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Abstract: Accurate trajectory tracking is a paramount objective when a mobile robot must perform
complicated tasks. In high-speed movements, hardware-induced delays may produce overshoots
and even instability when controlling the system. In this case, Smith predictor controllers can be used
because they are well suited for delayed processes. This paper addresses the accurate positioning
of a mobile robot on a terrain of an unknown slope. This slope produces disturbance torques of
unknown amplitudes in the robot actuators that yield a steady-state error in the positioning. Because
our actuators are integrating plus time delay plants, the standard Smith predictor cannot remove
these disturbances. This paper proposes a modification of this control scheme in order to remove
these disturbances yielding a zero steady-state error in the actuators. Our new scheme is compared
with other modified SPs existing in the literature by means of simulations. These simulations
show the superior performance of our scheme in the sense of removing the steady-state error more
efficiently (i.e., faster) than other schemes. Finally, the performance of our control scheme is tested
experimentally in a low-cost mobile robot.

Keywords: mobile robots; integrating plus time delay system; advanced process control; disturbance
rejection; Smith predictor

1. Introduction

The importance of having high-performance controllers to operate mobile robots is
essential. Precision, velocity and robustness are extremely important goals that determine
the chances that a mobile robot could perform a determined task.

We are developing a prototype of a Mobile Robotic Haptic System (hereafter denoted
as MRHS), which consists of a Mecanum-Wheeled Mobile Robot (MWMR) equipped with
a two-degrees-of-freedom (2DOFs) Haptic Sensing Antenna (HSA). One of the pursued
applications of this system is object recognition, in which the HSA touches several points
of the surface of an object estimating their 3D coordinates while the MWMR changes its
position and point of view, with the objective of obtaining a cloud of points on the surface
of the object. This cloud of points is then compared with information from a database
containing different objects, thereby performing recognition. Here comes the importance
of the above three metrics: the faster and more accurate the MWMR moves, the greater
the number of points that can be collected in a given period of time, enhancing both the
precision and speed in the recognition task.

Intensive research has been conducted on mobile robot control and navigation method-
ologies over the past few decades [1]. Numerous strategies have been suggested to en-
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hance the position control of mobile robots coping with the complete robot dynamics [2,3].
The vast majority of these schemes are expected to control the system in an upper-level
way, allowing for the implicit handling of certain robot internal and external effects or
disturbances, some of which exhibit severe nonlinear behaviour.

The sources of disturbances affecting mobile robots can be classified into two cate-
gories: endogenous, which are dependent on internal variables (states, outputs, control
inputs, unmodelled delays, parasitic dynamics and nonlinearities), and exogenous, gener-
ated by the environment or the interaction with other systems [4]. Endogenous disturbances
(internal phenomena) typically manifest during the control of the actuators that govern
the robot. For instance, friction, a common nonlinearity in DC motors, can cause tracking
errors at low speeds and stick-slip phenomena during start and stop stages. Other effects
include motor saturation, which limits the velocity of the system, and hardware-induced
delay (HID), depending on the internal processor capacity. On the other hand, exogenous
disturbances (external phenomena) often result from contact issues between the wheels
and the ground. These disturbances can lead to wheel skidding and slipping, which even-
tually causes tracking errors and deviation in robot positioning. In this case, errors do not
manifest in the actuator’s controllers and cannot be measured by internal sensors. Other
exogenous effects include road and drag resistance, a change in payload and changes in the
terrain slope. These effects, too, result from external factors, but they can be compensated
in the low-level control because they act like changes in motors’ load torques.

Some examples of different control strategies applied to mobile robots during the last
decades are input–output linearisation [5], linear optimal control [6], model predictive
control [7,8], sliding-mode control [9] or neural network control [10]. In [11], an active
disturbance rejection controller is developed considering all effects affecting the robot as a
single disturbance. These upper-level control schemes for mobile robot position control tend
to be effective when using expensive, high-end brand prototypes and components, where
endogenous disturbances barely appear. But when low (middle)-cost manufacturers are
employed, these effects become more pronounced, degrading the controllers’ performance
for most applications.

In this paper, we follow the approach firstly established in [12], where the position
control problem is tackled by developing a sophisticated low-level control of the robot.
That involves improving the position and trajectory tracking accuracy through the design
of an advanced motor control scheme. The robotic prototype that we have used in [12] is
the same low-cost MWMR used for the present paper. In the previous work, a combination
of several Advanced Process Control (APC) techniques, along with a step-based thorough
identification [13], were used to cope with motor friction, saturation and HID. The control
system proposed in [12] was composed of a PID controller plus a prefilter combined with
a Smith predictor, an antiwindup scheme and a friction compensator. The experimental
results demonstrated the effectiveness of this approach in position control. Also, a set of
simulations was carried out to demonstrate the robust stability of the system considering
±20% model parameters variation. This variation encompasses some of the disturbance
effects mentioned before, including changes in the robot mass (payload) and internal
friction coefficients. Nevertheless, this scheme has not been tested under the influence of
other external disturbances that are highly likely to occur in mobile robots, such as changes
in the terrain slope.

In this paper, we mainly study the trajectory tracking control of a wheeled mobile
robot under the condition that the longitudinal slope parameters are unknown. We address
the control of the DC motors of the previous mobile robot, which have friction, saturation,
HID and torque disturbance caused but non-horizontal terrains. The terrain slope produces
a step-like torque disturbance. It is well known that Smith predictors—which are needed
to compensate for the HID—have limited capability to eliminate the effect of disturbances
applied at the process input. This problem increases when the process to be controlled
includes an integrator. Note that this is the case of our DC motors. Then, the contribution
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of this paper is a new modified Smith predictor control scheme that more efficiently rejects
these disturbances in mobile robots actuated by DC motors.

The organisation of this paper is as follows. Section 2 presents a state of the art.
Section 3 describes our robot prototype. Section 4 proposes its dynamic model. Section 5
develops our new control scheme. Sections 6 and 7 show simulated and experimental
results respectively. Finally, Section 8 gives some conclusions.

2. State of the Art

First, a brief state of the art on the motion control of mobile robots when facing slopes
is presented. Second, a more detailed state of the art on the control of processes with a
delay and an integrator is described.

2.1. Mobile Robot Control under Slopes

Many studies related to mobile robots and slopes often associate slopes with wheel
slippage, primarily due to the type of robotic prototypes under investigation or the specific
environmental conditions in which they are expected to operate. In [14], a nonlinear model
predictive control was designed for a non-holonomic car-like wheeled mobile robot to
improve path tracking on slopes. The robot was equipped with inflatable tires and an
Ackermann steering mechanism. The researchers developed both kinematic and dynamic
models of the system considering how the slope affects the normal load on each wheel and,
consequently, its influence on tire sliding and side slip. Subsequently, an active steering
controller was designed to minimise tracking errors. Another example is found in [15],
where a method was proposed for stable locomotion on steep slopes with a wheeled
mobile robot, using propellers for propulsion and adhesion. The robot generated friction by
pressing against the slope with a thrust force, optimising the thrust direction and magnitude
via control to prevent slipping, falls and side slipping on steep terrain.

Compared to the existing research, our prototype has a more limited working range.
It is not intended, nor designed, for navigating steep slope terrains. While wheel sliding
is possible, it is restricted to low-magnitude variations. In practical terms, this means
the robot is not suitable for traversing grass or soil terrains. The MRHS is designed for
indoor environments with smooth floors that may have inclinations and installed ramps
for mobility. We assume that the grip is sufficient to prevent significant wheel sliding,
and gravitational effects due to slopes are expected to affect the forces applied to the robot
but are unlikely to cause sliding issues.

