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Abstract: The hydraulic pump plays a pivotal role in engineering machinery, and it is essential to
continuously monitor its operating status. However, many vital signals for monitoring cannot be
directly obtained in practical applications. To address this, we propose a soft sensor approach for
predicting the flow signal of the hydraulic pump based on a graph convolutional network (GCN)
and long short-term memory (LSTM). Our innovative GCN-LSTM model is intricately designed
to capture both spatial and temporal interdependencies inherent in complex machinery, such as
hydraulic pumps. We used the GCN to extract spatial features and LSTM to extract temporal features
of the process variables. To evaluate the performance of GCN-LSTM in predicting the flow of a
hydraulic pump, we construct a real-world experimental dataset with an actual hydraulic shovel. We
further evaluated GCN-LSTM on two public datasets, showing the effectiveness of GCN-LSTM for
predicting the flow of hydraulic pumps and other complex engineering operations.

Keywords: soft sensor; graph convolutional network; long short-term memory; hydraulic pump;
flow prediction

1. Introduction

The hydraulic pump is a crucial power component that is widely used in modern in-
dustrial equipment, including mining and metallurgy, national defense construction, power
systems, agricultural machinery, chemicals and petroleum, and shipbuilding [1–3]. The per-
formance of a hydraulic pump directly affects the operational efficiency and accuracy of the
powered mechanical equipment. Therefore, continuous monitoring of the operating status
of the hydraulic pump is of significant practical importance and can help operators detect
and solve hydraulic pump failures in a timely manner, ensuring the safe operation of the
equipment [4–6]. However, in many real-world engineering applications, real-time monitoring
through direct sensing is often impractical due to factors such as harsh working environments,
the prohibitive cost of monitoring equipment, and difficulty in sensor installation. Addi-
tionally, the complex and nonlinear features of the operating process present challenges for
equipment process monitoring, fault diagnosis, and health assessment [7]. To address these
issues, soft sensor technology has been proposed. It estimates or predicts the conditions of a
physical system based on other process variables that can be easily measured [8,9]. A basic
soft sensor framework includes auxiliary variable selection, data acquisition, establishment of
soft sensor models, and subsequent online model application [10].

Generally, soft sensing technology encompasses two main types of methods: mechanism-
based models and data-driven models. Mechanism-based methods offer good interpretabil-
ity and can explain the interrelationships between systems and components [11]. However,
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mechanism models inevitably introduce modeling errors due to the dynamic nature of the
production process, affecting measurement accuracy and limiting practical operations [12].
Data-driven methods do not require extensive prior knowledge and can establish accurate
soft measurement models by acquiring multiple data information from the equipment
through sensor installation, provided relatively complete data are ensured. Data-driven
soft measurement methods have gained popularity due to their better adaptability and
accuracy compared to mechanism models. These methods mainly fall into two categories:
traditional machine learning models and deep learning models [13]. Traditional data-
driven methods are based on statistical inference [14], regression analysis [15], and machine
learning [16], including principal component analysis (PCA) [17], partial least squares
(PLS) [18], support vector machines (SVMs) [19], artificial neural networks (ANNs) [20],
and principal component regression (PCR) [21]. They are widely used for linear and steady-
state system modeling. However, these machine learning models have proven inadequate
for accurate soft sensing in complex industrial processes [22]. To more effectively simulate
complex industrial processes and extract nonlinear and dynamic information from data,
data-driven models based on deep learning have been developed. Deep learning models
possess powerful learning and nonlinear fitting capabilities [23], enabling them to generate
deep and abstract feature representations. They have been extensively researched and
applied in industrial applications [24]. Various deep learning models, such as autoencoders
(AEs) [25], restricted Boltzmann machines (RBMs) [26], and convolutional neural networks
(CNNs) [27], as well as recurrent neural networks (RNNs) [28] and long short-term mem-
ory networks (LSTMs) [29], have been successfully applied to soft sensor development,
achieving promising prediction results. There have been numerous research achievements
in soft sensor technology based on deep learning, such as, such as, Sun et al. proposed
a deep feature extraction and layer-by-layer integration method based on a gated stack
target correlation autoencoder (GSTAE) for industrial soft sensing applications [30]. To
solve the problem of high nonlinearity and strong correlation between multiple variables
in the process of a coal-fired boiler, a deep structure using continuous RBM and SVR
algorithms is proposed [31]. Yuan et al. proposed a multichannel CNN for soft sensing
applications in industrial fractionation columns and hydrocracking processes, which can
learn the dynamics and various local correlations of different variable combinations [32].
To extract temporal features, an RNN was introduced to construct a nonlinear dynamic soft
sensor model for the batch process [33,34].

