥ tj,
σi,jκi,j = 0,

(2)

where ūi,j is the input of the j-th actuator, σi,j ∈ [0, 1] represents the fault severity, κi,j
represents the output when the j-th actuator fails completely, and tj represents the time
at which the j-th actuator fails. Based on Equation (2), the operation of actuators can be
classified into the following three cases:

Case I: σi,j = 1, indicating normal operation of the j-th actuator, in this case, ui,j = ūi,j.
Case II: σi,j ∈ (0, 1), indicating partial failure of the j-th actuator, in this case, ui,j = σi,jūi,j.
Case III: σi,j = 0, indicating complete failure of the j-th actuator, in this case, ui,j = κi,j.
To facilitate further analysis, we establish the following definitions for sets Fa and Fb.

Set Fa represents the collection of completely failed actuators, while set Fb represents the
ensemble of actuators that are functioning normally or experiencing partial failures. Based
on these established definitions, we can deduce Fa ∪ Fb = {1, . . . , r}.

Assumption 1 ([21]). During the operation, at most r− 1 actuators completely fail.

Based on the aforementioned analysis, the MAS (1) can be transformed into the
following form: 

ẋi,ḡ = xi,ḡ+1 + n̄i,ḡ(x̄i,ḡ), ḡ = 1, . . . , n− 1,

ẋi,n =
r
∑

j=1
gi,j`i,j(x̄i)(σi,jūi,j + κi,j) + n̄i,n(x̄i,n),

yi = xi,1.

(3)

Furthermore, considering the constraints in practical applications, the system state xi,g
needs to remain between the time-varying barrier functions kcg

i
(t) and k̄cg

i
(t), i.e., kcg

i
(t) <

xi,g < k̄cg
i
(t).

Assumption 2 ([29]). y0(t) is known and bounded, i.e., |y0(t)| ≤ Y0(k̄c1
i
(t) > Y0,

kc1
i
(t) < −Y0). Additionally, the j(j = 1, . . . , n)-th order derivative of y0(t) satisfies

∣∣∣y(j)
0 (t)

∣∣∣ ≤ Yj,
where Y0, Y1, . . . , Yj represent positive constants.

Assumption 3 ([11]). There exist constants L̄j
i,g and Lj

i,g(j = 0, . . . , n) such that k̄cg
i
≤ L̄0

i,g,

kcg
i
≥ L0

i,g, k̄(j)
cg

i
≤ L̄j

i,g, and k(j)
cg

i
≥ Lj

i,g, where k̄(j)
cg

i
and k(j)

cg
i

represent the j-th order derivatives of

k̄cg
i

and kcg
i
, respectively.

2.2. Graph Theory

The communication topology structure between the leader and the rest of the agents
in an MAS can be described using a directed graph Gd = {P ,F}, where P = {1, 2, . . . , l}
denotes the set of agents in the system, F ⊆ P ×P stands for the set of edges, which are the
connections between the agents. A = [aij] ∈ Rl×l represents the adjacency matrix, when
aij > 0, we consider that the information from agent j can be transmitted to agent i. When
aij = 0, agent j’s information cannot be transmitted to agent i. Furthermore, by defining
di = ∑l

j=1 ai,j(i = 1, 2, . . . , l), we can obtain the degree matrix D = diag(d1, d2, . . . , dl)

and Laplacian matrix L = D −A of the system. In addition, define bi(≥ 0) to represent
communication between the leader and agents, when direct communication exists, bi > 0;
when direct communication does not exist, bi = 0.
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Assumption 4 ([13]). bi(i = 1, 2, . . . , l) cannot be all zeros, which means that at least one agent
is capable of receiving information from the leader.

2.3. Preliminaries

Lemma 1 ([22]). For a system

ẋ(t) = f (x, t), x(0) = x0, (4)

where f (·) is a continuous smooth nonlinear function, if there exists a positive definite, continuously
differentiable Lyapunov function V(x) such that V(0) = 0, and the derivative of V(x) satisfies

V̇(x) ≤ −AV(x)d − BV(x)p + C, (5)

where A > 0, B > 0, C > 0, 1 < d < ∞ and 0 < p < 1, then V(x) is a set to

V(x) ≤ min

{(
C

(1− ν)A

) 1
d
,
(

C
(1− ν)B

) 1
p
}

, (6)

where 0 < ν < 1. Furthermore, the system is considered to be practically fixed-time stable and its
convergence time T will not exceed

T̄ ≤ 1
Aν(d− 1)

+
1

Bν(1− p)
. (7)

Lemma 2 ([29]). Given arbitrary ς > 0, o ∈ R satisfying

0 ≤ |o| − o tanh
(

o
ς

)
≤ 0.2785ς. (8)

Lemma 3 ([11]). If 0 < Ω < ∞, τ = 1, 2, . . . , l, δ1 > 1 and 0 < δ2 ≤ 1, then we have

(
l

∑
τ=1

Ωι)
δ1 ≤ 1

l1−δ1

l

∑
τ=1

Ωδ1
τ , (

l

∑
τ=1

Ωι)
δ2 ≤

l

∑
τ=1

Ωδ2
τ . (9)

Lemma 4 ([28]). For arbitrary |κ| < 1 and a constant ε > 0, it can be stated that

ln
1

1− κ2ε
<

κ2ε

1− κ2ε
. (10)

Lemma 5 ([19]). For any real numbers h1 and h2, we have

h1h2 ≤
β3

β2
|h1|β2 +

1

β1β
β1
3

|h2|β1 , (11)

where β1, β2 and β3 are positive parameters, and they satisfy the condition (β1 − 1)(β2 − 1) = 1.

Lemma 6 ([6]). Let Y0 − Y denotes the set of tracking errors, where Y0 =

l︷ ︸︸ ︷
[y0, y0, . . . , y0] and

Y = [y1, y2, . . . , yl ], then it follows:

‖Y0 −Y‖ ≤ ‖Z‖
ξmin

, (12)

where Z = [z1,1, z2,1, . . . , zl,1] represents the set of synchronization errors, ξmin denotes the mini-
mum singular value of the matrix L+ B.
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Lemma 7 ([18]). For ∀ f1 ∈ R and ∀ f2 ∈ R, the following inequality holds:

| f1|w1 | f1|w2 ≤ w1

w1 + w2
w3| f1|w1+w2 +

w2

w1 + w2
w
− w1

w2
3 | f2|w1+w2 , (13)

where w1 > 0, w2 > 0 and w3 > 0.

Lemma 8 ([8]). For arbitrary continuous function h̄(G) with sufficiently large r in a compact set
ΩG ⊂ Rr, there exists an NN approximator ϑ∗Tv(G) such that

h̄(G) = ϑ∗Tv(G) + ε(G), (14)

where G = [g1, g2, . . . , gk]
T ∈ Rk ⊂ Rr denotes the input vector, ϑ∗ = [ϑ1, ϑ2, . . . , ϑl ]

T ∈ Rr

represents the ideal NN weight matrix, ε(G) is the approximation error and satisfies ε(G) ≤ ε̄.
v(G) = [v1(G), v2(G), . . . , vr(G)]T denotes the radial basis function vector, where Gaussian
function ωi(G)(i = 1, 2, . . . , r) expressed as

vi(G) = − exp

(
(G− ηi)

T(G− ηi)

oi

)
, (15)

where oi and ηi refer to the width and center of the Gaussian function, respectively. The ideal weight
matrix ϑ∗ is given as

ϑ∗ = arg min
ϑ∈Rr

{
sup

G∈ΩG

∣∣∣h̄(G)− ϑTv(G)
∣∣∣}. (16)

3. Design and Stability Analysis of Fixed-Time Self-Triggered Consensus Controller
3.1. Fixed-Time Self-Triggered Consensus Controller Design

In this section, controllers and adaptive laws will be constructed using the backstep-
ping technique for MASs with actuator faults and time-varying constraints. First, consider
the following error systems: zi,1 =

l
∑

j=1
aij(yi − yj) + bi(yi − y0),

zi,g = xi,g − ϕi,g−1, g = 2, . . . , n,
(17)

where zi,1 and zi,g, respectively, denote the synchronization error and virtual error of the
i-th agent, ϕi,g−1 represents the virtual controller.