2.2. Control of Processes with an Integration Term and Time Delay

The control of integrating plus time delay (IPTD) processes is challenging and ongoing
research. A high number of industrial processes (e.g., distillation, evaporation, combustion,
drying, etc.) are integrating as well as delay-dominant in nature. Many electrical drives also
have an integrating term. Though they do not have a natural delay, their control systems
introduce HID. This makes many actuators based on electrical drives fall within this kind
of system.

The step-command tracking and load rejection control of IPTD processes is diffi-
cult. Moreover, improper choices of tuning parameters often provide non-self-regulating
behaviours. Conventional control methodologies often fail to provide the desired perfor-
mance for these processes. Then, some innovative control schemes have been proposed
that are listed next.

The Smith predictor (SP) is a popular method to control time delay processes [16],
but the original SP is only applicable to stable processes. It does not perform adequately for
IPTD processes [17], yielding possible instability and poor performance under modelling
errors, and has a poor response to disturbances [18]. In particular, it cannot reject the
constant load disturbance for integrating processes [18]. To overcome these obstacles,
many variations of SP have been proposed over the last few decades [17–21]. However,
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the disturbance rejections provided by these schemes are not fast and leave room for further
improvement as we will show in Section 6.

An alternative to the SP to control time delay processes is the use of model predictive
control (MPC). In [22], a stable model predictive controller for stable and integrating
processes was designed to provide nominal stability for a set of process conditions, which
was larger than in previous methods. The main effort is to eliminate the conflict between
the constraints in the process inputs, which are usually included in the MPC, and the
constraints created by zeroing the integrating modes of the process at the end of the control
horizon. This problem has hindered the practical application of a nominally stable infinite-
horizon MPC in industry. The improved controller was obtained through a modified
control objective that includes additional decision variables to increase the set of feasible
solutions to the control problem. The hard constraints associated with the integrating
modes were softened and the resulting control problem is feasible in a much larger class
of unknown disturbances and set-point changes. In [23], an approach was proposed that
extends the method presented in [24] that can only be applied to open-loop stable systems.
The robust controller was developed assuming that there is model uncertainty in both
the stable and integrating parts of the process. The method considered a modified cost
function that turns the infinite output horizon MPC globally convergent for any finite input
horizon. The controller was based on a modified version of the state-space model proposed
by [22] to develop nominally stable MPC for systems with stable and integrating modes.
The approach considered the inclusion of feasible cost-contracting constraints in the control
optimisation problem, taking into account the annulment of the integrating modes to assure
a bounded infinite-horizon cost. In [25], MPC for use in processes with an integrating
response exhibiting a long dead time and time constants was developed. This controller
was successfully applied to the temperature control of a batch reactor. In [26], the MPC of
time delay processes with both integrating and stable modes and model uncertainty was
designed. The controller was developed for the practical case of zone control and input
target tracking and was based on a state-space model that is equivalent to the analytical
form of the step response model corresponding to the process transfer function.

The internal model control (IMC) concept has also been applied to IPTD processes.
In [27], a simple model predictive controller (SMPC) was proposed for the unstable and
integrating delayed processes. The proposed SMPC algorithm was designed incorporating
IMC and showed significant performance improvement over the existing SMPC. Moreover,
the IMC-based SMPC also improved the process performance with time delay. The tuning
of the controller parameters was optimised using a Genetic Algorithm.

Recently, a hybrid robust controller was developed in [28] for IPTD with a long dead
time, which blended a sliding-mode controller, a modified SP and a PD compensator.

2.3. Motivation of This Work

In [29], a modified SP scheme was developed—hereafter denoted as the SP-H con-
trol scheme—to effectively reject step disturbances at the input of a second order with
a dominant time delay process. In that paper, a comparison of the disturbance rejection
performance of several APC techniques was also carried out. This comparison included
the standard SP; an SP combined with a feedforward term (it required sensing the distur-
bance); a relatively recent modification of the SP to account for disturbances, which counts
on a broad acceptance; an internal model control system; and the SP-H control scheme.
The comparison yielded that the SP-H outperformed the other schemes in rejecting step
disturbances at the input of the process and had the best robustness feature (though it is
only slightly better than the feature achieved by the internal model controller).

Furthermore, the control system developed in [12] for our mobile robot uses a standard
SP, which, as previously stated, has a low capability to reject step disturbances at the input
of an IPTD process. Because the dynamics of our robot belong to this kind of process, we
have to reduce the effects of the terrain slope (which would be a step input disturbance if
the slope were constant), and given that the SP-H control scheme yields better results than
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other schemes for a non-integrating stable time delay process, we consider in this paper
modifying the above SP-H in such a way that it would be able to effectively reject step
input disturbances in our robot.

The analysis carried out on applying the SP-H to our mobile robot has shown that it is
unable to cancel the positioning error caused by terrain slopes. Then, the main contribution
of this paper is modifying the original SP-H in order to cancel the steady-state position
error caused by slopes while reducing the overshoot and settling time.

3. Robot Setup

The MRHS is shown in Figure 1. The HSA, which is mounted at the front of the
MWMR, consists of a robotic subsystem that works as an active haptic system. Its design
has been developed by our group in previous works [30,31], where it has been used as
a tactile sensor to detect objects that are in its surroundings. It is mainly composed of a
lightweight, slender carbon-fibre rod (the antenna) attached to one of its ends to a six-axis
force–torque (FT) sensor ATI FTD-MINI40. In turn, the FT sensor is fixed to a structure
moved by two Harmonic Drive direct current (DC) mini-servo actuator PMA-5A motor
sets that include zero backlash 1:50 reduction gears and incremental encoders.

Figure 1. Mobile Robotic Haptic System based on flexible antenna (MRHS).

Furthermore, carrying the HSA, there is the MWMR. It is composed of various
subsystems. Firstly, the MWMR platform consists of an aluminium chassis equipped with
four DC motors with incremental encoders and 1:75 reduction gears driving four 38 mm
radius Mecanum wheels (also known as Swedish wheels, with rollers at 45◦). The motors
operate within ±9 V. Each encoder has a resolution of 4 pulses per turn of the motor axle,
corresponding to 300 pulses per turn of the omni wheel. This setup achieves an accuracy of
±1.2◦ in measuring the wheel angular position.

The MWMR also equips a National Instruments Field-Programmable Gate Array
(FPGA) CompactRIO control board (sbRIO-9631). This board communicates with a
host computer via a Wi f i Router, reads sensor measurements (motor encoders and the
force–torque sensor from the HSA) and controls all the motors of the robot, including the
HSA and MWMR, using Maxon ESCON Module 24/2 servo controller boards. These con-
troller boards manage the inner current loops of the motors. The entire system is powered
by two 3500 mAh, 3-cell (11.1 V) LiPo batteries connected in series, delivering a nominal
22.2 V.

In this work, we will focus on the modelling and control of the MWMR. More details
about this setup can be found in [12].

4. MWMR Model

The dynamic model of our mobile robot is developed in this section. First, a model
of the system considering input disturbances is obtained. Then, the robot parameters
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identified in [12] are provided. Finally, the complete dynamic model of the MWMR
including nonlinearities is given.

4.1. Analytical Model

Figure 2 schematises the system in which the MWMR displaces along the X axis,
which has an α inclination slope. The robot mass is M and moves forward due to the
applied force Fa(t). Some assumptions are made: (1) the robot displaces due to the motor
torques applied to the wheels by their respective motors, (2) perfect grip between the
wheels and the ground is assumed, so no sliding nor skipping is considered, and (3) the
drag force and rolling resistance are considered negligible.

�

� �� �

� �
�

Γ

� �

�� �

Figure 2. System scheme.

