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Abstract: Repetitive control (RC) has been widely used in many fields due to its excellent ability to
suppress periodic disturbances. However, when the permanent magnet synchronous motor (PMSM)
operates at variable speeds, the speed loop sampling frequency is usually not equal to an integer
multiple of the fundamental frequency of speed ripple, which prevents disturbances from being
completely suppressed. In addition, the open-loop gain of the motor control system with RC is too
large at certain frequencies, resulting in excessive speed overshoot during startup and loading. To
solve these two problems, this paper proposes a fractional order repetitive control (FORC) strategy
with dynamically adjustable gain. A fractional order delay link is introduced to make up for the
shortcomings of the conventional repetitive controller (CRC) in its ability to suppress periodic speed
ripples when the sampling frequency is not an integer multiple of the fundamental frequency of the
motor. Then, to weaken the speed overshoot caused by RC, a nonlinear function fal(e,«,0) is added in
the front of the FORC to dynamically adjust the FORC gain. Simulation and experimental results
verify the effectiveness of the proposed method.

Keywords: permanent magnet synchronous motors (PMSMs); fractional order repetitive control;
speed ripple suppression; overshoot peaks; adaptive gain adjustment

1. Introduction

In recent decades, permanent magnet synchronous motors (PMSMs) have been widely
used in many fields, such as precision machine tools, electric propulsion ships, automobiles,
and household appliances [1-3]. Compared to induction motors, PMSMs are favored for
high-performance servo applications due to their high efficiency, high power density, and
large torque-to-inertia ratio. However, the PMSM vector control system has a series of
non-ideal factors, such as current measurement error, a dead zone effect, cogging torque,
and flux harmonics [4]. These non-ideal factors aggravate steady-state torque/speed
fluctuations and increase the harmonic current content in the motor, which is unacceptable
in applications requiring a speed-ripple-free performance in the motor [5]. In electric
vehicle applications, the cogging torque and flux harmonics cause low-frequency speed
fluctuations, which can make passengers uncomfortable [6]. The torsional vibrations in
elastic drive systems caused by speed fluctuations can lead to shafting cracking and/or
fatigue cycles [7]. Therefore, it is necessary to suppress the speed fluctuations in PMSMs
caused by non-ideal factors.

Many effective methods have been proposed in the literature to suppress the adverse
impact of these non-ideal factors on the control performance of PMSMs [8-13]. In [8], an
adaptive linear neuron-based dead time compensation method is proposed for vector-
controlled PMSM drives, but with a low response at low speeds and without a design

Actuators 2024, 13, 73. https:/ /doi.org/10.3390/act13020073

https:/ /www.mdpi.com/journal/actuators


https://doi.org/10.3390/act13020073
https://doi.org/10.3390/act13020073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-4291-6722
https://doi.org/10.3390/act13020073
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act13020073?type=check_update&version=1

Actuators 2024, 13,73

2 0f27

standard for learning rate. Reference [9] proposes a self-calibration strategy for the phase
current sensor, but this method needs to change the standard connection of the current
sensor, and it can only be used in driving systems using a Hall effect current sensor. In [10],
an offset error compensation method that considers the influence of the outer loop con-
trollers is applied to improve the motor’s dynamic performance. However, this method
may fail when the current controller is saturated. In references [11-13], parallel resonant
controllers and PI controllers are used to suppress the periodic speed fluctuations in the
PMSM caused by the current measurement errors, dead zone effect, load disturbance,
and other factors, but the multi-resonant controllers increase the computational burden.
Reference [14] discusses the negative effect of current measurement errors from the perspec-
tive of flux linkage estimation and uses the current loop output results to construct error
observers. However, this method is limited by the motor speed and load in the practical
application. Reference [15] proposes a robust iterative learning control strategy with sliding
mode control and iterative learning control to suppress the torque ripple in a PMSM.

The essential reason why current measurement error causes steady-state speed ripples
in PMSMs is that the g-axis steady-state current is not a constant. It includes the harmonic
components related to the electrical angular frequency, which can be seen as a periodic
disturbance in the forward channel of the speed loop [11]. Other non-ideal factors such
as the cogging torque, dead time effect, and flux harmonics also bring about periodic
torque disturbances. To suppress these periodic disturbances, repetitive controllers are
widely used for specific harmonic suppression because they can increase the gains of the
control system at the disturbance frequencies [16-19]. In [16,17], a modified repetitive
controller is inserted into the current inner loop to reduce the sixth-order current harmonics
caused by the non-sinusoidal back EMF and dead time. However, this type of method
cannot suppress the influence of non-ideal factors such as speed loop forward channel
disturbances and current measurement errors. Reference [18] proposes a torque ripple
reduction strategy for PMSMs that combines angle-based RC and deadbeat current control.
However, the principle of parameter selection to ensure the stability of the system is
not given. Reference [19] combines angle-based RC and a disturbance observer into a
new type of angle-based repetitive observer for the first time to reduce the torque ripple
in PMSMs. Reference [20] reviews the robust control strategies widely used for PMSM
speed regulation and advises that future research should prioritize controllers suitable
for practical applications and with lower costs, such as SMC, PI, and ESO controllers.
In our previous work, a plug-in RC strategy was proposed to suppress the speed ripple
caused by current measurement errors [21]. However, this strategy still has the following
problems: (1) When the motor speed needs to change continuously, the period of the speed
ripple is often not an integer multiple of the speed loop sampling period, which makes
the fundamental frequency of the RC deviate from that of the speed ripple, resulting in an
incomplete suppression of the speed ripple. (2) The high open-loop gain of the RC results
in a large overshoot of the motor speed during the periods of startup and loading, which is
unacceptable in many industrial applications.