Step 1: By considering (3) and (17), it can be deduced that

żi,1 = −bi ẏ0 −
l

∑
k=1

(xk,2 + n̄k,1) + (bi + di)n̄i,1 + (bi + di)(zi,2 + ϕi,1). (18)

Given the function h̄i,1(Gi,1) = −bi ẏ0 −
l

∑
k=1

(xk,2 + n̄k,1) + (bi + di)n̄i,1, according to

the Lemma 8, the continuous function h̄i,1(Gi,1) can be approximated by the following form:

h̄i,1(Gi,1) = ϑ∗Ti,1 vi,1(Gi,1) + εi,1(Gi,1), (19)

where Gi,1 = [xi,1, xk,1, xk,2, ẏ0], εi,1(Gi,1) > 0.
Then, Equation (18) can be rewritten as

żi,1 = ϑ∗Ti,1 vi,1(Gi,1) + εi,1(Gi,1) + (bi + di)(zi,2 + ϕi,1). (20)
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Formulate the ABLF as follows:

Vi,1 =
(1− si,1(zi,1))

2
ln

k2
a1

i
(t)

k2
a1

i
(t)− z2

i,1
+

si,1(zi,1)

2
ln

k2
b1

i
(t)

k2
b1

i
(t)− z2

i,1
+

1
2

ϑ̃T
i,1W−1

i,1 ϑ̃i,1, (21)

where ϑ̃i,1 = ϑ̂i,1 − ϑ∗i,1 represents the error between the ideal weight matrix ϑ∗i,1 and its esti-
mated value ϑ̂i,1, Wi,1 = W−1

i,1 is a positive constant gain matrix, the barrier functions ka1
i
(t)

and kb1
i
(t) satisfy ka1

i
(t) = ξmink̄a1

i
(t) and kb1

i
(t) = ξmink̄b1

i
(t), where k̄a1

i
(t) = y0 − kc1

i
(t)

and k̄b1
i
(t) = kc1

i
(t) − y0. ξmin represents the minimum singular value of L − A. The

function si,g(zi,g)(g = 1, 2, . . . , n) is defined as

si,g(zi,g) =

{
1, zi,g ≥ 0,
0, zi,g < 0.

(22)

Remark 1. From the definition of si,g(zi,g), it can be observed that the designed ABLF can handle
asymmetric barrier constraints.

For the purpose of simplifying the analysis procedure, the following transformation
is performed: 

ζai,g(t) =
zi,g

k
ag
i
(t) ,

ζbi,g
(t) =

zi,g
k

bg
i
(t) ,

ζi,g(t) =
(1−si,g(zi,g))zi,g

k
ag
i
(t) +

si,g(zi,g)zi,g
k

bg
i
(t) .

(23)

By combining (21) and (23), the derivative of Vi,1 is given by

V̇i,1 =

(
(1−si,1(zi,1))ζai,1
ka1

i
(t)(1−ζ2

ai,1 )
+

si,1(zi,1)ζbi,1
kb1

i
(t)(1−ζ2

bi,1
)

)
żi,1 + ϑ̃T

i,1W−1
i,1

˙̂ϑi,1

−
(1−si,1(zi,1))k̇a1

i
(t)ζ2

ai,1

ka1
i
(t)(1−ζ2

ai,1 )
−

si,1(zi,1)k̇b1
i
(t)ζ2

bi,1

kb1
i
(t)(1−ζ2

bi,1
)

.
(24)

Substituting (18) into (24), we have

V̇i,1 =

(
(1− si,1(zi,1))ζai,1

ka1
i
(t)(1− ζ2

ai,1
)

+
si,1(zi,1)ζbi,1

kb1
i
(t)(1− ζ2

bi,1
)

)
× [ϑ∗Ti,1 vi,1(Gi,1) + εi,1(Gi,1) + (bi + di)(zi,2 + ϕi,1)]

+ ϑ̃T
i,1W−1

i,1
˙̂ϑi,1 −

(1− si,1(zi,1))k̇a1
i
(t)ζ2

ai,1

ka1
i
(t)(1− ζ2

ai,1
)

−
si,1(zi,1)k̇b1

i
(t)ζ2

bi,1

kb1
i
(t)(1− ζ2

bi,1
)

.

(25)

Then, construct the following virtual controller:

ϕi,1 = 1
(bi+di)

[−ci,1,1χi,1z3
i,1 − ci,2,1χ

p−1
i,1 z2p−1

i,1 − 1
2γi,1

χi,1zi,1

− 1
2 (bi + di)

2zi,1 −Λi,1(t)zi,1 − ϑ̂T
i,1vi,1(Gi,1)],

(26)

where ci,1,1, ci,2,1, and γi,1 are positive gain constants, and the design parameter p satisfies
p ∈ (0.5, 1). The definitions of χi,g(g = 1, 2, . . . , n) and Λi,g(t) are given by
Equations (27) and (28), respectively.
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χi,g =
(1− si,g(zi,g))

k2
ag

i
(t)− z2

i,g
+

si,g(zi,g)

k2
bg

i
(t)− z2

i,g
, (27)

Λi,g(t) =

√√√√√ k̇ag
i
(t)

kag
i
(t)

2

+

 k̇bg
i
(t)

kbg
i
(t)

2

+ ιg, (28)

where ιg is a positive constant.
By further deriving from (28), we can obtain

Λi,1(t) +
(1− si,1(zi,1))k̇a1

i
(t)ζ2

ai,1

ka1
i
(t)(1− ζ2

ai,1
)

+
si,1(zi,1)k̇b1

i
(t)ζ2

bi,1

kb1
i
(t)(1− ζ2

bi,1
)
≥ 0. (29)

The construction of the adaptive law is as follows:

˙̂ϑi,1 = Wi,1(χi,1zi,1v(Gi,1)− δi,1ϑ̂i,1), (30)

where δi,1 > 0 is a constant.
By simultaneously considering (25) to (30), we have

V̇i,1 ≤ χi,1zi,1[−ci,1,1χi,1z3
i,1 − ci,2,1χ

p−1
i,1 z2p−1

i,1 − 1
2γi,1

χi,1zi,1

− 1
2
(bi + di)

2zi,1 + (bi + di)zi,2 + εi,1(Gi,1)]− δi,1ϑ̃T
i,1ϑ̂i,1.

(31)

Based on the Lemma 5, inequalities (32) and (33) can be derived.

χi,1zi,1εi,1(Gi,1) ≤
1

2γi,1
(χi,1zi,1)

2 +
1
2

γi,1 ε̄2
i,1, (32)

χi,1(bi + di)zi,1zi,2 ≤ χi,1(
1
2
(bi + di)

2z2
i,1 +

1
2

z2
i,2), (33)

where ε̄i,1 represents an upper bound for εi,1(Gi,1).
Obviously, from (32) and (33), we can obtain

V̇i,1 ≤− ci,1,1χ2
i,1z4

i,1 − ci,2,1χ
p
i,1z2p

i,1

+
1
2

γi,1 ε̄2
i,1 +

1
2q

χi,1z2
i,2 − δi,1ϑ̃T

i,1ϑ̂i,1.
(34)

Step g (2 ≤ g ≤ n− 1): By considering (3) and (17), it can be deduced that

żi,g = ϕi,g + zi,g+1 + n̄i,g − ϕ̇i,g−1, (35)

where ϕ̇i,g−1 =
g−1
∑

j=0

∂ϕi,g−1

∂y(j)
0

ẏ0 +
g−1
∑

j=1

∂ϕi,g−1
∂xi,j

xi,j +
g−1
∑

j=1

∂ϕi,g−1

∂ϑ̂i,j

˙̂ϑi,j +
g−1
∑

j=1

l
∑

k=1

∂αi,g−1
∂xk,j

xk,j

+
g−1
∑

j=0

∂ϕi,g−1

∂φ
(j)
i,g−1

φ
(j+1)
i,g−1 , φi,g−1 = [ka1

i
, . . . , k

ag−1
i

, kb1
i
, . . . , k

bg−1
i

]T .

Defining the function h̄i,g(Gi,g) = n̄i,g − ϕ̇i,g−1, according to Lemma 8, there exists an
NN approximator ϑ∗Ti,g vi,g(Gi,g) and a positive parameter εi,g(Gi,g), such that h̄i,g(Gi,g) can
be expressed as

h̄i,g(Gi,g) = ϑ∗Ti,g vi,g(Gi,g) + εi,g(Gi,g), (36)

where Gi,g = [x̄T
i,g, x̄T

k,g, ẏ0], εi,g(Gi,g) > 0.
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Therefore, żi,g can be rewritten as

żi,g = ϑ∗Ti,g vi,g(Gi,g) + εi,g(Gi,g) + zi,g+1 + αi,g. (37)

The construction of the ABLF is given as

Vi,g =Vi,g−1 +
(1− si,g(zi,g))

2
ln

k2
ag

i
(t)

k2
ag

i
(t)− z2

i,g

+
1
2

ϑ̃T
i,gW−1

i,g ϑ̃i,g +
si,g(zi,g)

2
ln

k2
bg

i
(t)

k2
bg

i
(t)− z2

i,g
,

(38)

where ϑ̃i,g = ϑ̂i,g − ϑ∗i,g represents the error between the ideal weight matrix ϑ∗i,g and its

estimated value ϑ̂i,g, Wi,g = W−1
i,g is a positive constant gain matrix.