Thus, the dynamics of the system are expressed as:

Fa(t)− M · g · sin(α) = M · ẍ(t) (1)

where g is the gravity constant. The applied force Fa(t) is the sum of the forces generated
by the torques Γi

a(t) applied by each motor i through its wheel i:

Fa(t) =
∑4

i=1 Γi
a(t)

R
(2)

where i denotes each motor/wheel as i = 1 (Front-Left), i = 2 (Front-Right), i = 3
(Back-Left) and i = 4 (Back-Right), and R is the radius of the wheels.

The applied torque i can be obtained from the dynamic equation of motor i:

Γi
a(t) = Γi

m(t)− Ji
m · θ̈i(t)− νi · θ̇i(t)− Γi

f (t) (3)

where Γi
m(t) is the motor torque, θi(t) the angular position of the motor and the correspond-

ing wheel, Ji
m and νi are the inertia and viscous friction of the motor, respectively, and Γi

f (t)

is the nonlinear friction term. The motor torque Γi
m(t) is obtained by:

Γi
m(t) = n · Ki

m · Vi(t) (4)

where n is the motor’s reduction gear ratio, Ki
m is the electromechanical constant of the

motor servo amplifier system and Vi(t) is the motor input voltage. Vi(t) is the control
variable of the system, introduced to the servo amplifier to regulate the amount of current
supplied to the motor. Therefore, a combination of the motor and the servo amplifier
dynamics can be considered, obtaining a constant relation Ki

m between the motor torque
and input voltage [12].

As perfect grip between the wheels and the ground is considered, it can be assumed
that the displacement of the robot along the X direction requires all the motors turning
the same angle, θi(t) = θ(t), ∀i. Thus, all four motors provide the same amount of torque,
Γi

m(t) = Γm(t), ∀i. Moreover, the wheels are driven by the same type of motors and
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amplifiers, allowing for the assumption of homogeneity in physical parameters, which
implies that Γi

a(t) = Γa(t), ∀i, and, then, Equation (2) can be approximated by

Fa(t) ≈ 4 · Γa(t)
R

(5)

and Equation (3) can be rewritten considering (4) as:

Γa(t) = n · Km · V(t)− Jm · θ̈(t)− ν · θ̇(t)− Γ f (t) (6)

The combination of (1), (5) and (6) and the relation between the angle of the motor-
wheel and its relative displacement in X, that is, x(t) = θ(t) · R, leads to the general
dynamic equation of the system:

n · Km · V(t) =
(

Jm +
M · R2

4

)
· θ̈(t) + ν · θ̇(t) + Γ f (t) +

R
4
· M · g · sin(α) (7)

The last addend of (7) represents the disturbance effect caused by the slope that the
robot is supposed to face, which henceforth will be denoted as d:

d =
R
4
· M · g · sin(α) (8)

A transfer function can be obtained between V(t) and θ(t) by removing Γ f (t) and
d from (7)—because they are considered as disturbances—and taking Laplace transforms:

Ĝ(s) =
θ(s)
V(s)

=

n·Km
J

s2 + ν
J · s

=
A

s · (s + B)
(9)

being J = J0 = Jm + M·R2

4 , and A, B the terms that comprehend the motor parameters.

4.2. Identification Method of the Parameters of the MWMR

Motor parameters A and B of (9) are identified through a process in which different
voltages V(t) are applied and data θ̇(t) are registered by numerically differentiating the
measurement θ(t) of the encoder. Then, θ̇(s)/V(s) = A/(s + B), and these parameters are
determined by using well-known relations of first-order systems [32]:

B =
3
ts

, A = Pm · B (10)

being ts the settling time and Pm the system gain (the relation between the applied voltage
and the angular velocity reached in a steady state, θ̇s). Both ts and Pm are easily obtained
from that experimental data.

The electromechanical constant of the motor servo amplifier system Km is determined
from the data provided by the motor manufacturer, being Km = 1.74 · 10−3 Nm/V.

During the identification process, the time delay L appears. It is caused by a combina-
tion of the reduction gears backlash and the speeds of the control board. Then, the linear
dynamics (9) are modified to the transfer function

G(s) = Ĝ(s) · e−L·s =
A

s · (s + B)
· e−L·s (11)

Also during the identification process, some nonlinearities appear and need to be
identified. The nonlinear friction term Γ f (t) is a torque that brakes the motor when applying
low-input voltages to the motor, causing it to get stuck (motor dead-zone), and when
running the motor at non-zero speed, avoiding the motor reaching the desirable angular
velocity (Coulomb friction). Because the torque is proportional to the voltage, the friction
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model Γ f (t) can be expressed in terms of its equivalent voltage Vf (t) by means of the
following piecewise function:

Vf (t) =


VK

f · sign(θ̇(t)), |θ̇(t)| ̸= 0
VS

f · sign(V(t)), |θ̇(t)| = 0 and |V(t)| > VS
f

V(t), |θ̇(t)| = 0 and |V(t)| ≤ VS
f

(12)

being VS
f the stiction break-away equivalent voltage, VK

f the kinetic friction equivalent

voltage and VS
f > VK

f .
Other nonlinear phenomena that must be considered are the saturation and encoder

resolution. Experiments have been performed to figure out the real motor saturation
value, obtaining Vsat = 8.7 V, which is slightly different to the value of 9 V given by the
manufacturer. Regarding the measuring resolution, one pulse of the equipped encoders
is equal to 1.2◦ in the wheel angle. This is such a significant jump when controlling the
position of the wheels and needs to be replicated in the model to assess the impact of this
quantisation in the control system. Hence, the signal θ(t) will be truncated yielding the
signal θq(t).

More details of this identification procedure can be found in [12].

4.3. Complete Model of the System

Figure 3 represents a block diagram of the full motor model. First, the input signal
V(t) is limited by means of a saturation block to a maximum absolute value defined by
Vsat, delivering the voltage signal Vs(t). After that, the friction equivalent voltage Vf (t) is
generated by (12) in the friction block FB(V, θ̇). Also, the disturbance effect of the slope (8)
is calculated in terms of voltage Vd(t) through n and Km. Subtracting Vf (t) and Vd(t) from
Vs(t) gives Vl(t), which is the torque equivalent voltage moving the undisturbed linear
part of the system G0(s), represented by the transfer function (11), whose output is θ(t).
Later, this signal is differentiated to obtain the velocity θ̇(t). Finally, the encoder resolution
is replicated in the block ER by truncating the signal θ(t), yielding θq(t).

� �

��

−

−� � �� �

�� �

�	 �

�


 �


 �

��

 �

�� �
� ��

� �

Figure 3. Model scheme.

The mean values of the parameters identified obtained from [12] are presented in
Table 1. With those mean values, the corresponding nominal transfer function G0(s) is
defined as:

G0(s) =
θ(s)
Vl(s)

=
A0

s · (s + B0)
· e−L0·s =

1631
s · (s + 19.97)

· e−0.0539·s (13)

Table 1. Identification results.

A0 B0 L0 (s) VS
f (V) VK

f (V)

1631.32 19.97 0.0539 0.85 0.2898
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5. Proposed Control System

We propose to use the control scheme developed originally in [29] for a stable second-
order plus time delay process. This control scheme is a modification of the SP, which is
denoted SP-H. It is based on adding a feedback of the difference between the process
output and the nominal model output to the standard SP, as it is shown in Figure 4. Then,
we will first provide a brief description of the standard SP and, after, we will develop
our new controller. In this section, we will neglect the nonlinear behaviour of the motors,
i.e., Coulomb friction and saturation, because we assume that their effects are approximately
removed by a friction compensator and an antiwindup system, as it was mentioned in
the Introduction and in [12]. Then, this section focuses on developing and comparing
controllers for linear systems.