In practical industrial processes, soft sensor modeling often involves process vari-
ables characterized as non-Euclidean structured graph data, exhibiting intricate spatial
coupling relationships that influence variable variations throughout complex operating
processes [35]. In addition to capturing their temporal relationships, it is also critical to ef-
fectively capture the potential spatial coupling relationships between the process variables.
Recent studies have introduced graph neural network (GNN) or graph convolutional net-
work (GCN) technology to explicitly represent the spatial coupling relationships between
process variables [36,37]. For example, Wang et al. utilized a GCN to capture the spatial fea-
tures of the power grid for voltage stability prediction [38]. Ta et al. proposed an adaptive
spatiotemporal graph neural network to capture the spatiotemporal correlations of vehicles
for traffic flow prediction [39]. Yu et al. combined a GCN and a CNN to, respectively,
extract the temporal and spatial correlations of traffic conditions [40]. Wang et al. proposed
an adaptive multichannel graph convolutional network (AM-GCN) for semi-supervised
classification, extracting specific and common embeddings from node features, topological
structures, and their combinations. Attention mechanisms were employed to learn the
adaptive importance weight of embeddings [41]. Zhou et al. constructed a dynamic graph
data processing framework for rotating machinery diagnosis [42]. Multi et al. introduced
an improved multichannel graph convolutional network for rotating machinery diagnosis
to learn graph features and achieve multichannel feature fusion [43].

In the field of engineering machinery, most existing soft sensor studies are based
on limited experimental data obtained from test benches or simulations for performance
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evaluation [44]. To better evaluate the effectiveness of our proposed GCN-LSTM as a soft
sensor model for predicting hydraulic pump flow, we constructed a real-world experimental
dataset using actual operational data from a hydraulic shovel under various operating
conditions. We further evaluated GCN-LSTM on two public datasets, demonstrating its
effectiveness for predicting hydraulic pump flow in practical settings and other complex
engineering operations.

The main contents in this paper are as follows:

(1) We proposed a novel soft sensor model for predicting the flow of hydraulic pumps by
combining a GCN and LSTM. We used a GCN to capture the spatial features of the
process variable and LSTM to capture their temporal features;

(2) We collected a first-of-its-kind real-world dataset of a hydraulic shovel with actual op-
erational conditions and showed that our proposed GCN-LSTM model was also able
to outperform current deep learning approaches for predicting the flow of hydraulic
pumps in practical settings;

(3) We validated the proposed GCN-LSTM model on two public datasets and showed
that our GCN-LSTM model outperformed current deep learning approaches for other
complex engineering operations.

2. Methods
2.1. Principles of GCN

A graph convolutional neural network (GCN) is a type of convolutional neural net-
work (CNN) that focuses on modeling graph data [45,46]. It utilizes graph convolution
to extract the spatial features of non-Euclidean structured graph data. GCNs have been
developed based on the theory proposed in [47], which suggests that they are more suitable
for handling non-Euclidean structured data compared to traditional CNNs.

Figure 1 depicts the network diagram of a GCN. The GCN has multiple hidden layers
with the following activation function:

ReLU(x) = max{0, x} (1)
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Figure 1. The network diagram of the GCN with input layer, hidden layers, and output layer. (The
green nodes generate blue nodes after being processed by the ReLU function).

The input data for a GCN consists of two essential components: node feature data and
graph structural information. The graph structural information can be represented by an
adjacency matrix, typically denoted as A. The adjacency matrix Aij captures the connectivity
between nodes in the underlying graph G, where G comprises a set of nodes V (vi, vj ∈ V).
The entries in the adjacency matrix Aij indicate the connectivity between nodes vi and vj
in the graph. The function expressions for the input signal M and output signal Y are as
follows:

f (M, A) = Y (2)

The specific calculations of the GCN in the hidden layer are defined as:

H(l+1) = relu(D̃− 1
2 ÃD̃− 1

2 H(l)W(l) (3)
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D̃ii = ∑
j

Ãij (4)

Ã = A + I (5)

H represents the calculation result of the GCN network in the hidden layer, where the
initial value H(0) of H is set to the input data M, and W(l) represents the weight matrix in
(3). D̃ is a diagonal matrix in Equation (4), and I represents the identity matrix of the same
order as the adjacency matrix A in Equation (5).