Taking the derivative of (38), we obtain:

V̇i,g =V̇i,g−1 +

 (1− si,g(zi,g))ζai,g

kag
i
(t)(1− ζ2

ai,g
)

+
si,g(zi,g)ζbi,g

kbg
i
(t)(1− ζ2

bi,g
)

żi,g

+ ϑ̃T
i,gW−1

i,g
˙̂ϑi,g −

(1− si,g(zi,g))k̇ag
i
(t)ζ2

ai,g

kag
i
(t)(1− ζ2

ai,g
)

−
si,g(zi,g)k̇bg

i
(t)ζ2

bi,g

kbg
i
(t)(1− ζ2

bi,g
)

.

(39)

Substituting (37) into (39), it yields

V̇i,g =V̇i,g−1 +

 (1− si,g(zi,g))ζai,g

kag
i
(t)(1− ζ2

ai,g
)

+
si,g(zi,g)ζbi,g

kbg
i
(t)(1− ζ2

bi,g
)


× [ϑ∗Ti,g vi,g(Gi,g) + εi,g(Gi,g) + zi,g+1 + ϕi,g]

+ ϑ̃T
i,gW−1

i,g
˙̂ϑi,g −

(1− si,g(zi,g))k̇ag
i
(t)ζ2

ai,g

kag
i
(t)(1− ζ2

ai,g
)

−
si,g(zi,g)k̇bg

i
(t)ζ2

bi,g

kbg
i
(t)(1− ζ2

bi,g
)

.

(40)

Designing the virtual controller and adaptive law as

ϕi,g =− ci,1,gχi,gz3
i,g − ci,2,gχ

p−1
i,g z2p−1

i,g − 1
2γi,g

χi,gzi,g

− 1
2

zi,g −
χi,g−1zi,g

2χi,g
−Λi,g(t)zi,g − ϑ̂T

i,gvi,g(Gi,g),
(41)

˙̂ϑi,g = Wi,g(χi,gzi,gv(Gi,g)− δi,gϑ̂i,g), (42)

where ci,1,g, ci,2,g, γi,g and δi,g are positive design parameters.
According to (41) and (42), we gain

V̇i,g ≤ V̇i,g−1 − ci,1,gχ2
i,gz4

i,g − ci,2,gχ
p
i,gz2p

i,g + χi,gzi,gεi,g(Gi,g) + χi,gzi,gzi,g+1

− 1
2 χi,gz2

i,g −
1
2q χi,g−1z2

i,g −
1

2γi,g
χ2

i,gz2
i,g − δi,gϑ̃T

i,gϑ̂i,g.
(43)

Based on the Lemma 5, inequalities (44) and (45) can be derived.

χi,gzi,gεi,g(Gi,g) ≤ 1
2γi,g

(χi,gzi,g)
2 + 1

2 γi,g ε̄2
i,g, (44)
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χi,gzi,gzi,g+1 ≤ χi,g(
1
2 z2q

i,g +
1
2 z2

i,g+1), (45)

where ε̄i,g represents an upper bound for εi,g(Gi,g).
Obviously, from the above inequality, we can obtain

V̇i,g ≤ V̇i,g−1 − ci,1,gχ2
i,gz4

i,g − ci,2,gχ
p
i,gz2p

i,g +
1
2 γi,g ε̄2

i,g
− 1

2q χi,g−1z2
i,g +

1
2q χi,gz2

i,g+1 − δi,gϑ̃T
i,gϑ̂i,g.

(46)

Through analysis, it can be deduced in step g− 1 that:

V̇i,g−1 ≤ −
g−1
∑
j

ci,1,jχ
2
i,jz

4
i,j −

g−1
∑
j

ci,2,jχ
p
i,jz

2p
i,j

+ 1
2

g−1
∑
j

γi,j ε̄
2
i,j +

1
2q χi,g−1z2

i,g −
g−1
∑
j

δi,jϑ̃
T
i,jϑ̂i,j.

(47)

Hence, V̇i,g can be written as

V̇i,g ≤ −
g
∑
j

ci,1,jχ
2
i,jz

4
i,j −

g
∑
j

ci,2,jχ
p
i,jz

2p
i,j

+ 1
2

g
∑
j

γi,j ε̄
2
i,j +

1
2q χi,gz2

i,g+1 −
g
∑
j

δi,jϑ̃
T
i,jϑ̂i,j.

(48)

Step n: To conserve system communication resources, an STM is established as
shown below: 

ūi,j = ωi,j(tg), ∀t ∈ [tg, tg+1),

tg+1 =

 tg + t∗, ẇi,j(t) > v2,

tg +
η|ūi,j|+η1

max{v1,wi,j(t)}
, ẇi,j(t) ≤ v2,

(49)

where wi,j(t) =
∣∣∣ω̇i,j(t)|t=tg

∣∣∣, ωi,j(t) represents the intermediate control signal for the STM,
which will be defined next. tg(g ∈ N+) represents the triggering moment, t∗ denotes an
arbitrarily small positive number, and η1, η, v1, and v2 are positive design parameters.

Remark 2. From (49), it can be observed that the designed STM calculates the next triggering
moment at each trigger instant. The next triggering moment is determined by the values of η, η1, v2,
t∗, and max{v1, wi,j(t)}. Accordingly, when the intermediate control signal undergoes significant
changes, the next triggering moment occur earlier. Additionally, by introducing v1, the system
ensures that the signals are updated within a reasonable time frame to avoid prolonged periods
without updates. v2 represents the maximum tolerated rate of change for wi,j(t). Properly selecting
the parameters for v1 and v2 guarantees both efficient utilization of communication resources and
system stability.

The definition of the intermediate control signal is as provided below:

ωi,j(t) =− (1 + η)

(
µi,j tanh

( zi,nsign(gi,j)`i,j(x̄i)µi,j

ς

)
+η̄1 tanh

( zi,nsign(gi,j)`i,j(x̄i)η̄1

ς

))
,

(50)

where ς denotes a positive constant and µi,j represents the control signal of the j-th actuator.
Its design is as follows:
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µi,j =
sign(gi,j)θ

T
i,jρi

`i,j(x̄i)
, (51)

where θT
i,j =

[ 1
∑

j∈Fb
|gi,j|σi,j

θi,j,1 · · · θi,j,r
]T

, ρi =
[

ϕi,n ρi,1 · · · ρi,r
]T, ρi, j̄ = `i,j(x̄i),

ϕi,n denotes the virtual controller. Especially, if j̄ ∈ Fa, θi,j, j̄ =
−gi,jκi,j

∑
j̄∈Fb

|gi,j|σi,j
, else θi,j, j̄ = 0.

Consequently, it can be inferred that

∑
j∈Fb

∣∣gi,j
∣∣σi,jθ

T
i,jρi = ϕi,n − ∑

j∈Fa

∣∣gi,j
∣∣`i,j(x̄i)κi,j. (52)

Since θi,j cannot be obtained in advance, θ̂i,j is used to estimate the value of θi,j.
The estimation error is represented by θ̃i,j = θi,j − θ̂i,j. Therefore, the expression for µi,j
should be:

µi,j =
sign(gi,j)θ̂

T
i,jρi

`i,j(x̄i)
. (53)

By considering (3) and (17), it can be deduced that

żi,n =
r

∑
j=1

gi,j`i,j(x̄i)(σi,jūi,j + κi,j) + n̄i,n(x̄i,n)− ϕ̇i,n−1, (54)

where ϕ̇i,n−1 =
n−1
∑

j=0

∂ϕi,n−1

∂y(j)
0

ẏ0 +
n−1
∑

j=1

∂ϕi,n−1
∂xi,j

xi,j +
n−1
∑

j=1

∂ϕi,n−1
∂ϑ̂i,j

˙̂ϑi,j +
n−1
∑

j=1

l
∑

k=1

∂αi,n−1
∂xk,j

xk,j

+
n−1
∑

j=0

∂ϕi,n−1

∂φ
(j)
i,n−1

φ
(j+1)
i,n−1 .