� �

� �
� �

� �

−− −

� �

� �

	 � 

−�·�

−
+

	0 � 
−�0·�

	 �

	0 �

Figure 4. Modified Smith predictor structure.

5.1. Standard SP Scheme

The standard SP control scheme is represented by the black lines and boxes shown
in Figure 4. In this figure, G(s) is the process to be controlled, which is composed of a
rational part, Ĝ(s), and a term e−L·s corresponding to the time delay L. G0(s) represents the
nominal model of G(s), which is composed of a nominal rational part, Ĝ0(s), and a term
e−L0·s corresponding to the nominal time delay L0. R(s) is the input (reference) signal, C(s)
is the main controller, U(s) is the control signal, Y(s) is the plant output signal and D(s) is
the load disturbance signal. It is not difficult to obtain the transfer functions between the
output Y(s) and the reference R(s), and between the output Y(s) and the disturbance D(s),
which are, respectively,

Tr(s) =
Y(s)
R(s)

=
C(s) · Ĝ(s) · e−L·s

1 + C(s) ·
(
Ĝ0(s) + Ĝ(s) · e−L·s − Ĝ0(s) · e−L0·s

) (14)

Td(s) =
Y(s)
D(s)

=
1 + C(s) · Ĝ0(s) ·

(
1 − e−L0·s

)
1 + C(s) ·

(
Ĝ0(s) + Ĝ(s) · e−L·s − Ĝ0(s) · e−L0·s

) · Ĝ(s) · e−L·s (15)

In this scheme, two predictors with their respective closed loops are implemented.
The first one implements the nominal dynamics of the process G0(s) and its predicted
output is subtracted to the real output yielding the signal that is fed back into this loop. This
loop is inactive if the real process coincides with the model and there is not a disturbance.
Otherwise, this loop is active, being in charge of rejecting the output errors caused by
these two issues. The second predictor implements the model without its delay Ĝ0(s) and
predicts the value of the process output L0 s in advance. This prediction is used to close
a loop in which the delay of the process is removed, which facilitates the design of the
controller C(s). This loop is essentially in charge of making the process track the reference.

In the case of the nominal process, i.e., G(s) = G0(s), the previous transfer functions
become

Tr(s) =
Y(s)
R(s)

=
C(s) · Ĝ0(s) · e−L0·s

1 + C(s) · Ĝ0(s)
(16)
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Td(s) =
Y(s)
D(s)

=
1 + C(s) · Ĝ0(s) ·

(
1 − e−L0·s

)
1 + C(s) · Ĝ0(s)

· Ĝ0(s) · e−L0·s (17)

Note that the delay has disappeared from the denominator of both transfer functions,
as it was advanced in the previous paragraph. Then, the characteristic equation of this
closed-loop system becomes rational and it is possible to apply standard linear control
design techniques to achieve the desired closed-loop specifications.

The analysis of the steady-state performance of the SP in the case of the nominal
process is carried out using (16) and (17), and the final value theorem, e.g., [32]:

1. Step reference.

(a) In the case that Ĝ0(s) is not integrating, i.e., it does not have a pole located at
the origin of the complex plane, the steady-state error of its step response is
non-zero if C(s) is not integrating (e.g., a PD controller) and is zero if C(s) is
integrating (e.g., a PID controller).

(b) In the case that Ĝ0(s) is integrating, i.e., it has a pole located at the origin of
the complex plane, the steady-state error of its step response is zero in both
cases: integrating and not integrating C(s).

2. Step disturbance rejection.

(a) In the case that Ĝ0(s) is not integrating, a step disturbance produces a non-zero
steady-state error in the output if C(s) is not integrating and a zero steady-state
error if C(s) is integrating.

(b) In the case that Ĝ0(s) is integrating, a step disturbance produces a non-zero
steady-state error in both cases: integrating and not integrating C(s).

The transfer functions of our motors have the form (13). Then, they are IPTD pro-
cesses. Because the terrain slope effect is modelled as a step disturbance of unknown am-
plitude d given by (8)—the angle α of the slope is unknown—the previous analysis yields
(see Case 2b) that the standard SP controller is unable to obtain a zero steady-state error in
robot positioning. A modification of the basic SP scheme is therefore required to overcome
this drawback.

5.2. Modified SP Scheme: The SP-H Scheme

This modification utilises the existing prediction of the time delay compensator and
decouples the set-point response from the disturbance response. The set-point response and
the disturbance response of the closed-loop system are adjusted by two controllers. Figure 4
shows this new SP scheme that is composed of the standard SP scheme with its controller
C(s) plus a new feedback loop that includes the second controller H(s), highlighted in blue
in the figure.

Simplifying the complete block diagram of Figure 4, we obtain now that

Y(s) = T′
r(s) · R(s) + T′

d(s) · D(s) (18)

where

T′
r(s) =

Y(s)
R(s)

=
C(s) · Ĝ(s) · e−L·s

1 + C(s) · Ĝ0(s) + (C(s) + H(s)) ·
(
Ĝ(s) · e−L·s − Ĝ0(s) · e−L0·s

) (19)

T′
d(s) =

Y(s)
D(s)

=
1 + Ĝ0(s) ·

(
C(s)− (C(s) + H(s)) · e−L0·s

)
1 + C(s) · Ĝ0(s) + (C(s) + H(s)) ·

(
Ĝ(s) · e−L·s − Ĝ0(s) · e−L0·s

) · Ĝ(s) · e−L·s (20)

Note that transfer functions (14) and (15) are, respectively, obtained from (19) and (20)
by just making H(s) = 0.



Actuators 2024, 13, 46 11 of 20

In the case of the nominal process, i.e., G(s) = G0(s), the transfer functions of (18) are

T′
r(s) =

C(s) · Ĝ0(s) · e−L0·s

1 + C(s) · Ĝ0(s)
(21)

T′
d(s) =

1 + Ĝ0(s) ·
(
C(s)− (H(s) + C(s)) · e−L0·s

)
1 + C(s) · Ĝ0(s)

· Ĝ0(s) · e−L0·s (22)

In the case of the nominal process, transfer function (21) shows that the set-point track-
ing performance depends on C(s) and it does not depend on H(s). However, the transfer
function (22) shows that the disturbance rejection performance depends on both C(s)
and H(s).

From now on, we will consider that y(t) is the motor angle θ(t), and the process input
u(t) is the motor voltage Vl(t) that moves the undisturbed linear part of the system, and
G(s) = G0(s) is given by (13). Moreover, because the disturbance is a step, D(s) = d/s.

5.3. Stability Issues

In the case of the nominal process, the closed-loop stability is defined by the denomi-
nator of (21) and (22). Because it is a polynomial in s, the stability is defined by a proper
design of C(s), which can be performed by any method to design controllers for linear
time-invariant systems.

In the case of a mismatch between the model and the real process, the stability robust-
ness can be studied using the following condition in the frequency domain, which was
derived in [29]:

Φ(ω) > |∆(j · ω)| (23)

where ∆(j · ω) is the relative mismatch:

∆(j · ω) =
Ĝ(j · ω) · e−j·L·ω − Ĝ0(j · ω) · e−j·L0·ω

Ĝ0(j · ω) · e−j·L0·ω
(24)

and

Φ(ω) =

∣∣∣∣∣ C(j · ω) · Ĝ0(j · ω) + 1
(C(j · ω) + H(j · ω)) · Ĝ0(j · ω)

∣∣∣∣∣ (25)

5.4. Design of C(s)

Because the integrating term of our IPTD process guarantees the zero steady-state
error to a step command, we will design a PD controller

C(s) = Kp + Kd · s (26)

in order to obtain the desired dynamics of the closed-loop system. Because Ĝ(s) is a second-
order system, according to the common denominator of (21) and (22), PD (26) will allow us
to freely allocate the two poles of the closed-loop system.