2.2. Principles of LSTM

Long short-term memory networks (LSTMs), proposed by Hochreiter and Schmidhu-
ber (1997) [48], consist of three key components: a forget gate, input gate, and output gate.
The LSTM network structure is shown in Figure 2.
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Figure 2. LSTM network architecture diagram.

The first step of LSTM is to decide which information to discard from the cell state, as
shown in Equation (6) below:

ft = σ([ht−1, xt]•W f + b f ) (6)

where ft is the scale factor controlling the forgotten information at the current moment; σ is
the sigmoid activation function mapping the calculated data smoothly to the interval (0,
1), which corresponds exactly to the switching degree of the control gate; Wf is the weight
matrix of the forget gate; and bf is the bias term of the forgot gate.

Next, the input gate determines what new information is stored in the cell state ct, as
shown in Equations (7) and (8) below:

it = σ([ht−1, xt]•Wi + bi) (7)

c̃t = tanh([ht−1, xt]•Wc + bc) (8)

where it is the scale factor of the control input information at the current moment; c̃t is the
candidate cell state at the current moment; tanh is the activation function; Wc is the weight
matrix of the candidate cell state; and bc is the bias term of the candidate cell state.

LSTM then proceeds to multiply the old state by ft to discard the information that
needs to be forgotten, and then we add it ∗ c̃t to obtain the new candidate value, which
changes according to the degree of updating each state, as shown in Equation (9) below:

ct = ft ∗ ct−1 + it ∗ c̃t (9)

Finally, the output gate determines what value needs to be output by LSTM, as shown
in Equations (10) and (11) below:

ot = σ([ht−1, xt]•Wo + bo) (10)
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ht = ot ∗ tanh(ct) (11)

2.3. GCN-LSTM Model

The prediction problem of the target variable can be defined as follows: predicting the
target value at the next time step using the historical time series data and considering a
monitoring duration and the spatial relationship between each variable. In the case of flow
prediction for a hydraulic pump, a sliding window approach is employed to select multiple
sets of relevant variable signals for prediction. The duration for which the variables are
selected is denoted as t, the spatial relationship between each sensor is represented as A,
and the model predicts the flow value y at time t + 1, as shown in Equation (12):

yt+1 = F([M1, M2, . . . , Mk]t; A) (12)

In other words, the prediction of the flow value y (target variable) at the next time step
is computed using the historical time series data within a monitoring duration based on the
spatial relationship between each variable. In Equation (12), yt+1 represents the predicted flow
of the hydraulic pump at time t + 1 using F, which represents the soft sensor model based on
our proposed GCN-LSTM model, as shown in Figure 3. A represents the spatial relationship
between different sensors as an adjacency matrix, as shown in Equations (13) and (15).

A =

a1,1 · · · a1,k
...

. . .
...

ak,1 · · · ak,k

 ∈ Rk×k (13)

where ak1, ak2 =

{
1, k1 ↔ k2
0, others

(14)
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Figure 3. GCN-LSTM prediction process diagram.

In our GCN-LSTM model, the GCN extracts spatial feature information of variables
through spatioconvolution operations, outputting the structural information in the graph
and the features of the nodes to form new feature vectors for each node, i.e., CG = (CGs,
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CGs, . . ., CGt), as the input to LSTM to capture the temporal features. *g is a convolutional
operation based on the GCN. Then, the output of LSTM serves as the input to the activation
layer for regression prediction, and thus the target variable sequence is generated.

The GCN-LSTM model adopts a sliding prediction approach [49]. In this work, we
use sliding window size SW = 30 to predict the target values. During the training process,
a regression model is trained using the minimization of prediction errors. The training and
testing process of the GCN-LSTM model is shown in Figure 4.
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To assess the effectiveness of the soft sensor model, the root-mean-square error (RMSE)
and the coefficient of determination R2 [50] are commonly used. They are defined as follows:

RMSE =

√√√√ 1
Ntest

Ntest

∑
i=1

(ŷi − yi)
2 (15)

R2 = 1 − ∑Ntest
i=1 (ŷi − yi)

2

∑Ntest
i=1 (yi − y)2 (16)