In this paper, an improved fal-FORC strategy is proposed to solve these two problems.
Firstly, a fractional order delay link is introduced to make up for the deficiency of the CRC
in suppressing the periodic speed ripples at the frequencies of non-integer multiples of
the fundamental frequency. Secondly, for the purpose of suppressing the speed overshoot,
the nonlinear function fal(e,a,d) is added in front of the FORC to adjust the FORC gain
dynamically. The paper is organized in the following way. Section 2 analyzes the impact
of current measurement error and the shortcomings of the CRC, including poor ripple
suppression under variable speeds and excessive overshoot. Section 3 elaborates on the
proposed fal-FORC strategy and the selection criteria for the related parameters and gives
the simulation results. The experimental results are shown in Section 4 to verify the
effectiveness of the proposed strategy. Section 5 concludes the paper.
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2. Current Measurement Error and CRC Defect Analysis
2.1. Current Measurement Error

The current measurement channel includes Hall effect current sensors, signal matching
circuits, noise filter circuits, AD converters, etc. The equipment tolerance, temperature
drift, imbalance of the positive and negative supply voltages of the sensor, aging, noise,
etc., of these units may cause bias. The current measurement error includes offset error and
scaling error, which cause the steady-state torque and speed of the motor to generate first-
and second-order ripples (relative to the motor’s fundamental frequency) [3,10], affecting
the ride comfort of ships, electric vehicles, and other transportation vehicles.

The research object of this article is a surface-mounted permanent magnet synchronous
motor drive system using the iq" = 0 control strategy. A structural block diagram of the
permanent magnet synchronous motor vector control system considering the current
measurement error is shown in Figure 1, where ksp, ki, kep, and k; are the proportional
integral coefficients of the speed loop and current loop, respectively; Ks and T4 are the
proportional coefficient and delay/time constant of the inverter, respectively; Lq, Lq, and
R are the dg-axis inductance and coil resistance, respectively; E(s) and K. are the back
electromotive force and its coefficient, respectively; | and B are the moment of inertia and
the damping coefficient of the motor, respectively; p is the number of motor pole pairs;
Y is the permanent magnet flux linkage; Tt is the load torque; Aig ¢ry and Aiq_err are the
disturbances introduced by the current measurement error on the dg-axis, respectively;
and Aug and Aug are the dg-axis voltage harmonics caused by the dead zone effect.

- . T
k . K + Auq l l - l nm
o+ 2 e 1.5 py, — >
s T;s+1 Lis+R T, Js+ B
Alq err
K, +_ Y 1 Iy
cp +—=
s Tys+1 Lis+R +
by o,

Figure 1. Block diagram of PMSM vector control system with current measurement error.

Ignore the effects of back electromotive force and inverter delay and select the PI
parameters of the current inner loop to offset the electrical time constant of the motor.
The current loop transfer function is equivalent to G¢(s) = weu/ (s + Weu), Where wqy is
the bandwidth of the current loop. The transfer function between the g-axis current
measurement error Aig err(s) and the rotational speed error Anm(s) can be obtained as

Anm(s) 1.5p9;Ge(s)/(Js + B)

Gerror(s) = Nig err(s) 1+ 1.5(ksps + kei) pypiGe(s) /s(Js + B)’

1)

Offset error refers to a certain amount of dc component superimposed on the actual
sinusoidal current of the motor, which is mainly caused by zero drift, the residual current
in the current sensor, operational amplifier deviation, AD converter deviation, etc. [3]. The
g-axis current error [10] caused by the offset error is

Aiqﬁoffset =a cos(wet + 0‘) \/ Ali_offset + AIAfoffsetAIBfoffset =+ AI]%_Offset/ (2)

o = tan ! (V3AIp ofiset/ (Al offset + 2015 offset)), (3)

wherea = 2//3; Al A_offset and Alp ofsset are the offset errors of phases A and B, respectively;
and we is the electrical angular frequency of the motor.
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(1) Effect of offset error on motor steady-state speed

Substituting Equation (2) into Equation (1), it can be seen that the steady-state speed

deviation An?ff5et(t) caused by the offset error can be given by

An?ffssset(ﬂ = aM cos(wet +tat 91) \/Alioffset +A Ia_OffsetA Ib_OffSEt + AIl:zLoffset’ (4)

where M = | Gerror(jwe) |5 01 = ZGerror(jwe). That is, the offset error will cause the first-order
ripple in the motor’s steady-state speed.

Since the current loop bandwidth is generally much larger than the electrical angular
frequency of the motor, the current loop transfer function G(s) is approximately 1 at this
time, and Equation (1) can be simplified into

1.5p¢;/(Js + B) . 1.5pii

G = = , 6
error () = 7 + 1.5(ksps + ksi)pipi/s(Js + B)  Js + 1.5pyiksi/s + (1.5ppiksp + B) ©)
The following conclusions can be drawn from the above equations:
@®  When we = 1.5piksi/ ], the maximum steady-state speed ripple value Mimax
caused by the offset error is
1.5p1;

M = ,
fmax 2 V 1'5P¢’iksi] + (1'5p¢iksp + B)

@  The larger the PI parameter of the speed loop, the smaller the speed ripple caused
by the offset error. The PI parameter selection of the speed outer loop is generally
proportional to the motor’s rotational inertia. Therefore, the smaller the rotational
inertia, the larger the speed ripple caused by the offset error.

Current sampling includes sensors, operational amplifier conditioning circuits, AD
converters, and other units. These processes may cause scaling errors, and the g-axis
current error [3] caused by them can be expressed as

ks — ka Icos(2wet —

Aiq_scaling = T @)

)
where k, and ky, are scaling error coefficients. If they are not equal to 1, that means that
there is a scaling error in the current measurement value. Due to the difference between
the two sampling conditioning circuits, k; # k. I is the magnitude of the phase current.
Substituting Equation (7) into Equation (1), it can be seen that the steady-state speed

deviation Anifzgng(t) caused by the scaling error is

ARSI (1) = (K — ko) IMo/ /3 cos(2wet + g +6,), ®)
where My = | Gerror(j2we) |5 02 = ZGerror(j2we), that is, the scaling error will cause the
second-order ripple in the motor’s steady-state speed. The influence of the scaling error is
similar to that of the offset error on the steady-state rotation speed at different frequencies
and will not be described again.