The characteristic equation of the closed-loop system (21), (22) is

1 +
A0

s · (s + B0)
·
(
Kp + Kd · s

)
= 0 ⇒ s2 + (B0 + A0 · Kd) · s + A0 · Kp = 0 (27)

Because the right side of (27) is a second-order equation, the closed-loop system has
two poles p1, p2 that can be arbitrarily placed by tuning Kp and Kd. Equating coefficients
of the same powers of s between (27) and (s − p1) · (s − p2) = s2 − (p1 + p2) · s + p1 · p2
yields the tuning rules

Kp =
p1 · p2

A0
, Kd = − p1 + p2 + B0

A0
(28)
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We will show that, in our mobile robot, we obtain satisfactory results designing a
critically damped system with the double pole placed in −B0/2. In this case, Kd becomes 0

and we use a P controller of the form C(s) = B2
0

4·A0
.

5.5. Design the Compensator H(s)

As previously mentioned, several modified SPs with different structures have been
proposed in the literature for IPTD processes to remove the steady-state error produced by
a constant load disturbance. Some of them reduce the steady-state disturbance error and
others completely eliminate that error. We seek in this subsection to design a modified SP
that completely eliminates the steady-state disturbance error and, moreover, reduces the
transient disturbance error more effectively than other methods. This is based on a proper
design of H(s).

Substituting G(s) by (13) and C(s) by (26) in (22) gives that

T′
d(s) =

s · (s + B0) + A0 ·
[
Kp + Kd · s −

(
H(s) + Kp + Kd · s

)
· e−L0·s

]
s2 + (B0 + A0 · Kd) · s + A0 · Kp

· A0

s · (s + B0)
· e−L0·s (29)

The steady-state error of y(t) in response to a step load distance d(t) is given by the
final value theorem, e.g., [32]:

epd = lim
t→∞

e(t) = lim
s→0

s · T′
d(s) ·

d
s

(30)

Then, in order to make epd = 0, the following are necessary:

1. The numerator of T′
d(s) must be 0 at s = 0 in order to have a finite epd. Then,(

s · (s + B0) + A0 ·
[
Kp + Kd · s −

(
H(s) + Kp + Kd · s

)
· e−L0·s

])∣∣∣
0
= 0 ⇒ H(0) = 0 (31)

2. The derivative of the numerator of T′
d(s) with respect to s must be 0 at s = 0 in order

to make epd equal to zero. Then,

d
(
s · (s + B0) + A0 ·

[
Kp + Kd · s −

(
H(s) + Kp + Kd · s

)
· e−L0·s

])
ds

∣∣∣∣∣
0

= 0 ⇒ (32)

dH(s)
ds

∣∣∣∣
s=0

= Kp · L0 +
B0

A0
(33)

The first condition implies that H(s) must have a zero (of any multiplicity) at the
origin. Then, H(s) must have the form

H(s) =
sm · Hn(s)

Hd(s)
(34)

where Hn(0) ̸= 0 and Hd(0) = 1. The second condition imposes that

dH(s)
ds

∣∣∣∣
s=0

= lim
s→0

m · sm−1 · Hn(s)
Hd(s)

= Kp · L0 +
B0

A0
(35)

which can only be satisfied if m = 1. Then, we propose the simplest H(s) that verifies the
previous conditions:

H(s) =

(
Kp · L0 +

B0
A0

)
· s

1 + λ · s
, λ > 0 (36)

Note that the closed-loop steady-state error and H(s) do not depend on the derivative
gain Kd of C(s), only on the proportional gain Kp.
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Then, a compensator H(s) of the form (36) improves the disturbance rejection capabil-
ities of the system without affecting the nominal set-point response.

6. Comparison with Other SP Modifications

In this section, the performance of the proposed scheme is evaluated during the
set-point tracking and load disturbance by comparing it with well-known modified SP
schemes. The simulations of four reputed modified SP schemes are carried out, reported
by Smith [16] (the original SP); Stojic, Matijevic [33]; Normey-Rico, Julio and Camacho,
Eduardo [34]; and Espín, Jorge et al. [28], in addition to our proposed scheme. The first
three schemes are linear controllers, while the fourth one is a nonlinear scheme based on
sliding-mode control. We apply these different control structures to the nominal process (13)
facing a step input reference of π radians and a disturbance applied at 2 s. Two types of
disturbances are simulated: a step disturbance of amplitude 2 and a unitary slope ramp
disturbance. The linear schemes use the same C(s); meanwhile, the nonlinear controller is
set up so that the system performs equivalent to the linear control schemes facing the step
input reference.

As in the previous section, we will neglect the nonlinear behaviours of the motors
because we will assume that they are compensated. Then, the linear system (13) will be
used in the comparison. The parameters of C(s) and H(s) are set leading to the follow-
ing expressions:

C(s) = 0.061096 ; H(s) =
0.01529 · s
0.05 · s + 1

(37)

The process outputs using the before controllers and facing a step disturbance are
illustrated in Figure 5. All of them provide the same response to a set-point change—then
they may be considered as equivalent—but they show differences in the external disturbance
rejection, both in the transient and in the steady-state error. The original SP does not have a
block responsible for rejecting the disturbance. For this reason, it is unable to cancel a step
disturbance in the process input. The other schemes have their own blocks responsible for
eliminating the disturbance.

In [33], the proposed SP (denoted as SP-IMPACT) has an observer estimator that
enables absorbing any class of disturbance. The control part of the modified SP contains
five parameters, Kv, L, Kr, T0 and n. Two of them are the plant parameters Kv (gain) and
L (time delay). The other three parameters, Kr, T0 and n, are to be adjusted with respect
to the prescribed set-point change transient speed and the disturbance transient response
and to the desired robustness to mismatches in Kv and L.

On the other hand, the filtered SP (denoted as SP-F) introduced by [34] contains a
block disturbance rejection represented by the filter Fr(s), which is placed in the feedback
of the control scheme. This filter is used to improve the robustness and the disturbance
rejection capabilities of the system without affecting the nominal set-point response.

Also, the nonlinear control scheme presented by [28] (denoted as DSMC-IS), which
is a combination of a modified SP and a sliding-mode controller, is able to reject the
disturbance by means of a PD compensator placed in its inner loop. It considerably reduces
the steady-state error compared to the previous schemes, but still is not zero, as detailed in
Figure 5.

Our proposed modified Smith predictor SP-H involves only two controllers: the
controller C(s) used to follow the set-point changes (or trajectory tracking) and the compen-
sator H(s) used to improve the disturbance rejection. The simulations shown in Figure 5
illustrate that the SP-H provides the best disturbance rejection features, performing the
best disturbance transient response of all and a zero steady-state error.

The process outputs using the before controllers and facing a unitary slope ramp
disturbance are illustrated in Figure 6. In this case, all the schemes show a higher steady-
state error due to the nature of the disturbance, but once again, the best result comes from
our SP-H scheme, with the smallest steady-state error.
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Figure 5. Set-point tracking and step disturbance rejection responses along with control actions for
the nominal DC motor of [16] (SP), [33] (SP-IMPACT), [34] (SP-F), [28] (DSMC-IS) and our SP-H.
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Figure 6. Set-point tracking and ramp disturbance rejection responses along with control actions for
the nominal DC motor of [16] (SP), [33] (SP-IMPACT), [34] (SP-F), [28] (DSMC-IS) and our SP-H.