3. Case Studies: Hydraulic Pump

Given that most existing soft sensor studies are largely based on limited experimental
data obtained from test benches or simulation simulations for performance evaluation [20],
we construct a real-world experimental dataset with actual hydraulic shovel operating
data under multiple different operating conditions to better evaluate the effectiveness
of our proposed GCN-LSTM model as a soft sensor model for predicting the flow of a
hydraulic pump. To collect the real-world dataset, we designed an operational condition
experiment for an XCMG hydraulic shovel and considered the three operational conditions:
swing action, walking action, and digging composite action (boom, arm, and bucket) of the
hydraulic shovel for predicting pump flow. The hydraulic system diagrams for each action
are shown in Figures 5–9. In the hydraulic system of a hydraulic excavator, there are two
hydraulic pumps as power sources, namely pump 1 and pump 2. Among them, during
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the swing motion, only pump 2 serves as the power source, while during the walking and
digging composite actions, both pump 1 and pump 2 serve as power sources.

For performance analysis, two baseline methods are compared with GCN-LSTM:
supervised LSTM (S-LSTM) [51] and variable attention-based long short-term memory
(VA-LSTM) [52], which are the soft sensor models. These methods were all developed based
on the PyTorch architecture. In the training process of the model, the Adam optimizer was
used to train the network parameters. These models run on a Windows 10 system and a
server equipped with an Intel i7-9700 3.00 GHz CPU, an NVIDIA GeForce GTX 1050 Ti,
and 16 GB memory.
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3.1. Experimental Setup

This experiment involves two data acquisition paths: onboard data obtained through
the CAN bus and external sensors. The onboard data include two parts: CAN1 and CAN2.
CAN1 captures signals, such as pump pressure and pilot pressure, while CAN2 collects
signals, such as engine speed and engine torque percentage. By analyzing the onboard data,
we determined that the sampling frequency of CAN1 is 5 Hz, and the sampling frequency
of CAN2 is 20 Hz. Our primary focus was on data collection through external sensors.
For this purpose, we employed two eight-channel USB3100N acquisition cards capable
of a maximum sampling rate of 2.5 kHz. Considering the sampling rates of the onboard
CAN1 and CAN2, along with Figures 5–9, we set the sampling rate of these sensors at
200 Hz. Table 1 shows the list of the collected variables. The objective of GCN-LSTM is
to predict the flow of pump 1 and pump 2 based on the swing action condition, walking
action condition, and excavation composite action condition of the hydraulic shovel.

Table 1. Hydraulic shovel variables collected based on swing, walking, and composite actions.

Variables Description

x1 Pump 2 oil temperature
x2 Pump 2 pressure
x3 Bucket small chamber pressure
x4 Bucket large chamber pressure
x5 Boom large chamber pressure
x6 Boom small chamber pressure
x7 Swing motor pressure
x8 Swing motor flow
x9 Arm large chamber pressure
x10 Arm small chamber pressure
x11 Pump 1 pressure
x12 Walking motor flow
x13 Walking motor pressure
x14 Swing pilot pressure
x15 Left walking pilot pressure
x16 Right walking pilot pressure
x17 Arm inward pilot pressure
x18 Arm outward pilot pressure
x19 Boom inward pilot pressure
x20 Boom outward pilot pressure
x21 Bucket inward pilot pressure
x22 Bucket outward pilot pressure
x23 Engine speed
x24 Engine torque percentage
y1 Pump 1 flow
y2 Pump 2 flow

The sensors and acquisition equipment for data collection are shown in Figure 10.
GCN-LSTM hyperparameters are set based on the prediction process, as shown in Table 2.

Table 2. Main hyperparameters of the GCN-LSTM model.

Name Main Parameters

LSTM n = 50, dropout = 0.2
LSTM n = 50, dropout = 0.2
Dense 1

Dropout 0.2
Epochs 200

Batch size 30
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Figure 10. Installation diagram of variable acquisition sensors for hydraulic shovels.

3.2. Pump Flow Prediction under Swing Action

Based on the analysis of the hydraulic shovel swing operation mechanism, it is de-
termined that only pump 2 provides flow, making it the target variable (y2). Referring
to Table 1, the variables associated with the swing action are x1, x2, x7, x8, x23, and x24.
Figures 11 and 12 depict the prediction and errors of pump 2 flow using the GCN-LSTM,
S-LSTM, and VA-LSTM models on the testing dataset. The predicted errors for all three
models mostly fall within the range of [−0.010, 0.010]. This is because the prediction is
based on data collected under steady-state conditions with constant speed rotation. As a
result, all three methods have good prediction accuracy. Notably, the prediction curves
generated by the GCN-LSTM model closely align with the actual output curves in the
testing dataset. This indicates that the GCN-LSTM model has the ability to accurately track
the real output and perform well in predicting pump 2 flow.
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Figure 12. Prediction errors of pump 2 flow prediction under swing action based on GCN-LSTM,
S-LSTM, and VA-LSTM.