2.2. Unsatisfactory Ripple Suppression under Variable Speeds

The current measurement error and other non-ideal factors can cause 1st-, 2nd-, 3rd-,
4th-. .. nth-order speed fluctuating components, which can be well suppressed using a
strategy with a plug-in repetitive controller [21]. The structure of the CRC is shown in
Figure 2, where ki is the gain in the RC, z7N is the delay link, and N is the ratio of the
fundamental period of the disturbance signal to the sampling period of the speed loop. Q(z)
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is a low-pass filter, and C(z) is a phase compensator. The parameter determination criteria
of the CRC are given in detail in [21]. The transfer function of the CRC can be expressed as

Gre(z) = krjc_(%g)zz)zf/ 9)

A
- 2 Q(z)L Cl>

Figure 2. The structure of CRC.

With the PMSM parameters given in Table 1, when the motor speed 1y, is 300 [rpm],
the fundamental frequency of the disturbance signal f is 20 Hz. And the speed loop

sampling frequency f5 is 1000 Hz. The open-loop amplitude—frequency characteristic of the
CRC is shown in Figure 3, where N = f¢/f( = 50.

Table 1. Parameters of PMSM.

Parameters Value
Rated power PNn/W 88
Rated torque T /[N-m] 0.23
Stator resistance R/() 0.36
d- and g-axis inductance Ly, Lq/ mH 0.201
Permanent magnet flux linkage ¢; /Wb 0.00655
Number of pole pairs p 4
Rotational inertia [/ [Kg-mz] 0.0000071
50
40
30
% 20
E
210
AN -
= A\ ’
—20
_301 0 20 ‘ 40 ‘ 60 ‘ 80 ‘ 100 120 140160180

Frequency/Hz

Figure 3. The open-loop amplitude—frequency characteristic of the CRC (N = 50).

To effectively suppress the speed ripple at a certain frequency, the open-loop gain in the
speed loop controller at that frequency needs to be as large as possible [21]. Figure 3 shows
that the CRC can provide a large enough gain at integer multiples of 20 Hz. Therefore, the
CRC can perfectly track and suppress a given disturbing signal at specific frequencies.

However, in actual engineering applications, it is difficult to keep the fundamental
frequency of the disturbance signal f( unchanged. When the motor speed changes suddenly,
N may be a non-integer value, which means that the fundamental frequency of the signal
(speed ripple) that needs to be tracked or suppressed deviates from the fundamental
frequency of the CRC, resulting in poor control performance. For example, if the speed
reference of the motor changes from 300 [rpm] to 307 [rpm], f¢ changes from 20 Hz to
20.47 Hz. With N = round (fs/f¢) = 48, the open-loop amplitude—frequency characteristic of
the CRC is shown in Figure 4, where the maximum gain (36.7 dB) appears at a frequency of
20.83 Hz, but the open-loop gain is only 12.5 dB at a frequency of fo = 20.47 Hz. Although
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the frequency deviation is only 0.36 Hz, the gain decreases by 65.9%, which greatly lowers
the ability of the CRC to track or suppress periodic signals at specific frequencies.

(20.83',36.7)
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\

JI\

(9%
(=}

[\
(=]

L
—
—
—
—

| Magnitude/dB
s

,_.
o O
L
e
—
—
—
f—

—20 \
_30 1 1 i n n

10 20 40 60 80 100 120140160180
Frequency/Hz

Figure 4. The open-loop amplitude—frequency characteristic of the CRC (N = 48).

From the above analysis, it can be seen that when the motor speed changes continu-
ously, the CRC has an insufficient disturbance suppression capability under the condition
pf N not being equal to an integer. The essential reason for this phenomenon is the error
introduced when N is rounded. The smaller the N value (at a higher motor speed), the
greater the negative effect.

2.3. Excessive Speed Overshoot Caused by the CRC

With the addition of the resonant controller, the gain amplitude around the reso-
nant frequency changes sharply, which easily causes the Nyquist curve to approach the
critical point (—1,0). Thus, the sensitivity function of the system is increased, which can
aggravate the oscillation of the dynamic regulation process of the system and increase
the overshoot [22,23]. The repetitive controller can be considered a combination of a neg-
ative proportional gain term, an integral term, and a series of resonant controllers [24].
Therefore, systems with an additional repetitive controller can also lead to a poor dy-
namic performance and a large overshoot. However, this has rarely been analyzed in the
existing literature.

In this paper, the phase compensator adopts the mode of linear phase lead compen-
sation with C(z) = z™, where m is the phase lead compensation value, and z"* provides a
phase lead angle 6 = 180°mw /wy to compensate for the phase lag in the system [25]. wy
is the Nyquist frequency. Assuming that Q(z) is 1, the differential form of the CRC can be
deduced from Equation (9), which is given by

u(k) =u(k— N) + kyce(k — N +m), (10)

where k = 1,2,34 ...; u(k) is the output signal sequence of RC; and e(k) is the speed
deviation sequence.

Assuming that the fundamental period of the disturbance signal to be suppressed is
Ty and the sampling period of the controller is T, it can be seen from Equation (10) that the
output signal of the CRC at the t} moment is not only related to the output signal of the
CRC at the ty-Ty moment but also related to the speed deviation at ty — Ty + mTs, which
is a certain moment near f£,-Ty. It is assumed that the system is about to reach a steady
state at t, which means that the difference between the speed reference and the actual
speed of the system is small. At this point, the output of the CRC should not be too large.
Otherwise, it will produce a large overshoot. However, at ty — To and t, — Ty + mTs, the
system is still in a transient process (such as starting or experiencing a sudden load), that is,
the speed deviation at ty — Ty + mT5 is large. So, the output signal u(k) of the CRC at #y is
large, which leads to an abnormal overshoot in the motor speed. Moreover, as the CRC is a
kind of periodic controller, the speed overshoot at t; will continue to affect the controller
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e(z) = e(2)z” NQ(2)[1 — keeC(2)M(2)] +

outputat fi + nTy (n=1,2,3,...), affecting the actual motor speed at these moments until
the speed converges to the speed reference. With a view to reducing the system overshoot,
the gain in the repetitive controller should be as small as possible.

A control block diagram of the system with the CRC is presented in Figure 5, where
Nm (z) and 1y, (z) are the speed reference and the feedback speed, respectively; iq*(z) is the
g-axis current reference; P(z) is the discrete form of the transfer function 1/(Js + B); PI(z) is
the transfer function of the speed loop PI controller; ierr(z) is the equivalent disturbance
caused by the non-ideal factors; G(z) = kt-G(z)-P(z) where G¢(z) is the current loop transfer
function; and kr is the torque coefficient with kt = 1.5 pi;.