Finally, the robustness of our SP-H is compared to the robustness of the standard SP
by plotting in Figure 7 the respective Φ(ω) functions given by (25) (H(s) is made zero in
the case of the SP). Three controllers are compared: an SP combined with a P controller,
an SP combined with the PID controller designed in [12] and an SP-H with a P controller.
All these controllers are tuned to have a closed-loop double pole in p = −B0/2 ≈ −10 in
order to make a fair comparison. This figure shows that the SP-H is the less robust control
system, though it has a robustness similar to the SP with a PID in the range from 0 to
4 rad/s.
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Figure 7. Robustness functions Φ of the SP and SP-H versus an uncertainty ∆ of a rotational inertia
four times higher than the nominal.

Because the payload M carried by the robot varies, the parameter that is most likely to
change is J. Then, it is important to assess the robustness of the control systems in Figure 7
to this uncertainty. In this figure, ∆ is plotted for J = 4 · J0, which is the maximum expected
inertia. It shows that, for this payload, the three control systems verify the robustness
condition (23). Then, though the SP-H has the lowest robustness feature, it is sufficient for
the working conditions foreseen for our robot.

7. Experimental Results

The comparison analysis of the previous section was carried out assuming a motor with
linear dynamics. However, as it was previously stated, our motor has some nonlinearities
such as Coulomb friction, actuator saturation and a low resolution of the encoders that
degrade the controlled system performance. In the previous paper [12], these nonlinear
effects were compensated by including in the control system a friction compensator and an
antiwindup system. Moreover, the effect of a step input disturbance was reduced (though
not removed) by using an integrating controller (a PID). Such a PID produced (a) an
undesired overshoot, which was removed, including a prefilter; (b) actuator saturation, for
which the effect was reduced by the mentioned antiwindup system; and (c) a reduction in
the relative stability of the closed-loop system (compare the SP plots in Figure 7), which
makes it prone to instability if the time delay or the carried payload change. Instead, our
proposal keeps the friction compensator but, because it is able to completely eliminate the
steady-state error at the output without needing to use an integrating controller, a simple P
controller is used. This controller does not add additional zeros that may produce undesired
overshoots, as the PID does, and, unlike the PID, it does not have the integrating term
that is responsible for the saturation phenomena in our motor. Then, because the prefilter
and the antiwindup system were not needed, they were removed, and the control system is
highly simplified.

Then, the experimental results are presented in this section that compare our new
control system with the prior control scheme developed in [12]. The purpose of this
comparison is to assess the previous assertions that our control system eliminates the steady-
state error positioning while the prior control system does not, yields an approximately
linear behaviour (as [12] does) and avoids overshoot and saturation (as [12] does), but it is
a much simpler controller than [12]. The control schemes are implemented in the National
Instruments control board of the robot through the LabView software and a few experiments
are carried out.
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7.1. Design of the Trajectory and Disturbance

The typical input signal references used to design the controllers are step signals.
Nevertheless, it is a non-desirable reference in trajectory tracking because it introduces
very high accelerations to the robot, causing unexpected robot behaviours, such as wheel
slipping and trajectory deviation. Thus, a suitable fast input signal is designed with limited
velocity and acceleration.

A Cartesian trajectory is designed for the robot to move along its longitudinal axis. It
is set to displace 1 m with limited acceleration and speed. The input reference, which is
expressed in time, is divided into three stages: a first stage with constant acceleration in
which the robot accelerates until a determined speed; a second stage in which the robot
displaces, maintaining speed; and a third stage in which the robot decelerates until it stops
at the desired position. Finally, a steady-state stage is added at the end of the trajectory,
where the robot remains in its final position. The maximum acceleration and speed values
are carefully chosen to ensure that the robot maintains good ground adherence and avoids
overloading the motors. Thus, the acceleration is set to 200 mm/s2 and the maximum
speed to 100 mm/s.

The input reference to the control scheme is the angular position of the motors. Hence,
the designed trajectory (in X) needs to be transformed into the motor angular position θ(t)
through x(t) = R · θ(t), where the radius of the wheel is R = 38 mm. Also, the motor
angles, which are the encoder measurements, can be transformed into the robot position in
X through the same expression assuming the perfect grip of the wheels.

To prove the goodness of the new control scheme, a disturbance d is generated. Accord-
ing to (8), the disturbance d depends on the terrain slope (α), the robot mass (M) and the
wheel’s radius (R). Thus, a large input disturbance is generated adding an extra payload
to the robot and testing it on an α = 15◦ ramp. A trailer is designed to carry the extra
payload. The connecting rod between the trailer and the robot is designed to apply the
force of the payload just at the same height as the motor axle plane. This design prevents
the application of an undesirable rolling torque to the robot that might change the robot
dynamics. The original mass of the robot is M = 3.8 kg and the total extra payload added
is 3.28 kg, which adds up to M̂ = 7.08 kg, which is around an 86% increase. Figure 8 shows
the robot over the ramp holding the payload over the designed trailer.

Figure 8. Experimental setup.

7.2. Compensators to Overcome Nonlinearities

As previously mentioned in Section 4.2, the system exhibits several nonlinearities,
including the nonlinear motor friction, saturation and encoder resolution. Among them,
nonlinear friction can be compensated by means of a friction compensator block (FC) of
the form
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Vc(t) =


Vc(t − Ts), |e(t)| ≤ emin

Vmin
f · sign(Vr(t)), |e(t)| > emin and |Vr(t)|+ VK

f ≤ Vmin
f

Vr(t) + VK
f · sign(Vr(t)), |e(t)| > emin and |Vr(t)|+ VK

f > Vmin
f

(38)

where Vc(t) is the output voltage of the compensator; Vr(t) is the control signal; e(t) is the
error signal measured between the input reference θ∗(t) and the output encoder measure
θ(t); emin is a defined error band; Vmin

f is the minimum voltage supplied to the motor,

which has been set to 0.9 V, just slightly greater than the stiction break-away voltage VS
f ,

to ensure a value outside the motor dead-zone; and Ts is the sample time of the system
(25 ms). The error band ±emin is established to avoid motor oscillations when reaching the
reference due to the motor dead-zone and its compensation, determined by the minimum
angular displacement that the motor can turn. This value is determined by applying the
minimum voltage to move the motor, Vmin

f , in t = Ts = 25 ms, obtaining a conservative
value of ±2 encoder pulses, which corresponds to emin = ±2.4◦ in each wheel. Note that,
in this threshold, the quantisation error introduced by the encoder is also included.

This FC is the same as the one designed in [12], except for the first equation of the
piecewise function. Originally, the output value of the compensator was set to zero when
|e(t)| ≤ emin. Now, the output value is the voltage that was delivered in the previous
instant, Vc(t) = Vc(t − Ts), to keep the motor pushing in the case that a disturbance affects
the system.

7.3. Results and Comparison with the Previous Control Scheme

The previous control scheme developed in [12] is composed of a PID controller
plus a prefilter combined with a Smith predictor, an antiwindup scheme and a friction
compensator. The prefilter is designed to cancel the zeros introduced by the regulator in
the closed-loop system and also two poles, reducing the order of the closed-loop system
to a second order. Thus, the combination of the PID and the prefilter results in a second-
order critically damped system where a double pole of the closed-loop system is placed in
p = −B0/2 ≈ −10. As the regulator is designed with an integral part (PID), an antiwindup
scheme is needed to overcome motor saturation. Finally, the Smith predictor and the friction
compensator cope with the time delay and nonlinear friction, respectively.