3.3. Pump Flow Prediction under Walking Action

Based on the analysis of the hydraulic shovel walking operation mechanism, it is
determined that both pump 1 and pump 2 provide equal flow. Therefore, we will focus
solely on predicting the flow of pump 1, making it the target (y1). Referring to Table 1, the
variables associated with the walking action are x11, x12, x13, x15, x16, x23, and x24.

Figures 13 and 14 depict the prediction and errors of pump 1 flow using the GCN-
LSTM, S-LSTM, and VA-LSTM models on the testing dataset, respectively. Notably, all
three models demonstrate the ability to closely track the actual output curves in the testing
dataset. The predicted errors for the three models mostly fall within the range of [−0.015,
0.020], indicating that they have relatively small errors. Among the three methods, our pro-
posed GCN-LSTM model exhibits the smallest error, suggesting its superior performance
in predicting pump 1 flow.
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Figure 14. Prediction errors of pump 1 flow under walking action based on GCN-LSTM, S-LSTM,
and VA-LSTM.

3.4. Pump Flow Prediction under Composite Action

Based on the analysis of the hydraulic shovel composite operation mechanism, the
variables associated with the composite action include all variables listed in Table 1, except
x12 and x13. The target variables are y1 and y2.

3.4.1. Pump 1 Flow Prediction

Figures 15 and 16 depict the prediction and errors of pump 1 flow using the GCN-
LSTM, S-LSTM, and VA-LSTM models on the testing dataset, respectively. It can be
observed that the prediction curves of GCN-LSTM can track very well with the real output
curves. The predicted errors for the S-LSTM and VA-LSTM networks mostly fall within
the range of range [−0.2, 0.6]. However, the GCN-LSTM model exhibits much smaller
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prediction errors, which are mostly around zero. In fact, there are significant deviations
between the real and predicted output curves for the S-LSTM and VA-LSTM models.
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Figure 16. Prediction errors of pump 1 flow under composite action based on GCN-LSTM, S-LSTM, and
VA-LSTM.

3.4.2. Pump 2 Flow Prediction

Figures 17 and 18 depict the prediction and errors of pump 2 flow using the GCN-
LSTM, S-LSTM, and VA-LSTM models on the testing dataset, respectively. Once again,
the prediction curves generated by the GCN-LSTM model exhibit a close alignment with
the real output curves. In contrast, there are significant deviations between the real and
predicted output curves for the S-LSTM and VA-LSTM models. The predicted errors for the
S-LSTM and VA-LSTM networks mostly fall within the range of [−0.6, 0.6]. However, the
GCN-LSTM model shows substantially smaller prediction errors, mostly centered around
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zero. This indicates that the GCN-LSTM model performs better in terms of accuracy when
predicting pump 2 flow compared to the S-LSTM and VA-LSTM models.
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Figure 18. Prediction errors of pump 2 flow under composite action based on GCN-LSTM, S-LSTM, and
VA-LSTM.

3.5. Public Datasets

To validate the effectiveness and performance of our proposed GCN-LSTM soft sensor
model in non-hydraulic pump applications, we applied the method to the sulfur recovery
dataset [53] and the debutanizer column dataset [54], both of which are public datasets
used for soft sensor modeling.

Figures 19 and 20 depict the prediction and errors of SO2 in the sulfur recovery dataset
using the GCN-LSTM, S-LSTM, and VA-LSTM models on the testing dataset, respectively.
The GCN-LSTM model demonstrates excellent tracking with the real output curves and
exhibits significantly smaller prediction errors compared to the other models. Similarly,
Figures 21 and 22 depict similar results for the prediction and errors of C4 in the debutanizer
column dataset, further highlighting the superior performance of the GCN-LSTM model.
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Figure 19. SO2 concentration prediction value based on GCN-LSTM, S-LSTM, and VA-LSTM. 
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Figure 20. Prediction errors of SO2 based on GCN-LSTM, S-LSTM, and VA-LSTM. 
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Figure 19. SO2 concentration prediction value based on GCN-LSTM, S-LSTM, and VA-LSTM. 
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4. Discussion and Results

In the case of the steady-state condition for the swing and walking actions of the
hydraulic shovel, there is no significant difference in the predictive performance of the
GCN-LSTM, S-LSTM, and VA-LSTM models for the flow prediction of pump 1 and pump
2. However, for the excavation composite action under variable operating conditions, the
GCN-LSTM model clearly outperforms the S-LSTM and VA-LSTM models in terms of flow
prediction for pump 1 and pump 2. This highlights the superior predictive performance
of the GCN-LSTM model under complex operating conditions. To further evaluate the
GCN-LSTM model, we conducted a comparative analysis using two indicators: the RMSE
and R2. The RMSE and R2 values for the three soft sensors based on the swing action,
walking action, and composite action conditions are presented in Table 3.