Figure 5. Idealized control block diagram of the system with CRC.

Defining M(z) as the transfer function of the system without the repetitive controller,
it is given by
_ PI(z)G(z)
ME) =1 pim6 R (1

Then, the speed deviation e(z) can be given by

[1 - Q(z)z~N][nfn(2) + G(2)iere(2) + TLP(2)]
1+ PI(z)G(z) ’

(12)

When the system is stable, the second term of Equation (12) equals zero. Therefore, in
this case, the convergence rate of the speed deviation mainly depends on the first term of
Equation (12).

Define H(z) as

H(z) = Q(z)[1 = kweC(2) M(2)], (13)

It can be seen from Equations (12) and (13) that the speed deviation can converge to
zero after one period of the fundamental wave of the disturbance signal if the design of the
gain kr. and the phase compensator C(z) of the repetitive controller satisfies the condition
of kre-C(z) = M(z) 1. However, it is impossible to obtain an accurate mathematical model of
the transfer function M(z) in practical engineering. In most practical applications, a linear
phase compensator is used because it is simple and feasible. If the speed deviation e(z)
requires a fast enough convergence rate, k.. should be as large as possible (but no more
than 1/ | M(z) |) under the condition that the system is stable.

According to the above analysis, the overshoot and the convergence speed have
opposite requirements of k.. Therefore, it is not advisable to solve the problem of speed
overshoot simply by reducing the value of k.. A saturation-limiting link is generally added
to the output of the repetitive controller to suppress the overshoot problem [16,17,20].
However, this makes a windup phenomenon appear in the system, which ultimately leads
to performance degradation [26].

In general, it would be better to formulate such a repetitive controller that in a tran-
sient process, when the deviation is large, the gain in the repetitive controller should be
appropriately reduced to avoid an overshoot. While in the steady-state convergence stage,
that is, when the deviation is small, the gain should be as large as possible (under the
condition of system stability) to accelerate the convergence speed.
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3. The Proposed fal-FORC Strategy
3.1. Principle of FORC

Many actual systems exhibit fractional order dynamic behavior due to their special
physical characteristics. They are fractional order systems. When using a fractional order
model to describe an object with fractional order characteristics, it can better reveal the
essential characteristics and behavior of the object. Correspondingly, for a fractional order
model, a corresponding fractional order controller needs to be designed to improve the
control effect [27,28]. In [27], a resonant controller with fractional order calculus is proposed
to suppress the periodic current harmonics caused by non-ideal factors in the inverter and
current measurement errors. Reference [28] applies fractional order PID to an automatic
power generation control system and uses a Crow algorithm to optimize the controller
parameters, which improves the dynamic performance and robustness of the system.

A structure diagram of FORC is shown in Figure 6, where N can be calculated by

60

A o

x I
;M e 0P C2)—=>

Figure 6. A structure diagram of FORC.

When N is a non-integer value, it includes an integer part N; and a decimal part F,
thatis, N = N; + F. z—F can be fitted as follows:

n
2 a Y Ak, (15)
k=0

where k=0, 1, ..., 1, and n represents that z is fitted using the n-order Lagrange interpola-
tion method [29]. The coefficient A; can be calculated as follows:
n F -

Ar= T1 k—i’ ki=0,1,...,n, (16)
i=0

ik

Then, the Lagrange interpolation remainder is

n—1
F v k g—F—nl:[O (=F=1)
Ra=z1- ];)Akz = RS [l (F—1i), (17)

1

where ¢€ [Ty, Ti+1]. Ty and Ty, are the kth and k + 1th sampling instants. It can be seen
from Equation (17) that the Lagrange interpolation remainder R, decreases as # increases.
Accordingly, zF fitted using Equations (15) and (16) is more accurate with a larger 7.
Figure 7 shows the amplitude—frequency characteristic curve of z ™ fitted using the
first-order, second-order, and third-order Lagrange interpolation methods. It can be seen
from the curve that with an increase in the fitting order, the magnitude of z~F is closer to 1
in a wider frequency range, but the corresponding controller structure is more complex.
Therefore, considering the trade-off between accuracy and complexity, this paper chooses

to use the second-order Lagrange interpolation method to fit z=F.
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Figure 7. The amplitude—frequency characteristics of z~F fitted using Equation (15): (a)n=1;(b) n =2;
(c)n=3.
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Figure 8 shows the phase—frequency characteristics of z~* fitted using the second-
order Lagrange interpolation method. It can be seen that z~ has the characteristics of a
linear phase, and its slope gradually approaches the unit delay link z~! when F gradually
approaches 1. Such amplitude and phase characteristics are very convenient for the design
of other parameters and stability analysis of the repetitive controller.

F=0.1~0.

|
5
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|
©
S

—135
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Figure 8. The phase—frequency characteristics of zF fitted using Equation (15) when n = 2.
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The structure of the FORC used in this paper is shown in Figure 9. Therefore, the
transfer function of the FORC is derived as follows:

keC(2)Q()z N Y. Az
k=0

Grore(z) =

e(z) 5 +§+

- , (18)
1-Q(z)z N . Az *
k=0

Figure 9. The structure of the FORC.

Similarly, if the speed reference of the motor is 307 [rpm] (fy = 20.47 Hz), it can be
deduced that N =f;/fo = 48.85 = N; + F with N; =48 and F = 0.85. According to Equation
(10), the open-loop amplitude—frequency characteristic of the FORC is shown in Figure 10.
It can be seen from Figure 10 that the maximum gain point for the FORC appears right at
the frequency of 20.47 Hz. As analyzed, the FORC can effectively suppress speed ripples
when the pulsation period is not an integral multiple of the speed loop sampling period.

40
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Figure 10. The open-loop amplitude—frequency characteristic of the FORC (N = 48.85).
3.2. The Proposed fal-FORC and Parameter Determination

To give the repetitive controller the output characteristic analyzed at the end of
Section 2, the nonlinear function fal(e,x,d) is introduced as the correction factor to adjust
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the gain in the FORC dynamically. The structure of the proposed fal-FORC is shown in
Figure 11, where fal stands for the function fal(e,a,0), and its expression is

fal (e,a,6) = {"18“ el (19)

lelasgn () [e[> 6

where e is the input error and ¢ is the interval length of the linear segment to avoid the
high-frequency oscillation caused by large gain when the error is too small [30].