Given the function h̄i,n(Gi,n) = n̄i,n − ϕ̇i,n−1 + 0.557λ
r
∑

j=1

∣∣gi,j
∣∣σi,j, according to the

Lemma 8, the continuous function h̄i,n(Gi,n) can be approximated by the following form:

h̄i,n(Gi,n) = ϑ∗Ti,n vi,n(Gi,n) + εi,n(Gi,n), (55)

where Gi,n = [x̄T
i,n, x̄T

k,n, ẏ0], εi,n(Gi,n) > 0.
Then, żi,n can be rewritten as

żi,n =
r

∑
j=1

gi,j`i,j(x̄i)(σi,jūi,j + κi,j) + ϑ∗Ti,n vi,n(Gi,n) + εi,n(Gi,n)− 0.557ς
r

∑
j=1

∣∣gi,j
∣∣σi,j. (56)

In this step, the ABLF is chosen as

Vi,n =Vi,n−1 +
(1− si,n(zi,n))

2
ln

k2
an

i
(t)

k2
an

i
(t)− z2

i,n
+

si,n(zi,n)

2
ln

k2
bn

i
(t)

k2
bn

i
(t)− z2

i,n

+
1
2

ϑ̃T
i,nW−1

i,n ϑ̃i,n+
1
2 ∑

j∈Fb

∣∣gi,j
∣∣σi,j θ̃

T
i,j J
−1
i,j θ̃i,j,

(57)

where ϑ̃i,n = ϑ̂i,n − ϑ∗i,n represents the error between the ideal weight matrix ϑ∗i,n and its
estimated value ϑ̂i,n, Wi,n = W−1

i,n and Ji,j = J−1
i,j represent positive constant gain matrices.
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Differentiating Equation (57), we have

V̇i,n =V̇i,n−1 +

(
(1− si,n(zi,n))ζai,n

kan
i
(t)(1− ζ2

ai,n
)

+
si,n(zi,n)ζbi,n

kbn
i
(t)(1− ζ2

bi,n
)

)
żi,n + ϑ̃T

i,nW−1
i,n

˙̂ϑi,n

+ ∑
j∈Fb

∣∣gi,j
∣∣σi,j θ̃

T
i,j J
−1
i,j

˙̂θi,j −
(1− si,n(zi,n))k̇an

i
(t)ζ2

ai,n

kan
i
(t)(1− ζ2

ai,n
)

−
si,n(zi,n)k̇bn

i
(t)ζ2

bi,n

kbn
i
(t)(1− ζ2

bi,n
)

.

(58)

Substituting (56) into (58), we obtain:

V̇i,n =V̇i,n−1 + ϑ̃T
i,nW−1

i,n
˙̂θi,n + ∑

j∈Fb

∣∣gi,j
∣∣σi,j θ̃

T
i,j J
−1
i,j

˙̂θi,j + χi,nzi,n×[
r

∑
j=1

gi,j`i,j(x̄i)(σi,jūi,j + κi,j) + ϑ∗Ti,n vi,n(Gi,n) + εi,n(Gi,n)− 0.557ς
r

∑
j=1

∣∣gi,j
∣∣σi,j

]

−
(1− si,n(zi,n))k̇an

i
(t)ζ2

ai,n

kan
i
(t)(1− ζ2

ai,n
)

−
si,n(zi,n)k̇bn

i
(t)ζ2

bi,n

kbn
i
(t)(1− ζ2

bi,n
)

.

(59)

According to (49), we have ūi,j(t) =
ωi,j(t)−o1η1

1+o2η , where |o1| < 1 and |o2| < 1. Further
derivation leads to:

zi,nsign(gi,j)`i,j(x̄i)ūi,j =− zi,nsign(gi,j)`i,j(x̄i)

×
(

1 + η

1 + oi,2η

(
µi,j tanh

( zi,nsign(gi,j)`i,j(x̄i)µi,j

ς

)
+η̄1 tanh

( zi,nsign(gi,j)`i,j(x̄i)η̄1

ς

))
+

oi,1η1

1 + oi,2η

)
.

(60)

According to (60) and Lemma 2, it can be given as follows:

zi,nsign(gi,j)`i,j(x̄i)ūi,j ≤− zi,nsign(gi,j)`i,j(x̄i)µi,j tanh
( zi,nsign(gi,j)`i,j(x̄i)µi,j

ς

)
− zi,nsign(gi,j)`i,j(x̄i)η̄1 tanh

( zi,nsign(gi,j)`i,j(x̄i)η̄1

ς

)
+

∣∣∣∣zi,nsign(gi,j)`i,j(x̄i)
η1

1− η

∣∣∣∣
≤
∣∣zi,nsign(gi,j)`i,j(x̄i)µi,j

∣∣
− zi,nsign(gi,j)`i,j(x̄i)µi,j tanh

( zi,nsign(gi,j)`i,j(x̄i)µi,j

ς

)
−
∣∣zi,nsign(gi,j)`i,j(x̄i)µi,j

∣∣+ ∣∣∣∣zi,nsign(gi,j)`i,j(x̄i)
η1

1− η

∣∣∣∣
− zi,nsign(gi,j)`i,j(x̄i)η̄1 tanh

( zi,nsign(gi,j)`i,j(x̄i)η̄1

ς

)
≤zi,nsign(gi,j)`i,j(x̄i)µi,j + 0.557ς.

(61)
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Along with (53), (59) and (61), one gets

V̇i,n ≤V̇i,n−1 +

[
r

∑
j=1

∣∣gi,j
∣∣σi,j θ̂

T
i,jρi +

r

∑
j=1

∣∣gi,j
∣∣`i,j(x̄i)κi,j + ϑ∗Ti,n vi,n(Gi,n) + εi,n(Gi,n)

]
× zi,nχi,n + ϑ̃T

i,nW−1
i,n

˙̂ϑi,n + ∑
j∈Fb

∣∣gi,j
∣∣σi,j θ̃

T
i,j J
−1
i,j

˙̂θi,j

−
(1− si,n(zi,n))k̇an

i
(t)ζ2

ai,n

kan
i
(t)(1− ζ2

ai,n
)

−
si,n(zi,n)k̇bn

i
(t)ζ2

bi,n

kbn
i
(t)(1− ζ2

bi,n
)

.

(62)

According to θ̃i,j = θi,j − θ̂i,j and (52), which yields

V̇i,n ≤V̇i,n−1 + χi,nzi,n

[
ϕi,n +

r

∑
j=1

∣∣gi,j
∣∣σi,j θ̃

T
i,jρi + ϑ∗Ti,n vi,n(Gi,n)

]
+ χi,nzi,nεi,n(Gi,n) + ϑ̃T

i,nW−1
i,n

˙̂ϑi,n + ∑
j∈Fb

∣∣gi,j
∣∣σi,j θ̃

T
i,j J
−1
i,j

˙̂θi,j

−
(1− si,n(zi,n))k̇an

i
(t)ζ2

ai,n

kan
i
(t)(1− ζ2

ai,n
)

−
si,n(zi,n)k̇bn

i
(t)ζ2

bi,n

kbn
i
(t)(1− ζ2

bi,n
)

.

(63)

Designing the virtual controller and adaptive laws as

ϕi,n = −ci,1,nχi,nz3
i,n − ci,2,nχ

p−1
i,n z2p−1

i,n −Λi,n(t)zi,n

− 1
2γi,n

χi,nzi,n −
χi,n−1zi,n

2χi,n
− ϑ̂T

i,nvi,n(Gi,n),
(64)

˙̂ϑi,n = Wi,n(χi,nzi,nv(Gi,n)− δi,nϑ̂i,n), (65)

˙̂θi,j = Ji,j(−χi,nzi,nρi − υi,j θ̂i,j), (66)

where ci,1,n, ci,2,n, γi,n, δi,n and υi,j are positive design parameters.
Substituting (64)–(66) into (63), we obtain

V̇i,n ≤V̇i,n−1 − ci,1,nχi,nz3
i,n − ci,2,nχ

p
i,nz2p

i,n −
1

2γi,n
(χi,nzi,n)

2

+ χi,nzi,nεi,n(Gi,n)−
1
2q

χi,n−1z2
i,n − δi,nϑ̃T

i,nϑ̂i,n − ∑
j∈Fb

∣∣gi,j
∣∣σi,jυi,j θ̃

T
i,j θ̂i,j.

(67)

Applying the Lemma 5, one has

χi,nzi,nεi,n(Gi,n) ≤
1

2γi,n
(χi,nzi,n)

2 +
1
2

γi,n ε̄2
i,n, (68)

where ε̄i,n represents an upper bound for εi,n(Gi,n).
Now, by inserting (68) into (67), one has

V̇i,n ≤V̇i,n−1 − ci,1,nχ2
i,nz4

i,n − ci,2,nχ
p
i,nz2p

i,n +
1
2

γi,n ε̄2
i,n

− 1
2

χi,n−1z2
i,n − δi,nϑ̃T

i,nϑ̂i,n − ∑
j∈Fb

∣∣gi,j
∣∣σi,jυi,j θ̃

T
i,j θ̂i,j.

(69)
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The following inequalities can be deduced in step n− 1

V̇i,n−1 ≤−
n−1

∑
j

ci,1,jχ
2
i,jz

4
i,j −

n−1

∑
j

ci,2,jχ
p
i,jz

2p
i,j

+
1
2

n−1

∑
j

γi,j ε̄
2
i,j +

1
2

χi,n−1z2
i,n −

n−1

∑
j

δi,jϑ̃
T
i,jϑ̂i,j.