Table 3. RMSE and R2 of pump 1 flow, pump 2 flow, SO2, and C4 based on S-LSTM, VA-LSTM, and
GCN-LSTM.

Target Variables Indicators S-LSTM VA-LSTM GCN-LSTM

Swing action pump 2 flow RMSE
R2

0.1027
0.726 0.1262

0.703
0.0916
0.857

Walking action pump 1 flow RMSE
R2

0.1047
0.364 0.0921

0.754
0.0782
0.898

Composite action pump 1 flow RMSE
R2

0.0745
0.579 0.0903

0.386
0.0109
0.987

Composite action pump 2 flow RMSE
R2

0.0532
0.767 0.0742

0.547
0.0109
0.990

SO2
RMSE

R2
0.0188
0.894 0.0236

0.833
0.0114
0.962

C4 RMSE
R2

0.0404
0.962 0.1617

0.393
0.0357
0.971

In the case of pump 2 flow prediction based on the swing action, the GCN-LSTM model
achieves an RMSE value of 0.0916 and an R2 value of 0.857. Meanwhile, for pump 1 flow
prediction based on the walking action, the RMSE value is 0.0782 and the R2 value is 0.898.
These RMSE and R2 values indicate that the GCN-LSTM model performs significantly better
than the S-LSTM and VA-LSTM models under the two steady-state operating conditions.
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In the case of the composite action of hydraulic shovel excavation, which involves
variable conditions, the flow of pump 1 and pump 2 dynamically changes with the executed
action. For pump 1 flow prediction based on the composite action, the GCN-LSTM model
achieves an RMSE value of 0.0109 and an R2 value of 0.987. Similarly, for pump 2 flow
prediction based on the composite action, the RMSE value is 0.0109 and the R2 value is
0.990. These results demonstrate that the GCN-LSTM model continues to outperform the
S-LSTM and VA-LSTM models, even under variable working conditions.

In the case of the sulfur recovery dataset, the GCN-LSTM model achieves an RMSE
value of 0.0114 and an R2 value of 0.962 for the prediction of SO2. In the debutanizer
column dataset, the RMSE value of the GCN-LSTM model is 0.0357 and the R2 value is
0.971 for the prediction of C4. These results highlight the superior prediction performance
of the GCN-LSTM model compared to the S-LSTM and VA-LSTM models in both non-
hydraulic pump use cases. Overall, the GCN-LSTM model demonstrates significantly
higher prediction accuracy than the S-LSTM and VA-LSTM models for both the sulfur
recovery and debutanizer column datasets.

5. Conclusions

In this paper, a GCN-LSTM network is proposed for nonlinear dynamic modeling
for soft sensor applications. The GCN is used to extract the spatial feature information of
the process variables, and LSTM is used to extract the temporal feature information of the
process variables. This enables the construction of deep networks for hierarchical nonlinear
dynamic hidden feature descriptions, which are beneficial for the prediction of the target
variables. The main conclusions are as follows:

(1) The GCN-LSTM model outperformed the S-LSTM and VA-LSTM models in predicting
the flow of hydraulic pumps under steady-state conditions (swing and walking
actions) and variable operating conditions (composite action);

(2) The GCN-LSTM model demonstrated superior predictive performance in the sul-
fur recovery and debutanizer column datasets compared to the S-LSTM and VA-
LSTM models.

Overall, the GCN-LSTM model demonstrated superior predictive accuracy compared
to the S-LSTM and VA-LSTM models across different scenarios, highlighting its potential
for soft sensor applications in machinery systems.

Regarding future research:

(1) The GCN-LSTM model is highly sensitive to the quality and quantity of data. There-
fore, the introduction of more advanced data preprocessing techniques to reduce noise
interference in the data is an area that requires further research;

(2) Given the high computational complexity of the GCN-LSTM model, optimizing its struc-
ture to reduce the number of parameters is an important direction for future research.
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