Figure 11. The structure of the fal-FORC.

The nonlinear function fal was first proposed by Han and was well applied to his
active disturbance rejection control (ADRC) theory to improve the dynamic performance
of a system [31]. In reference [32], the PI parameters are automatically adjusted using the
fal function to maintain the adaptive ability of the system, improve the dynamic response
speed, and enhance the disturbance rejection performance. Reference [33] modifies the sign
function in the fal function to eliminate the discontinuity of the nonlinear extended state
observer and obtains a novel nonlinear observer to measure and estimate the disturbances,
uncertainties, and states of the system. However, when the input deviation of the fal
function is too big, the function gain will be small, which may affect the transient response
and anti-interference performance of the controller. Therefore, references [34,35] designed
linear /nonlinear switching controllers to avoid this problem. Fortunately, the fal function in
this article is located in the plug-in repetitive controller, and the system’s anti-interference
performance still depends on the speed loop PI controller. Therefore, the transient response
and anti-interference performance of the system is almost unaffected by the fal function.
The nonlinearity of fal(e,a,0) is determined by «, a constant between 0 and 1. The smaller
the value of «, the larger the nonlinearity. With § = 0.4, « = 0.6. A comparison between the
output characteristics of y = fal(e,a,0) and the linear function y = e is shown in Figure 12,
which shows that when 0 <|e|< 0.4, the output of the fal function is linearly related to
the input error and larger than the input error value. When 0.4 <|e|< 1, the relationship
between the output and the input of y = fal(e,«,d) is nonlinear, and the output of y = fal(e,a,0)
is larger than the input error value. When |e|> 1, the output of y = fal(e,a,0) is smaller than
the input error value, and the larger the input error, the more obvious the attenuation of the
output of the fal function. Therefore, the fal function is considered to have the characteristics
of “big error, small gain, small error, big gain” [35]. This means that when the error is large,
a slightly smaller gain is used to avoid overshooting. When the error is small, the gain is
increased to avoid a slow approach toward the target value due to too low an error and
low gain.

To further study the effect of § and « on the fal function, we define

4= fal (e,oc,&), (20)

e
The influence of different ¢ values on the performance of the fal function when a = 0.6
is shown in Figure 13, which reveals that a larger ¢ can result in a wider linearity range
(where A is a constant greater than 1) of the output of the fal function. Moreover, as the
value of § increases, the linear amplifying effect of the fal function on small errors becomes
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weaker. The purpose of introducing the fal function in this paper is to use its nonlinearity to
reduce the overshoot of the system, and its nonlinearity is not affected by 4, so the change
in ¢ has little influence on the ability of the fal function to suppress overshoots. In this
paper, 6 = 0.4 is selected in Section 4.

2 T T T T

5 -3 -1 1 3 5
e

Figure 13. Influence of different § values on the performance of the fal function with « = 0.6.

Figure 14 shows the influence of different a values on the performance of the fal
function when ¢ = 0.4. It can be seen that the smaller the value of « is, the higher the output
nonlinearity of the fal function is. In other words, the smaller the value of « is, the stronger
the function of fal in amplifying small errors, and the stronger its function in reducing
large errors. Therefore, too small a value of a will lead to too large a gain in the small error
interval, which may cause high-frequency oscillations in the system, while too large a value
of w (close to 1) means that the fal function loses its ability to reduce the overshoot of the
system. In this paper, « is set to 0.6.
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Figure 14. § = 0.4, the effect of different « values on A.

The structure of the vector control system of the PMSM drive with the proposed
fal-FORC strategy in this paper is shown in Figure 15, where the symbols are described
in Table 2. This plug-in structure combines the high dynamics of the PI controller with
the good steady-state harmonic suppression capabilities of the repetitive controller and
minimizes the mutual interference between the two controllers [36]. It is worth noting
that when the traditional vector control method is used, the input signal of the speed
outer loop PI controller is the deviation value of the speed, and its expression is shown in
Equation (21). When the CRC is inserted into the vector control structure, the input signal
of the speed outer loop PI controller is shown in Equation (22). When FORC and fal-FORC
are inserted into the vector control structure, respectively, the input signal expressions of
the speed outer loop PI controller are as shown in Equations (23) and (24), respectively.

e = Ny, — Nm, (21)

erC(z)Q(z)z’N

1_ Q(Z)Z_N )(n;ﬁn - Tlm) (22)

) (1 = 11m) (23)

eg=(1+ =0 ) (1 — 1) (24)

Table 2. Description of symbols in Figure 15.

Sign Description
ig /ig Reference/feedback of d-axis current
iq'/iq Reference/feedback of g-axis current
iA_mea/ B mea Feedback of A-phase/B-phase current
in/1p Feedback of x-axis/p-axis current
ug'/ uq* Reference of d-axis/q-axis voltage
Ue Ju B ! Reference of x-axis/(-axis voltage

Be Motor electrical angle
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Figure 15. Structure of the vector control system of PMSM drive with the proposed fal-FORC strategy.

3.3. Stability Analysis

As shown in Figures 5 and 11, the speed deviation e(z) can be expressed as follows:

e(z) 15 (2)+G(2)ier (2)+TLP(2)

" 14+[1+Gga-rore (2)|P1(2)G(z)
_ 1 [Nt —Q(2)] [ (2)+G (2)ierr (2)+ TLP(2)]
~ 1+PI(z)G(z2) ZNiHF —Q(z)[1— fal ke C(z) M(z)]

(25)

The PI parameters are designed according to the method in [11]. The speed loop
PI parameters are ks, = 0.0368 and ks; = 0.92, and the current-loop PI parameters are
kep = 0.6 and k¢ = 1080. This parameter setting can ensure the stability of the traditional
PI control system without additional repetitive controllers. All the characteristic roots of
1 + PI(z)G(z) = 0 are located within the unit circle. Therefore, as long as the characteristic
roots of the denominator of the right half of the above equations are located within the unit
circle, the stability of the system with a plug-in repetitive controller can be guaranteed. The
stability condition can be derived as follows:

Q@)1 - fal -keC(2)M(2)]] = [2NF| < 1, (26)

3.3.1. Design of Q(z)

There are normally three forms of Q(z): a constant close to 1 but less than 1, a Butter-
worth low-pass filter with phase compensation, and a FIR filter with phase compensation.
Compared with a constant close to 1, a repetitive control system with a low-pass filter can
effectively suppress the ripples within the cut-off frequency of the filter while guaranteeing
stability above the cut-off frequency. The advantage of a Butterworth low-pass filter is that
there is no steady-state error, and it has sufficient attenuation in the high-frequency band.
However, this kind of filter often produces a large phase lag, which has a negative impact
on the design of subsequent parameters. Therefore, it is often necessary to design a phase
compensator separately for it, which has a complicated structure.