(70)

Substituting (70) into (69) leads to

V̇i,n ≤−
n

∑
j

ci,1,jχ
2
i,jz

4
i,j −

n

∑
j

ci,2,jχ
p
i,jz

2p
i,j

+
1
2

n

∑
j

γi,j ε̄
2
i,j −

n

∑
j

δi,jϑ̃
T
i,jϑ̂i,j − ∑

j∈Fb

∣∣gi,j
∣∣σi,jυi,j θ̃

T
i,j θ̂i,j.

(71)

Applying Lemma 3, it follows that

−
n

∑
j

ci,1,j(χi,jz2
i,j)

2 ≤ −
n

∑
j

ci,1,j

si,j(zi,j) ln
k2

bj
i

k2
bj

i

− z2
i,j

+ (1− si,j(zi,j)) ln
k2

aj
i

k2
aj

i

− z2
i,j

2

, (72)

−
n

∑
j

ci,1,j(χi,jz2
i,j)

p ≤ −
n

∑
j

ci,2,j

si,j(zi,j) ln
k2

bj
i

k2
bj

i

− z2
i,j

+ (1− si,j(zi,j)) ln
k2

aj
i

k2
aj

i

− z2
i,j

p

. (73)

According to Lemma 7, two inequalities can be obtained as

−
n

∑
j

δi,jϑ̃
T
i,jϑ̂i,j − ∑

j∈Fb

∣∣gi,j
∣∣σi,jυi,j θ̃

T
i,j θ̂i,j ≤−

n

∑
j

δi,jϑ̃
T
i,j(ϑ̃i,j + ϑ∗i,j)− ∑

j∈Fb

∣∣gi,j
∣∣σi,jυi,j θ̃

T
i,j(θ̃i,j + θ∗i,j)

≤−
n

∑
j

1
2

δi,j
∥∥ϑ̃i,j

∥∥2 − 1
2 ∑

j∈Fb

∣∣gi,j
∣∣σi,jυi,j

∥∥θ̃i,j
∥∥2 (74)

+
n

∑
j

1
2

δi,j

∥∥∥ϑ∗i,j

∥∥∥2
+

1
2 ∑

j∈Fb

∣∣gi,j
∣∣σi,jυi,j

∥∥∥θ∗i,j

∥∥∥2
.

Along with (71)–(74), one gets

V̇i,n ≤−
n

∑
j

ci,1,j

si,j(zi,j) ln
k2

bj
i

k2
bj

i

− z2
i,j

+ (1− si,j(zi,j)) ln
k2

aj
i

k2
aj

i

− z2
i,j

2

−
n

∑
j

ci,2,j

si,j(zi,j) ln
k2

bj
i

k2
bj

i

− z2
i,j

+ (1− si,j(zi,j)) ln
k2

aj
i

k2
aj

i

− z2
i,j

p

+
1
2

n

∑
j

γi,j ε̄
2
i,j −

n

∑
j

1
2

δi,j
∥∥ϑ̃i,j

∥∥2
+

n

∑
j

1
2

δi,j

∥∥∥ϑ∗i,j

∥∥∥2

− 1
2 ∑

j∈Fb

∣∣gi,j
∣∣σi,jυi,j

∥∥θ̃i,j
∥∥2

+
1
2 ∑

j∈Fb

∣∣gi,j
∣∣σi,jυi,j

∥∥∥θ∗i,j

∥∥∥2
.

(75)
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By applying Lemma 7, one can obtain(
n

∑
j

∥∥ϑ̃i,j
∥∥2

2

)p

≤ (1− p)p
p

1−p +
n

∑
j

∥∥ϑ̃i,j
∥∥2

2
, (76)

(
∑

j∈Fb

∣∣gi,j
∣∣σi,j

∥∥θ̃i,j
∥∥2

2

)p

≤ (1− p)p
p

1−p + ∑
j∈Fb

∣∣gi,j
∣∣σi,j

∥∥θ̃i,j
∥∥2

2
. (77)

According to (76), (77) and Lemma 3, (75) can be rewritten as

V̇i,n ≤− αi,1

 n

∑
j

si,j(zi,j) ln
k2

bj
i

k2
bj

i

− z2
i,j

+
n

∑
j
(1− si,j(zi,j)) ln

k2
aj

i

k2
aj

i

− z2
i,j

2

− βi,1

 n

∑
j

si,j(zi,j) ln
k2

bj
i

k2
bj

i

− z2
i,j

+
n

∑
j
(1− si,j(zi,j)) ln

k2
aj

i

k2
aj

i

− z2
i,j

p

− αi,2

(
n

∑
j

∥∥ϑ̃i,j
∥∥2

2

)2

+ αi,2

(
n

∑
j

∥∥ϑ̃i,j
∥∥2

2

)2

− βi,2

(
n

∑
j

∥∥ϑ̃i,j
∥∥2

2

)p

(78)

− αi,3

(
∑

j∈Fb

∣∣gi,j
∣∣σi,j

∥∥θ̃i,j
∥∥2

2

)2

+ αi,3

(
∑

j∈Fb

∣∣gi,j
∣∣σi,j

∥∥θ̃i,j
∥∥2

2

)2

− βi,2

(
∑

j∈Fb

∣∣gi,j
∣∣σi,j

∥∥θ̃i,j
∥∥2

2

)p

+
1
2

n

∑
j

γi,j ε̄
2
i,j + 2βi,2(1− p)p

p
1−p

+
n

∑
j

1
2

δi,j

∥∥∥ϑ∗i,j

∥∥∥2
+

1
2 ∑

j∈Fb

∣∣gi,j
∣∣σi,jυi,j

∥∥∥θ∗i,j

∥∥∥2
,

where αi,1 =
min{ci,1,1,...,ci,1,n}

n , αi,2 =
min{δi,1λmin(Wi,1),δi,1λmin(Wi,1),··· ,δi,nλmin(Wi,n)}

n ,

αi,3 =
min{υi,1λmin(Ji,1),υi,2λmin(Ji,2)··· ,υi,jλmin(Ji,j)}

j , βi,1 = min{ci,2,1, . . . , ci,2,n} ,
βi,2 = min{δi,1λmin(Wi,1), δi,1λmin(Wi,1), · · · , δi,nλmin(Wi,n), υi,jλmin(Ji,j)}.

Then, based on (57), (78) and Lemma 3, it holds that

V̇i,n ≤ −AiV2
i,n − BiV

p
i,n + Ci. (79)

where Ai =
min{αi,1,αi,2,αi,3}

2 , Bi = min{βi,1, βi,2}, Ci = αi,2

(
n
∑
j

‖ϑ̃i,j‖2

2

)2

+ 2βi,2(1− p)p
p

1−p +

αi,3

(
∑

j∈Fb

|gi,j|σi,j‖θ̃i,j‖2

2

)2

+ 1
2

n
∑
j

γi,j ε̄
2
i,j +

n
∑
j

1
2 δi,j

∥∥∥ϑ∗i,j

∥∥∥2
+ 1

2 ∑
j∈Fb

∣∣gi,j
∣∣σi,jυi,j

∥∥∥θ∗i,j

∥∥∥2
.

Remark 3. This paper proposes an adaptive NN control method based on radial basis function
neural networks to deal with uncertain nonlinearities among agents. The structure of the adaptive
NN control method used in this paper is shown in Figure 1, and it only requires online updating
of the neural network weights. Then, in combination with adaptive control, the ideal weight
ϑ∗i,g(g = 1, . . . , n) is estimated using ϑ̂i,g. Following that, the adaptive backstepping technology

is employed to construct the virtual controller ϕ̇i,g and the adaptive law ˙̂ϑi,g, which ensures the
stability of the system.
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Figure 1. Schematic diagram of the adaptive NN control method.

3.2. System Stability Analysis

Theorem 1. Under the Assumptions 1–4, the proposed method using virtual controllers (26),
(41), (64), adaptive laws (30), (42), (65), (66), STM (49), control signal (51), and intermediate
control signal (50) can guarantee the following characteristics for MASs (3) with actuator faults
and time-varying state constraints:

1. The system states will not violate the specified constraints and all system signals are bounded.
2. Zeno-behavior will not occur.

Proof. 1. Construct the Lyapunov function V for the system as follows:

V =
l

∑
i=1

Vi,n. (80)

According to (80) and the Lemma 3, it yields

V̇ ≤ −
l

∑
i=1

AiV2
i,n −

l
∑

i=1
BiV

p
i,n +

l
∑

i=1
Ci

≤ −A
(

l
∑

i=1
Vi,n

)2

− B
(

l
∑

i=1
Vi,n

)p

+ C

≤ −AV2 − BVp + C,

(81)

where A = {A1,...,Al}
l , B = min{B1, . . . , Bl}, C =

l
∑

i=1
Ci.