On the other hand, the new control scheme is composed of a PD controller combined
with a disturbance compensator, along with a Smith predictor and a friction compensator.
As it was explained in Section 5.4, we have designed the regulator by placing a double
pole in p = −B0/2 ≈ −10 so as to finally obtain a critically damped second-order system.
This regulator does not introduce any zeros in the closed-loop system, so no prefilter is
needed. In this way, the new controller is equivalent to the previous one but is much
simpler. The regulator has no integral part, so no antiwindup scheme is needed either.
The Smith predictor is integrated into the system in addition to the compensator to reject
the disturbances designed in Section 5.5, which was a missing feature in the previous
control scheme. Finally, the new control scheme includes a friction compensator, which is
essentially the same as the one designed in [12] but with a slight modification, as explained
in the previous section.

Figure 9 shows the results obtained from the experimentation, both the robot position
(in meters) and control signal (in volts). Two experiments are represented. On the one hand,
the blue line labelled as Previous control scheme shows the performance of the proposed
controller in [12]. On the other hand, the red line labelled as New control scheme shows the
response of the new control scheme proposed in this work.

The previous controller follows the designed trajectory but is not able to reach the
desired ending position, as can be seen in the detailed view of the robot position. This is
a consequence of the disturbance introduced by the slope and the payload, which affects
the implemented Smith predictor. On the contrary, the new controller is able to reject the
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disturbance and the robot moves to the desired position, following the desired trajectory
even better than the previous controller.
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Figure 9. Experimental results of the previous control scheme [12] and the new control scheme.

In order to measure quantitatively the improvement in the new controller compared
with the previous one, two performance index are calculated. First, the steady-state error
(SSE) at the end of the trajectory is measured. The experiments show that the SSE of
the previous controller is 7.18 mm, whereas the new controller performs nicely and gives
an SSE of 0 mm. The error band defined limits the SSE to ±2 encoder pulses, which is
equivalent to 1.6 mm in robot displacement. This means that the new controller performs
perfectly, whereas the performance of the previous one is not acceptable, as it is not able
to overcome the input disturbance. Finally, the root mean square error (RMSE) between
the input reference and the robot position is calculated. This parameter gives a measure
of how close to the reference signal the robot moves. Thus, the RMSE of the previous
control scheme is 27.54 mm, whereas the RMSE of the new one is 23.09 mm. These results
demonstrate that the new controller more closely follows the desired trajectory, as the
RMSE is 16.2% lower compared with the previous controller.

8. Conclusions

This paper has addressed the positioning of low-cost mobile robots under the effect
of an unknown terrain slope. These robots have a hardware-induced delay and their
actuators are integrating processes. Then, the standard Smith predictor could not remove
the steady-state error caused by this slope. Moreover, the subsequent Smith predictor
modifications designed to remove this steady-state error show inefficient transients. Thus,
the contribution of this paper has been developing a new Smith predictor scheme that
achieves a zero steady-state positioning error when the robot has to face an unknown slope
while cancelling the transient error in a more efficient manner, i.e., a faster cancellation
with a lower maximum error, than other Smith predictor control schemes.

A relevant conclusion of this paper is that H(s) must have a zero at the origin of the
complex plane in order to remove the steady-state error caused by a step disturbance. We
mention that some recent works, e.g., [28,35], close an inner loop in the Smith predictor
similar to ours by implementing a PD controller in the H(s) block. Choosing such PD
controllers for H(s) is not the most efficient solution to remove the error caused by step
disturbances because they do not have a zero at the origin and, then, they cannot achieve a
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zero steady-state error. It sometimes forces the addition of other control elements in order
to cancel the permanent error.

Moreover, the controller embedded in our Smith predictor does not need to be inte-
grating to compensate for a terrain slope disturbance. According to this, this paper has
carried out a theoretical analysis, simulations and experiments that show that a simple P
controller (1) does not introduce zeros that could produce overshoot in the response (as a
PID could do), (2) does not need the help of an antiwindup system to avoid overshoots
caused by actuator saturation, as it would be the case if an integrating controller were used,
and (3) the robustness to changes in the plant parameters is significantly lower than that of
the standard SP scheme.

Regarding the robustness issue of the SP-H, it is close to the robustness of the SP
with the PID of [12] in an acceptable range of frequencies, and this robustness is enough
to guarantee stability in the range of working conditions of our robot. However, this
robustness could be improved by increasing the parameter λ of H(s).

Finally, we mention that, though we have used a P controller to prove the main
features of our control scheme, other non-integrating controllers could be used, like PD
controllers, that would allow us to freely allocate the two poles of the closed-loop system
while the use of an antiwindup system is still avoided. We highlight the simplicity of our
control system compared to others, like nonlinear controllers (e.g., sliding control).

Author Contributions: Conceptualisation, V.F.-B. and R.R.-P.; methodology, V.F.-B. and R.R.-P.;
software, A.M. and L.M.-C.; validation, A.M. and L.M.-C.; formal analysis, V.F.-B.; investigation, A.M.
and L.M.-C.; resources, V.F.-B.; data curation, A.M. and L.M.-C.; writing—original draft preparation,
A.M. and L.M.-C.; writing—review and editing, V.F.-B. and R.R.-P.; visualisation, L.M.-C.; supervision,
R.R.-P.; project administration, V.F.-B.; funding acquisition, V.F.-B. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Grant PID2019-111278RB-C21 funded by MCIN/AEI/
10.13039/501100011033 and “ERDF A way of making Europe”.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Tzafestas, S.G. Mobile Robot Control and Navigation: A Global Overview. J. Intell. Robot. Syst. 2018, 91, 35–58. [CrossRef]
2. Dhaouadi, R.; Hatab, A.A. Dynamic Modelling of Differential-Drive Mobile Robots using Lagrange and Newton-Euler Method-

ologies: A Unified Framework. Adv. Robot. Autom. 2013, 2, 1–7. [CrossRef]
3. Hendzel, Z.; Rykała. Modelling of dynamics of a wheeled mobile robot with mecanum wheels with the use of lagrange equations

of the second kind. Int. J. Appl. Mech. Eng. 2017, 22, 81–99. [CrossRef]
4. Sira-Ramírez, H.; Luviano-Juárez, A.; Ramírez-Neria, M.; Zurita-Bustamante, E.W. Active Disturbance Rejection Control of Dynamic

Systems: A Flatness Based Approach; Butterworth-Heinemann: Oxford, UK, 2017.
5. Hendzel, Z.; Kolodziej, M. Robust Tracking Control of Omni-Mecanum Wheeled Robot. Adv. Intell. Syst. Comput. 2021,

1390, 219–229. [CrossRef]
6. Tu, K.Y. A linear optimal tracker designed for omnidirectional vehicle dynamics linearized based on kinematic equations. Robotica

2010, 28, 1033–1043. [CrossRef]
7. Bouzoualegh, S.; Guechi, E.H.; Kelaiaia, R. Model Predictive Control of a Differential-Drive Mobile Robot. Acta Univ. Sapientiae

Electr. Mech. Eng. 2018, 10, 20–41. [CrossRef]
8. Moreno-Caireta, I.; Celaya, E.; Ros, L. Model Predictive Control for a Mecanum-wheeled Robot Navigating among Obstacles.