A linear-phase FIR filter is convenient in design and can be precisely compensated for
using a non-causal phase lead term to achieve zero phase delay. Its expression can be given
as follows:

Q(z) = zaizl + Z;aizfi, (27)

m

where ag 42 Y a; = 1. The larger the value of a9 is, the lower the cutoff frequency of the
i=1

filter is. The filter designed in this article is

Q(z) = 045z ' +0.1 4 0.45z, (28)
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3.3.2. Design of C(z)

Since Q(z) is close to 1 at low frequencies, the stability condition in Equation (26) can
be simplified as follows:

|[1— fal - keeC(z)M(2)]| < 1, (29)

where M(z) can be expressed as M(ej“’) = Ny(el?) exp(jGM(ej“’)) and C(z) can be ex-
pressed as C(e/) = Nc(e/“) exp(jfc(e/“)) [25]. Num(e!) and Nc(e/”) are magnitude
characteristics. 0j7(e/“’) and 6 (e/“’) are phase characteristics. Substitute M(e/*) and C(e/“)
into Equation (29), and the following expression is obtained:

‘(1—farkmhmﬂaw)wt@wqeqxﬂmdaw)+j&xaw))‘<1, (30)

where k., Npi(e/), and N¢(e/') are all positive values. Hence, the plug-in repetitive
control system will be stable when the following two conditions are satisfied.

2min(cos(By(e/“) + O (e/“)))

max (N () NG () D

0< fal ke <

Oni (/) + B¢ (e/“) | < 90°, (32)

Thus, it can be seen that the phase compensation is significant for the stability of the
plug-in repetitive control system. In this paper, the phase compensator adopts the mode of
linear phase lead compensation with C(z) = 2", where m is the phase lead compensation
value and z" provides a phase lead angle to compensate for the phase lag in the system [25].

Figure 16 is a Bode diagram of z""M(z) under different m values. It can be seen that
when m is selected between 2 and 6, the stability requirement of Equation (32) can be
satisfied. In order to enable z™ to compensate for the phase angle to about 0 degrees in the
low-frequency band, m =5 is selected.
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Figure 16. Bode diagram of z"M(z) with different m.
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3.3.3. Design of ki,

The RC gain k. should satisfy the condition in Equation (31). According to Figure 16,
it can be seen that when m = 5, the following expression can be obtained:

max(Ny(e/)) = 1.31, (33)

min(cos(Bp (/) + O (/) = cos(27.4°) = 0.888, (34)

Substituting Equations (33) and (34) into Equation (31), the following expression can
be obtained:
0 < fal - ky < 1.355, (35)

As shown in Figure 13, when a = 0.6 and 6 = 0.4, the maximum value of the fal function
is 1.4. Thus, when the stability condition is satisfied, the value range of k. is

0 < ke < 0.968 (36)

3.4. Simulation Results

To verify the correctness of the above analysis, the Simulink software is used to
build the motor control simulation model of the four methods PI, CRC, FORC, and fal-
FORC mentioned above, and the effectiveness of the proposed method is verified using a
simulation comparison. The parameters of the PMSMs are listed in Table 1. The artificial
current measurement errors are added to the motor drive system with k, = 1.1, k, = 0.9,
AIA_offset = 0.2 A, and Alp oftset = 0.05 A. The sampling frequency of the speed loop is
1 kHz. The current loop PI parameters are adjusted by the current loop bandwidth wcy:
kep = weuLgq, ki = weuR. In this paper, the current loop bandwidth wg, is selected as
2100 [rad/s].

The simulation results are as follows: Figure 17 shows the curves of the speed response
with the CRC, with FORC, and without RC under changing speed references, which
are 150 [rpm], 203 [rpm], 255 [rpm], and 295 [rpm], respectively. Figure 18 shows the
corresponding g-axis current curves. Figure 19 shows the speed responses with fal-FORC
and FORC at different speed references.

350

0 5 10 15 20 25 30
t/s

Figure 17. Curves of the speed response with CRC, with FORC, and without RC under changing
speed references (with sudden loading att=4s, 125,205, 28 s).
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Figure 18. Curves in the g-axis current response with CRC, FORC, and without RC under changing
speed references (with sudden loading att=4s, 125,205, 28 s).
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Figure 19. Speed responses with fal-FORC and FORC at different speed references (with sudden
loading att =4s,12s,20s, 28 s).

As can be seen from Figure 17, when the speed reference is 150 [rpm], N = 100, in this
case, the CRC can well reduce the motor’s steady-state speed ripples, and it has the same
effect as the FORC. However, in the other three cases, the values of N are non-integers, and
it is apparent that FORC presents better results than the CRC in suppressing the speed
ripples. Similarly, as shown in Figure 18, when N is not an integer, the g-axis current ripple
suppression effect of FORC is better than that of the CRC.