According to Lemma 1, it can be concluded that the convergence time T of the MASs (3)
is practical fixed-time, and it satisfies

T ≤ 1
Aν

+
1

Bν(1− p)
, (82)
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where 0 < ν < 1, furthermore, the solution of the MASs (3), is to a set of

Θ ∈ min

{
V(Θ) ≤

(
C

(1− ν)A

) 1
2
,
(

C
(1− ν)B

) 1
p
}

. (83)

Remark 4. According to (82), it can be seen that the convergence time T of the MASs (3) is
independent of the initial states and only depends on the system parameters. Therefore, the MAS is
practically fixed-time stable.

Due to each term in V being positive, it can be deduced that

1
2

ln
1

1− ζ2
i,g
≤ V ≤ Θ. (84)

By further inference, we can derive the following inequalities:{
zi,g ≥ ∆i,g,
zi,g ≤ ∆̄i,g,

(85)

where ∆i,g = −kag
i
(t)
(

1− 1
e2Θ

) 1
2 , ∆̄i,g = kbg

i
(t)
(

1− 1
e2Θ

) 1
2 .

Then, according to the Lemma 6, we can deduce ‖y−Y0‖ ≥
∆i,1
ξmin
≥
−ka1

i
(t)

ξmin
,

‖y−Y0‖ ≤
∆̄i,1
ξmin
≤

kb1
i
(t)

ξmin
.

(86)

By the definition of k̄a1
i
(t) and k̄b1

i
(t), it follows that{

xi,1 ≥ −k̄a1
i
(t) + y0(t),

xi,1 ≤ k̄b1
i
(t) + y0(t).

(87)

Therefore, the system state xi,1 satisfies{
xi,1 ≥ kc1

i
(t),

xi,1 ≤ k̄c1
i
(t).

(88)

From Equation (88), it can be concluded that the output state of the system is bounded.
Additionally, from (85), it can be inferred that the error zi,1 is also bounded. k̇a1

i
(t) and k̇b1

i
(t)

are composed of y(1)0 (t), k̄(1)
c1

i
and k(1)

c1
i

. It can be inferred from Assumptions 2 and 3 that

y(1)0 (t), k̄(1)
c1

i
and k(1)

c1
i

are both bounded. Therefore, k̇a1
i
(t) and k̇b1

i
(t) are also bounded. Then,

according to the definition of ϑ̂i,1, ϑ̂i,1 is bounded. Due to ϕi,1 composed of k̇a1
i
(t), k̇b1

i
(t), ϑ̂i,1

and y(1)0 (t), ϕi,1 exists an upper bound ϕ̄i,1. According to zi,2 = xi,2 + ϕi,1 and by selecting
−kc2

i
(t) = ∆i,2(t) + ϕ̄i,1, k̄c2

i
(t) = ∆̄i,2(t) + ϕ̄i,1, it can be obtained that kc2

i
(t) ≤ xi,2 ≤ k̄c2

i
(t),

which means xi,2 is within the constraint ranges.
In view of the above analysis, using the same approach, we can determine that all

states of the system will always remain within the constraints and, furthermore, all signals
of the system are bounded.

2. According to (49), when wi,j(t) > v2, we have tg+1 − tg = t∗ > 0. When

wi,j(t) ≤ v2, due to the boundedness of ūi,j and wi,j(t) =
∣∣∣ω̇i,j(t)|t=tg

∣∣∣, we can conclude that
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η|ūi,j|+η1
max{v1,wi,j(t)}

is also bounded. Therefore, there exists a constant t̄ =
η|ūi,j|+η1

max{v1,wi,j(t)}
such that

tg+1 − tg = t̄ > 0. Evidently, the occurrence of Zeno-behavior is precluded.

4. Simulation Results

In this section, two sets of experiments are employed to substantiate the efficacy of the
proposed fixed-time self-triggered control method.

4.1. Example 1

Consider a class of MASs with a communication structure as presented in Figure 2,
where node 0 represents the leader, and 1–4 represent the followers. The model for each
follower is given below.

ẋi,1 = xi,2 + n̄i,1(x̄i,1),

ẋi,2 =
2
∑

j=1
gi,j`i,j(x̄i)(σi,jūi,j + κi,j) + n̄i,2(x̄i,2),

yi = xi,1,

(89)

where i = 1, 2, . . . , 4, the selection of the nonlinear functions are `i,j(x̄i) = 3 + 0.1 sin(xi,1),
n̄i,1(x̄i,1) = 0.1 sin(xi,1) and n̄i,2(x̄i,1) = 0.2 sin(xi,1x2

i,2). The system’s constraint functions
and the leader’s signal are chosen as k̄c1

i
(t) = 0.9 + 0.4 sin(t), kc1

i
(t) = −0.8 + 0.3 sin(t),

k̄c2
i
(t) = 2.9 + 0.7 cos(t), kc2

i
(t) = −3 + 0.2 cos(t) and y0 = sin(t), respectively. The other

system parameters and controller parameters are listed in Table 1.

0

1

2

3

4

1

1

1

1

Figure 2. Communication structure graph.

Table 1. The other system parameters and controller parameters of Example 1.

The initial values of system

[x1,1(0), x2,1(0), x3,1(0), x4,1(0)]T = [0.2, 0.2, 0.3, 0.4]T ,
[x1,2(0), x2,2(0), x3,2(0), x4,2(0)]T = [0, 0, 0, 0]T ,
ϑ̂i,1(0) = ϑ̂i,2(0) = 0, θ̂i,1(0) = θ̂i,2(0) = [0.4, 0, 0]T ,
[ū1,1, ū1,2]

T = [ū2,1, ū2,2]
T = [ū3,1, ū3,2]

T = [ū4,1, ū4,2]
T = [0, 0]T .

The parameters of controllers

[c1,1,1, c2,1,1, c3,1,1, c4,1,1]
T = [44, 42, 47, 46]T , ι1 = 25, ι2 = 30,

[c1,2,1, c2,2,1, c3,2,1, c4,2,1]
T = [1, 3, 1, 1]T , γi,1 = 4, γi,2 = 2,

[c1,1,2, c2,1,2, c3,1,2, c4,1,2]
T = [4, 4, 5, 2]T , Wi,1 = 0.8I15×15,

[c1,2,2, c2,2,2, c3,2,2, c4,2,2]
T = [8, 4, 3, 3]T , Wi,2 = 0.6I15×15,

Ji,1 = Ji,2 = 0.1I3×3, δi,1 = δi,1 = 0.1, υi,1 = υi,2 = 0.01.

The parameters of STM η = 0.1, η1 = 0.01, ς = 0.5, v1 = 20, v2 = 50, t∗ = 0.01.

Furthermore, we account for two types of actuator failures:
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Case I: At time t = 15 s, actuator 1 experiences a failure rate of 20% for each agent,
while actuator 2 experiences a failure rate of 40%.

Case II: At time t = 15 s, actuator 1 continues to function normally for each agent,
while actuator 2 completely fails.

The simulation results for Example 1 are shown in Figures 3–9. From the simulation re-
sult graphs, it can be observed that the proposed method is effective for MASs with actuator
faults and time-varying state constraints. Figures 3 and 4 depict the tracking performance
of each agent in response to the leader’s trajectory and the associated synchronization
errors. It is evident that, under both instances of actuator failures, the agents achieve rapid
convergence and maintain small tracking errors. Furthermore, the time-varying constraints
on the output states are effectively satisfied. Figures 5–8 depict the input signals of the
STM and the system’s input signals. From the figures, it is evident that the system’s trigger
interval are irregular and the signal update frequency is reduced based on the constructed
STM. Notably, despite encountering actuator failures of varying magnitudes at 15 s, the
system successfully attains the intended control objectives. Figure 9 depicts a comparison
of the actuator 1 triggering number between the conventional continuous-time trigger
mechanism and the developed STM. It is evident from the figure that the STM significantly
decreases the triggering number, leading to substantial savings in system communication
resources. The specific rate of communication resource savings is provided in Table 2.
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(b)

Figure 3. Example 1 (Case I): (a) Trajectories of leader y0 and agents yi; (b) The synchronization
errors zi,1.
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Figure 4. Example 1 (Case II): (a) Trajectories of leader y0 and agents yi; (b) The synchronization
errors zi,1.
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Table 2. The bandwidth saving rate of Example 1.