IFAC-PapersOnLine 2021, 54, 119–125. [CrossRef]
9. Ovalle, L.; Ríos, H.; Llama, M.; Santibáñez, V.; Dzul, A. Omnidirectional mobile robot robust tracking: Sliding-mode output-based

control approaches. Control Eng. Pract. 2019, 85, 50–58. [CrossRef]
10. Szeremeta, M.; Szuster, M. Neural Tracking Control of a Four-Wheeled Mobile Robot with Mecanum Wheels. Appl. Sci. 2022,

12, 5322. [CrossRef]

http://doi.org/10.1007/s10846-018-0805-9
http://dx.doi.org/10.4172/2168-9695.1000107
http://dx.doi.org/10.1515/ijame-2017-0005
http://dx.doi.org/10.1007/978-3-030-74893-7_21
http://dx.doi.org/10.1017/S0263574709990890
http://dx.doi.org/10.2478/auseme-2018-0002
http://dx.doi.org/10.1016/j.ifacol.2021.08.533
http://dx.doi.org/10.1016/j.conengprac.2019.01.002
http://dx.doi.org/10.3390/app12115322


Actuators 2024, 13, 46 20 of 20

11. Curiel-Olivares, G.; Linares-Flores, J.; Guerrero-Castellanos, J.F.; Hernández-Méndez, A. Self-balancing based on Active
Disturbance Rejection Controller for the Two-In-Wheeled Electric Vehicle, Experimental results. Mechatronics 2021, 76, 102552.
[CrossRef]

12. Mérida-Calvo, L.; Rodríguez, A.S.M.; Ramos, F.; Feliu-Batlle, V. Advanced Motor Control for Improving the Trajectory Tracking
Accuracy of a Low-Cost Mobile Robot. Machines 2023, 11, 14. [CrossRef]

13. Wu, W. DC motor parameter identification using speed step responses. Model. Simul. Eng. 2012, 2012, 189757. [CrossRef]
14. Qi, H.; Shangguan, J.; Fang, C.; Yue, M. Path Tracking Control of Car-like Wheeled Mobile Robot on the Slope based on Nonlinear

Model Predictive Control. In Proceedings of the ICARM 2022—2022 7th IEEE International Conference on Advanced Robotics
and Mechatronics, Guilin, China, 9–11 July 2022; pp. 465–470. [CrossRef]

15. Nishimura, Y.; Yamaguchi, T. Development of a steep slope mobile robot with propulsion adhesion. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 2592–2599.
[CrossRef]

16. Smith, O.J. A controller to overcome dead time. ISA J. 1959, 6, 28–33.
17. Watanabe, K.; Ito, M. A process-model control for linear systems with delay. IEEE Trans. Autom. Control 1981, 26, 1261–1269.

[CrossRef]
18. Tan, K.; Lee, T.; Leu, F. Predictive PI versus Smith control for dead-time compensation. Isa Trans. 2001, 40, 17–29. [CrossRef]
19. Paor, A.M.D.; Egan, R.P. Extension and partial optimization of a modified Smith predictor and controller for unstable processes

with time delay. Int. J. Control 1989, 50, 1315–1326. [CrossRef]
20. Astrom, K.J.; Hang, C.C.; Lim, B. A new Smith predictor for controlling a process with an integrator and long dead-time. IEEE

Trans. Autom. Control 1994, 39, 343–345. [CrossRef]
21. Matausek, M.R.; Micic, A. A modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE

Trans. Autom. Control 1996, 41, 1199–1203. [CrossRef]
22. Carrapiço, O.; Odloak, D. A stable model predictive control for integrating processes. Comput. Chem. Eng. 2005, 29, 1089–1099.

[CrossRef]
23. Gonzalez, A.; Marchetti, J. Extended Robust Model Predictive Control of Integrating Systems. AIChE J. 2007, 53, 1758–1769.

[CrossRef]
24. Odloak, D. Extended Robust Model Predictive Control. AIChE J. 2004, 50, 1824–1836. [CrossRef]
25. Huzmezan, M.; Gough, W.; Dumont, G.; Kovac, S. Time delay integrating systems: A challenge for process control industries. A

practical solution. Control Eng. Pract. 2002, 10, 1153–1161. [CrossRef]
26. Martins, M.; Yamashita, A.; Santoro, B.; Odloak, D. Robust model predictive control of integrating time delay processes. J. Process

Control 2013, 23, 917–932. [CrossRef]
27. Lodhi, P.; Verma, B.; Padhy, P. Improved simplified model predictive controller design for unstable and integrating delayed

processes. In Proceedings of the 2021 International Conference on Control, Automation, Power and Signal Processing (CAPS),
Jabalpur, India, 10–12 December 2021.

28. Espin, J.; Castrillon, F.; Leiva, H.; Camacho, O. A modified Smith predictor based—sliding mode control approach for integrating
processes with dead time. Alex. Eng. J. 2022, 61, 10119–10137. [CrossRef]

29. Feliu-Batlle, V.; Rivas-Pérez, R. Control of the temperature in a petroleum refinery heating furnace based on a robust modified
Smith predictor. ISA Trans. 2021, 112, 251–270. [CrossRef] [PubMed]

30. Castillo-Berrio, C.F.; Feliu-Batlle, V. Vibration-free position control for a two degrees of freedom flexible-beam sensor. Mechatronics
2015, 27, 1–12. [CrossRef]

31. Feliu-Talegon, D.; Feliu-Batlle, V. Improving the position control of a two degrees of freedom robotic sensing antenna using
fractional-order controllers. Int. J. Control 2017, 90, 1256–1281. [CrossRef]

32. Ogata, K. Modern Control Engineering; Prentice Hall: Upper Saddle River, NJ, USA, 2010; Volume 5.
33. Stojic, M.R.; Matijevic, F.; Draganovic, L.S. A robust Smith predictor modified by internal models for integrating process with

dead time. IEEE Trans. Autom. Control 2001, 46, 1293–1298. [CrossRef]
34. Normey-Rico, J.E.; Camacho, E.F. Unified approach for robust dead-time compensator design. J. Process Control 2009, 19, 38–47.

[CrossRef]
35. Dogruer, T. A novel PI-PD controller tuning method based on neutrosophic similarity measure for unstable and integrating

processes with time delay. Dicle Univ. J. Eng. 2023, 14, 273–281. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.mechatronics.2021.102552
http://dx.doi.org/10.3390/machines11010014
http://dx.doi.org/10.1155/2012/189757
http://dx.doi.org/10.1109/ICARM54641.2022.9959345
http://dx.doi.org/10.1109/IROS45743.2020.9341524
http://dx.doi.org/10.1109/TAC.1981.1102802
http://dx.doi.org/10.1016/S0019-0578(00)00035-5
http://dx.doi.org/10.1080/00207178908953435
http://dx.doi.org/10.1109/9.272329
http://dx.doi.org/10.1109/9.533684
http://dx.doi.org/10.1016/j.compchemeng.2004.11.008
http://dx.doi.org/10.1002/aic.11196
http://dx.doi.org/10.1002/aic.10175
http://dx.doi.org/10.1016/S0967-0661(02)00060-6
http://dx.doi.org/10.1016/j.jprocont.2013.05.002
http://dx.doi.org/10.1016/j.aej.2022.03.045
http://dx.doi.org/10.1016/j.isatra.2020.12.006
http://www.ncbi.nlm.nih.gov/pubmed/33308861
http://dx.doi.org/10.1016/j.mechatronics.2015.01.005
http://dx.doi.org/10.1080/00207179.2017.1281440
http://dx.doi.org/10.1109/9.940937
http://dx.doi.org/10.1016/j.jprocont.2008.02.003
http://dx.doi.org/10.24012/dumf.1271137

	Introduction
	State of the Art
	Mobile Robot Control under Slopes
	Control of Processes with an Integration Term and Time Delay
	Motivation of This Work

	Robot Setup
	MWMR Model
	Analytical Model
	Identification Method of the Parameters of the MWMR
	Complete Model of the System

	Proposed Control System
	Standard SP Scheme
	Modified SP Scheme: The SP-H Scheme
	Stability Issues
	Design of C(s)
	Design the Compensator H(s)

	Comparison with Other SP Modifications
	Experimental Results
	Design of the Trajectory and Disturbance
	Compensators to Overcome Nonlinearities
	Results and Comparison with the Previous Control Scheme

	Conclusions
	References