Figure 19 shows a comparison of the speed response when applying the proposed
fal-FORC strategy and the FORC strategy. It can be seen that when the speed reference is
150 [rpm], the overshoots in the motor speed can be effectively reduced using fal-FORC. In
addition, the simulation results indicate that the speed drop in the motor when loading
is almost the same when using these four methods. This is because the proposed method
aims to reduce the speed ripples, and the motor’s anti-interference performance still relies
on the PI controller.
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4. Experimental Results

The experiments are implemented for two purposes. One is to verify that compared
with the CRC, the FORC has a better suppression ability for speed ripples for which the
period is not an integral multiple of the speed loop sampling period. The other is to
verify that the vector control system using the proposed fal-FORC has a smaller overshoot
than that using the FORC only during the stages of starting and sudden loading. The
experimental platform is shown in Figure 20, which adopts the form of a pair of PMSMs
hauling each other. The parameters of the PMSMs are listed in Table 1. The model of
the motor control system is established using Simulink and then transformed into C code
using the code automatic generation tool. The generated C code is downloaded to the
F28379D chip of the TI company. After adding fal-FORC, the algorithm execution time of
the speed outer loop is 2335 clock cycles longer than the traditional PI algorithm, requiring
approximately 11.68 ps of execution time. The sampling period of the speed outer loop
is 1 ms, and the sampling period of the current inner loop is 0.1 ms, which means that
there is enough time to implement the improved method proposed in this article. The
motor position and speed information is provided using a 1000-line incremental encoder
mounted onto the non-drive end of the PMSM. The experimental results are collected on
the monitoring computer using the developed communication program.

Upper computer

1Y
TMS320F28379D
+DRV8305 “
W, o \

Programmable DC
power supply

Drive and load motor

Figure 20. The experimental platform.

4.1. Verification of the Effectiveness of the FORC Strategy

The experimental results under different values of m at a speed of 300 [rpm] are shown
in Figure 21. The artificial current measurement errors are added to the motor drive system
with ka =11, kb =0.9, AIA_Offset =0.2 A, and AIBioffset =0.05 A. ka and AIAioffset and kb
and Alp et are the A- and B-phase current scaling and offset errors, respectively. It can
be seen from Figure 21 that the system has a relatively fast response when m = 5. Thus,
C(z) = 2° is adopted in this paper.

Figure 22 shows the experimental results under different values of k.. at 300 [rpm].
It can be seen that the convergence speed of the system response becomes fast with an
increase in ky.. But the consequent overlarge speed overshoot is another consideration.
Hence, the value of k. is finally selected as 0.6 for a compromise.

In fact, the method proposed in this article reduces the speed ripple by suppressing
the motor g-axis current ripple (electromagnetic torque ripple). To verify this, Figure 23
shows the curves of the speed and g-axis current response with the CRC, with FORC, and
without RC under changing speed references, which are 150 [rpm], 203 [rpm], 255 [rpm],
and 295 [rpm)], respectively. The sampling frequency of the speed loop is 1 kHz, and the
corresponding values of N in the four cases are 100, 73.89, 58.82, and 50.84, respectively.
In Figures 23 and 28, the motor is started with loading (the current is about 1 A at this
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time, corresponding to 15% of the motor’s rated torque). The first loading is 21% of the
rated torque, and the current changes by about 1.5 A. The remaining three cases are all
loaded at 15%. The rated torque and current are each increased by 1 A, and the final load
is approximately 81% of the rated torque. As can be seen from Figure 23, when the speed
reference is 150 [rpm], N = 100, in this case, the CRC can well reduce the motor steady-state
speed and g-axis current ripples, and it has the same effect as the FORC. However, in the
other three cases, the values of N are non-integers, and it is apparent that FORC presents
better results than the CRC in suppressing the speed and g-axis current ripples.

400F
300} )
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£ 200F ;
o .
3 :
& 5

100 § —

m=6

% 2 4 6 3 10
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Figure 21. Experimental results under different values of m at 300 [rpm].
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Figure 22. Experimental results under different values of k. at 300 [rpm].
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Figure 23. Curves of the response with CRC, with FORC, and without RC under changing speed
references (with sudden loading att =4's,12s,20 s, 28 s). (a) Speed. (b) Q-axis current.

The FFT analysis results on the steady-state speed with four different speed references
are shown in Figure 24, Figure 25, Figure 26, and Figure 27, respectively. It can be seen that
when the speed reference is 150 [rpm], the CRC and FORC can both reduce the first-order
and second-order pulsation components in the steady-state speed from 11.8% and 5.8% to
both less than 0.5%. However, as shown in Figure 25, when the speed reference increases
to 203 [rpm], N is no longer an integer, and there are still small amounts of the first-order
and second-order pulsation components (1.12% and 0.74%) remaining in the steady-state
speed of the motor when applying the CRC strategy. In contrast, with the strategy of FORC,
the first-order and second-order pulsation components are only 0.17% and 0.16%. The
FFT analysis results in Figures 26 and 27 can also prove that FORC performs better than
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the CRC when the speed pulsation period is not an integer multiple of the speed loop
sampling period.
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Figure 24. FFT analysis of the steady-state speed when the speed reference is 150 [rpm].
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Figure 25. FFT analysis of the steady-state speed when the speed reference is 203 [rpm].
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Figure 26. FFT analysis of the steady-state speed when the speed reference is 255 [rpm].

To further prove the performance of the FORC at higher speeds when N is a non-
integer, the speed references are continuously increased from 0 to 300 [rpm], 367 [rpm],
430 [rpm], and 488 [rpm], and the corresponding values of N are 50, 40.87, 34.88, and 30.74,
respectively. It can be seen from Figure 28 that when the speed reference is 300 [rpm], the
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FORC and CRC have the same effect on the speed and g-axis current ripple suppression. In
contrast, when the speed increases and N is no longer an integer, FORC'’s ability to suppress
speed and g-axis current ripples is significantly stronger. By comparing Figures 23 and 28,
it can be seen that the higher the motor speed, the more significant the ripple suppression
effect of FORC when compared with the CRC. This is because the higher the motor speed,
the smaller the value of N. N is rounded to the nearest integer for the strategy with the
CRC, and the smaller the value of N, the larger the relative deviation caused by rounding.
In this case, the suppression effect of the CRC is in sharp contrast to that of FORC.
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—
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Figure 27. FFT analysis of the steady-state speed when the speed reference is 295 [rpm].
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Figure 28. Curves of the response with CRC, with FORC, and without RC under higher speed
references (with sudden loading att =45, 12 s, 20 s, 28 s). (a) Speed. (b) Q-axis current.
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Due to the filtering effect of the motor shaft inertia, high-frequency harmonics are dif-
ficult to reflect in the motor speed. To illustrate this issue, a set of higher-speed experiments
are conducted. The reference speeds are set to 900 [rpm] and 1200 [rpm], respectively, and
then the load of 21% rated torque is increased at 2.3 s and 6.3 s, respectively. The experimen-
tal results are shown in Figure 29. It can be seen that the motor speed ripple is very small.
At this time, the current measurement error is mainly reflected in the g-axis current ripple.
When the rotational speed is 1200 [rpm], the proposed method can effectively suppress the
g-axis current ripple, but the rotational speed pulsation at this time is almost the same as
before the improvement.