Case Agent 1 Agent 2 Agent 3 Agent 4

Case I 81.57% 66.03% 65.57% 73.60%
Case II 80.50% 66.17% 65.23% 73.23%
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Figure 5. Example 1 (Case I): Trajectories of ωi,1 and ui,1.
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Figure 6. Example 1 (Case I): Trajectories of ωi,2 and ui,2.
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Figure 7. Example 1 (Case II): Trajectories of ωi,1 and ui,1.
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Figure 8. Example 1 (Case II): Trajectories of ωi,2 and ui,2.
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Figure 9. Example 1: (a) Comparison of trigger frequencies in Case I; (b) Comparison of trigger
frequencies in Case II.
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To validate the fixed-time convergence property of the system, three sets of different
initial states were selected to compare the convergence time of the synchronization errors.
The selections of each set of initial states are displayed in Table 3, and the corresponding
simulation results are illustrated in Figure 10. As can be seen from Figure 10, regardless of
the initial states, the system’s convergence time remains around 0.1 s, which aligns with
our expectations.
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Figure 10. Example 1 (Case I): (a) The synchronization errors of State I; (b) The synchronization errors
of State II; (c) The synchronization errors of State III.

Table 3. Three different initial conditions of Example 1 Case I.

State xi,1(0) xi,1(0) xi,1(0) xi,1(0)

State I 0.2 0.2 0.3 0.4
State II 0.4 0.3 0.2 0.1
State III −0.2 0 0.3 −0.1

4.2. Example 2

This section considers a class of MASs composed of multiple single-link robotic arms.
The dynamics model of the system is as follows:

ẋi,1 = xi,2,

ẋi,2 = 1
J

(
2
∑

j=1

gi,j`i,j(x̄i)

l (σi,jūi,j + κi,j)− Dxi,2 −MGL sin xi,1

)
,

yi = xi,1,

(90)

where G = 9.8 m/s2 and D = 1 kg/s represent the gravitational acceleration and damp-
ing factor, L = 1 m and M = 2 kg represent the length and mass of the robotic arm,
respectively, and J represents the moment of inertia. The system’s constraint functions
and the leader’s signal are chosen as k̄c1

i
(t) = 1.2 + 0.4 sin(t), kc1

i
(t) = −1.2 + 0.3 sin(t),

k̄c2
i
(t) = 2.9 + 0.7 cos(t), kc2

i
(t) = −3 + 0.2 cos(t) and y0 = sin(t) respectively. The other

system parameters and controller parameters are listed in Table 4. Similarly, we adopt two
types of actuator failure cases from Example 1.
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Table 4. The other system parameters and controller parameters of Example 2.

The initial values of system

[x1,1(0), x2,1(0), x3,1(0), x4,1(0)]T = [0.3, 0.4, 0.2, 0.5]T ,

[x1,2(0), x2,2(0), x3,2(0), x4,2(0)]T = [0, 0, 0, 0]T ,

ϑ̂i,1(0) = ϑ̂i,2(0) = 0, θ̂i,1(0) = θ̂i,2(0) = [0.4, 0, 0]T ,

[ū1,1, ū1,2]
T = [ū2,1, ū2,2]

T = [ū3,1, ū3,2]
T = [ū4,1, ū4,2]

T = [0, 0]T .

The parameters of controllers

[c1,1,1, c2,1,1, c3,1,1, c4,1,1]
T = [38, 27, 33, 34]T , ι1 = 30, ι2 = 30,

[c1,2,1, c2,2,1, c3,2,1, c4,2,1]
T = [2, 3, 2, 1]T , γi,1 = 2, γi,2 = 2,

[c1,1,2, c2,1,2, c3,1,2, c4,1,2]
T = [2, 2, 5, 4]T , Wi,1 = 0.8I15×15,

[c1,2,2, c2,2,2, c3,2,2, c4,2,2]
T = [6, 4, 3, 3]T , Wi,2 = 0.8I15×15,

Ji,1 = Ji,2 = 0.1I3×3, δi,1 = δi,1 = 0.1, υi,1 = υi,2 = 0.01.

The parameters of STM η = 0.1, η1 = 0.01, ς = 0.5, v1 = 20, v2 = 50, t∗ = 0.01.

The corresponding simulation results are illustrated in Figures 11–17. Consistent with
the findings from Example 1, employing the proposed control method ensures that the
MAS can still achieve consensus within a fixed time even in the presence of actuator failures
and time-varying constraints. Furthermore, while ensuring fast convergence and small
tracking errors, the system effectively saves communication resources (see Table 5).

Table 5. The bandwidth saving rate of Example 2.

Case Agent 1 Agent 2 Agent 3 Agent 4

Case I 54.33% 32.73% 32.93% 31.53%
Case II 54.57% 36.90% 36.70% 34.53%
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Figure 11. Example 2 (Case I): (a) Trajectories of leader y0 and agents yi; (b) The synchronization
errors zi,1.
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Figure 12. Example 2 (Case II): (a) Trajectories of leader y0 and agents yi; (b) The synchronization
errors zi,1.
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Figure 13. Example 2 (Case I): Trajectories of ωi,1 and ui,1.
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Figure 14. Example 2 (Case I): Trajectories of ωi,2 and ui,2.
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Figure 15. Example 2 (Case II): Trajectories of ωi,1 and ui,1.
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Figure 16. Example 2 (Case II): Trajectories of ωi,2 and ui,2.
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Figure 17. Example 2 : (a) Comparison of trigger frequencies in Case I; (b) Comparison of trigger
frequencies in Case II.
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5. Conclusions

Based on the STM, this work presents a fixed-time consensus control method, which
tackles the challenges of actuator failures and time-varying constraints in MASs. The
ABLFs and adaptive backstepping technique are employed to ensure system satisfaction for
various types of full-state constraints (time-varying constraints, constant constraints, sym-
metric constraints, asymmetric constraints). Additionally, a fixed-time STM is constructed
to achieve rapid MASs stabilization while alleviating communication pressure among the
agents. From Example 2, it can be observed that, as the tracking signal becomes complex,
the amount of communication resources saved by the STM decreases. In the future, we will
further research and enhance it, aiming to maintain its high efficiency in various scenarios.

Author Contributions: Author Contributions: Conceptualization J.W. and F.W.; Methodology, Z.H.
and R.T.; Software, J.L. and Y.Z.; Writing—original draft preparation, J.W. and R.T.; Writing—review
and editing, Y.G. and W.H.; Supervision, R.T. and F.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Guangzhou Yangcheng Scholars Research Project under
grant number 202235199, the Special Funds for the Cultivation of Guangdong College Students’
Scientific and Technological Innovation (Climbing Program Special Funds) under grant number
pdjh2022a0404, the Research project at Guangzhou University under grant RC2023007 and the
College Students’ Innovative Entrepreneurial Training Plan Program under grant s202311078031.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ning, B.; Han, Q.; Zuo, Z.; Ding, L.; Lu, Q.; Ge, X. Fixed-time and prescribed-time consensus control of multiagent systems and

its applications: A survey of recent trends and methodologies. IEEE Trans. Ind. Inform. 2023, 19, 1121–1135. [CrossRef]
2. Qin, J.; Ma, Q.; Shi, Y.; Wang, L. Recent advances in consensus of multi-agent systems: A brief survey. IEEE Trans. Ind. Electron.

2017, 64, 4972–4983. [CrossRef]
3. Ding, L.; Han, Q.; Ge, X.; Zhang, X. An overview of recent advances in event-triggered consensus of multiagent systems. IEEE

Trans. Cybern. 2018, 48, 1110–1123. [CrossRef]
4. Cao, Y.; Yu, W.; Ren, W.; Chen, G. An overview of recent progress in the study of distributed multi-agent coordination. IEEE

Trans. Ind. Inform. 2013, 9, 427–438. [CrossRef]
5. Chen, F.; Ren, W. Multi-agent control: A graph-theoretic perspective. J. Syst. Sci. Complex 2021, 34, 1973–2002. [CrossRef]
6. Zhi, L.; Wu, J. Adaptive constraint control for nonlinear multi-agent systems with undirected graphs. AIMS Math. 2021,

6, 12051–12064. [CrossRef]
7. Wang, Y.; Lei, Y.; Bian, T.; Guan, Z. Distributed control of nonlinear multiagent systems with unknown and nonidentical control

directions via event-triggered communication. IEEE Trans. Cybern. 2020, 50, 1820–1832. [CrossRef] [PubMed]
8. Gong, P.; Han, Q.; Lan, W. Finite-time consensus tracking for incommensurate fractional-order nonlinear multiagent systems

with directed switching topologies. IEEE Trans. Cybern. 2022, 52, 65–76. [CrossRef]
9. Liu, H.; Cheng, L.; Tan, M.; Hou, Z. Exponential finite-time consensus of fractional-order multiagent systems. IEEE Trans. Syst.

Man. Cybern. Syst. 2020, 50, 1549–1558. [CrossRef]
10. Lin, G.; Li, H.; Ahn, C.; Yao, D. Event-based finite-time neural control for human-in-the-loop UAV attitude systems. IEEE Trans.

Neural Netw. Learn. Syst. 2022. [CrossRef] [PubMed]
11. Jia, T.; Pan, Y.; Liang, H.; Lam, H. Event-based adaptive fixed-time fuzzy control for active vehicle suspension systems with

time-varying displacement constraint. IEEE Trans. Fuzzy Syst. 2022, 30, 2813–2821. [CrossRef]
12. Liu, Y.; Li, H.; Zuo, Z.; Li, X.; Lu, R. An overview of finite/fixed-time control and its application in engineering systems.

IEEE/CAA J. Autom. Sin. 2022, 9, 2106–2120. [CrossRef]
13. Chen, C.; Han, Y.; Zhu, S.; Zeng, Z. Distributed fixed-time tracking and containment control for second-order multi-agent systems:

a nonsingular sliding-mode control approach. IEEE Trans. Netw. Sci. Eng. 2023, 10, 687–697. [CrossRef]
14. Ni, J.; Shi, P. Adaptive neural network fixed-time leader–follower consensus for multiagent systems with constraints and

disturbances. IEEE Trans. Cybern. 2021, 51, 1835–1848. [CrossRef]
15. Ning, B.; Han, Q.; Zuo, Z. Practical fixed-time consensus for integrator-type multi-agent systems: A time base generator approach.

Automatica 2019, 105, 406–414. [CrossRef]
16. Du, H.; Wen, G.; Wu, D.; Cheng, Y.; Lü, J. Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems.

Automatica 2020, 113, 108797. [CrossRef]

http://doi.org/10.1109/TII.2022.3201589
http://dx.doi.org/10.1109/TIE.2016.2636810
http://dx.doi.org/10.1109/TCYB.2017.2771560
http://dx.doi.org/10.1109/TII.2012.2219061
http://dx.doi.org/10.1007/s11424-021-1218-6
http://dx.doi.org/10.3934/math.2021698
http://dx.doi.org/10.1109/TCYB.2019.2908874
http://www.ncbi.nlm.nih.gov/pubmed/31021785
http://dx.doi.org/10.1109/TCYB.2020.2977169
http://dx.doi.org/10.1109/TSMC.2018.2816060
http://dx.doi.org/10.1109/TNNLS.2022.3166531
http://www.ncbi.nlm.nih.gov/pubmed/35511837
http://dx.doi.org/10.1109/TFUZZ.2021.3075490
http://dx.doi.org/10.1109/JAS.2022.105413
http://dx.doi.org/10.1109/TNSE.2022.3217536
http://dx.doi.org/10.1109/TCYB.2020.2967995
http://dx.doi.org/10.1016/j.automatica.2019.04.013
http://dx.doi.org/10.1016/j.automatica.2019.108797


Actuators 2023, 12, 364 27 of 27

17. Yang, X.; Wan, X.; Cheng, Z.; Cao, J.; Yang, L.; Rutkowski, L. Synchronization of Switched Discrete-Time Neural Networks via
Quantized Output Control With Actuator Fault. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4191–4201. [CrossRef]

18. Dong, G.; Li, H.; Ma, H.; Lu, R. Finite-time consensus tracking neural network ftc of multi-agent systems. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 32, 653–662. [CrossRef]

19. Wang, J.; Yan, Y.; Liu, Z.; Chen, C.; Zhang, C.; Chen, K. Finite-time consensus control for multi-agent systems with full-state
constraints and actuator failures. Neural Netw. 2023, 157, 350–363. [CrossRef]

20. Jin, X.; Lu, S.; Yu, J. Adaptive NN-based consensus for a class of nonlinear multiagent systems with actuator faults and faulty
networks. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 3474–3486. [CrossRef]

21. Li, Y.; Ding, S.; Hua, C.; Liu, G. Distributed adaptive leader-following consensus for nonlinear multiagent systems with actuator
failures under directed switching graphs. IEEE Trans. Cybern. 2023, 53, 211–221. [CrossRef] [PubMed]

22. Ren, H.; Ma, H.; Li, H.; Wang, Z. Adaptive fixed-time control of nonlinear mass with actuator faults. IEEE/CAA J. Autom. Sinica
2023, 10, 1252–1262. [CrossRef]

23. Cui, Y.; Chen, Y.; Yang, D.; Shu, Z.; Huang, T.; Gong, X. Resilient formation tracking of spacecraft swarm against actuation attacks:
A distributed Lyapunov-based model predictive approach. IEEE Trans. Syst. Man. Cybern. Syst. 2023. [CrossRef]

24. Liu, Y.; Tong, S. Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems.
Automatica 2017, 76, 143–152. [CrossRef]

25. Sun, W.; Su, S.; Dong, G.; Bai, W. Reduced adaptive fuzzy tracking control for high-order stochastic nonstrict feedback nonlinear
system with full-state constraints. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 1496–1506. [CrossRef]

26. Fang, L.; Ding, S.; Park, J.; Ma, L. Adaptive fuzzy control for nontriangular stochastic high-order nonlinear systems subject to
asymmetric output constraints. IEEE Trans. Cybern. 2022, 52, 1280–1291. [CrossRef]

27. Zhao, K.; Song, Y. Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback
systems. IEEE Trans. Autom. Control 2019, 64, 1265–1272. [CrossRef]

28. Liu, Y.; Zhao, W.; Liu, L.; Li, D.; Tong, S.; Chen, C. Adaptive neural network control for a class of nonlinear systems with function
constraints on states. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 2732–2741. [CrossRef]

29. Edalati, L.; Sedigh, A.K.; Shooredeli, M.A.; Moarefianpour, A. Adaptive fuzzy dynamic surface control of nonlinear systems with
input saturation and time-varying output constraints. Mech. Syst. Signal Process. 2018, 100, 311–329. [CrossRef]

30. Wang, Q.; He, Y. Time-triggered intermittent control of continuous systems. Int. J. Rob. Nonlinear Control 2022, 52, 1280–1291.
[CrossRef]

31. Cui, Y.; Luo, B.; Feng, Z.; Huang, T.; Gong, X. Resilient state containment of multi-agent systems against composite attacks via
output feedback: A sampled-based event-triggered hierarchical approach. IEEE Trans. Cybern. 2023, 629, 77–95. [CrossRef]

32. Fan, Y.; Liu, L.; Feng, G.; Wang, Y. Self-triggered consensus for multi-agent systems with zeno-free triggers. IEEE Trans. Autom.
Control 2015, 60, 2779–2784. [CrossRef]

33. Wang, J.; Zhang, H.; Ma, K.; Liu, Z.; Chen, C. Neural adaptive self-triggered control for uncertain nonlinear systems with input
hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6206–6214. [CrossRef]

34. Wu, J.; He, F.; Shen, H.; Ding, S.; Wu, Z. Adaptive NN fixed-time fault-tolerant control for uncertain stochastic system with
deferred output constraint via self-triggered mechanism. IEEE Trans. Cybern. 2022, 53, 5892–5903. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNNLS.2020.3017171
http://dx.doi.org/10.1109/TNNLS.2020.2978898
http://dx.doi.org/10.1016/j.neunet.2022.10.028
http://dx.doi.org/10.1109/TNNLS.2021.3053112
http://dx.doi.org/10.1109/TCYB.2021.3091392
http://www.ncbi.nlm.nih.gov/pubmed/34260373
http://dx.doi.org/10.1109/JAS.2023.123558
http://dx.doi.org/10.1109/TSMC.2023.3292426
http://dx.doi.org/10.1016/j.automatica.2016.10.011
http://dx.doi.org/10.1109/TSMC.2019.2898204
http://dx.doi.org/10.1109/TCYB.2020.3000920
http://dx.doi.org/10.1109/TAC.2018.2845707
http://dx.doi.org/10.1109/TNNLS.2021.3107600
http://dx.doi.org/10.1016/j.ymssp.2017.07.036
http://dx.doi.org/10.1002/rnc.5673
http://dx.doi.org/10.1016/j.ins.2023.01.125
http://dx.doi.org/10.1109/TAC.2015.2405294
http://dx.doi.org/10.1109/TNNLS.2021.3072784
http://dx.doi.org/10.1109/TCYB.2022.3205765
http://www.ncbi.nlm.nih.gov/pubmed/36170393

	Introduction
	System Modelling and Problem Formulation
	Model Description
	Graph Theory
	Preliminaries

	Design and Stability Analysis of Fixed-Time Self-Triggered Consensus Controller
	Fixed-Time Self-Triggered Consensus Controller Design
	System Stability Analysis

	Simulation Results
	Example 1
	Example 2

	Conclusions
	References