1300 .
. 1200 1 _?i "
£.1100 o 1
?3 1000 m ‘.‘W““ i : _
() 1180 I W
2 900 W _
800 —— With FORCH
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700 : ; : :
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5
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<3t
=
(&)
Sot
© — With FORC
1F | = WithPL...

Figure 29. Responses with PI and FORC at two higher speed references (with sudden loading at
t=2.3s,6.35s). (a) Speed. (b) Q-axis current.

4.2. Effectiveness of the fal-FORC Strategy

Figures 30 and 31 show a comparison of the speed response when applying the
proposed fal-FORC strategy and the FORC strategy. It can be seen that when the speed
reference is 150 [rpm], the overshoots in the motor speed with FORC during startup and
loading are 95 [rpm] (63.3%) and 46 [rpm] (30.7%), respectively, which are obviously
unacceptable. In contrast, the speed overshoots of the motor with the fal-FORC strategy
are 29 [rpm] (19.3%) and 26 [rpm] (17.3%), respectively. Obviously, the speed overshoots
can be effectively reduced using fal-FORC. Similarly, it can be seen from Figure 31 that
when the speed reference is 300 [rpm], the speed overshoots of the motor with the fal-FORC
strategy during motor starting and loading are 65 [rpm] (21.7%) and 41 [rpm] (13.7%)
respectively, which are smaller than the overshoots of 119 [rpm] (39.7%) and 46 [rpm]
(15.3%) when using FORC. Therefore, the proposed fal-FORC strategy is an effective control
strategy for reducing overlarge speed overshoots. In addition, the experimental results
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in Section 4 demonstrate that the anti-interference performance of the motors using the
four methods is almost the same, and the speed drop during loading is basically the same.
The anti-interference performance of the motor still relies on the PI controller, which is
consistent with the simulation analysis.

250
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?g 150| ; T — T
2100

50 100
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Figure 30. Speed responses with fal-FORC and FORC at different speed references (with sudden
loading att =45s,12s,20s, 28 s).

500 F : : N

—— 'With FORC
—— With ful-FORC]

350 —=

300

250

A100

I
|
50 l 0 200
| 03 035 04 045 05 055 06 4 41 42 43 44 45 46
1

O i i i i i
0 5 10 15 20 25 30

t/s

Figure 31. Speed responses with fal-FORC and FORC at four higher speed references (with sudden
loading att =4s,12s,20s, 28 s).

To analyze the difference in the characteristics between the simulation and experi-
mental results, Table 3 records the FFT analysis results and speed overshoot values of the
simulation and experimental results. The FFT analysis data are all simulation or experimen-
tal results from when the motor speed is 255 [rpm]. The results show that after adopting the
compensation method, the speed harmonics in both the simulation and experiment are sig-
nificantly reduced, and the g-axis current harmonics in the simulation are also significantly
reduced. In the experiment, the g-axis current harmonics can be reduced by about 80%.
This is because in the actual motor system, in addition to the current measurement error,
which is the main source of the first and second harmonics, there will also be a pulsating
component in the load torque. The proposed method will generate the opposite current
pulsating component to offset its influence and suppress the speed ripple. But the current
ripple still exists. The simulation results on the speed overshoot are basically consistent
with the experimental results. The fal function can effectively reduce the speed overshoot
caused by repetitive controllers.
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Table 3. Comparison results of Figures 17-19, Figures 23 and 30.
Method Harmonic Content Speed q-Axis Current Speed Overshoot [rpm]

1st 4.89% 3.26%

PI 15
2nd 3.10% 4.12%

CRC 1st 0.51% 0.34% -
. . 2nd 0.71% 0.95%

Simulation

1st .03% .02%

FORC s 0.03% 0.02% -
2nd 0.09% 0.13%

o, o,

fal-FORC 1st 0.03% 0.03% .
2nd 0.09% 0.12%
1st 4.34% 4.77%

PI 25
2nd 2.92% 3.21%
1st 0.87% 1.73%

CRC ° 90
. 2nd 0.48% 0.86%

Experiment

1st 0.20% 1.12%

FORC ° 05
2nd 0.33% 0.50%

fal-FORC 1st 0.19% 1.08% ”9
2nd 0.31% 0.46%

5. Conclusions

The fal-FORC strategy proposed in this paper can well solve the two problems gener-

ated by the CRC strategy in the suppression of the periodic speed fluctuations caused by
non-ideal factors in a PMSM drive system. The contributions of this paper are presented
as follows:

)

@)

®)

A theoretical analysis of the two problems, the unsatisfactory ripple suppression of
the CRC under variable speeds and the overlarge speed overshoot caused by the CRC,
are elaborated on before the design of fal-FORC.

A fractional order delay link is introduced to solve the first problem that the CRC strat-
egy has a worse performance in suppressing the periodic speed ripples at frequencies
of non-integer multiples of the fundamental frequency. The Lagrange interpolation
method is used to fit the fractional delay term. The simulation and experimental
results can verify the effectiveness of the FORC strategy.

The nonlinear function fal(e,a,d) is designed before FORC, and the basis for the pa-
rameter selection of the controller is given to ensure the stability of the system. This
method can dynamically adjust the gain in the repetitive controller, effectively reduce
the speed overshoot caused by excessive open-loop gain, thereby improving the
transient process of motor starting and loading.

The repetitive controller attached to the outer speed loop can effectively suppress the

motor speed ripple, but it cannot suppress the periodic disturbance in the d-axis and has a
limited improvement effect on the phase current distortion. How to suppress the periodic
disturbance introduced by the current measurement error in the d-axis feedback channel is
one of our future research directions.
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