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Abstract: A modified Extended State Kalman Filter (ESKF)-based Model Predictive Control (MPC)
algorithm is introduced to tailor the enhanced disturbance suppression in electro-optical tracking
systems. Traditional control techniques, although robust, often struggle in scenarios with concurrent
internal, external disturbances, and sensor noise. The proposed algorithm effectively overcomes
these limitations by precisely estimating system states and actively mitigating disturbances, thus
significantly boosting noise and perturbation control resilience. The primary contributions of this
study include the integration of ESKF for accurate system state and disturbance estimation in noisy
environments, the embedding of an ESKF estimation-compensation loop to simulate an improved
disturbance-free system, and a simplified modeling approach for the controlled device. This designed
structure minimizes the reliance on extensive system identification, easing the predictive control
model-based constraints. Moreover, the approach incorporates total disturbance estimation into the
optimization problem, safeguarding against actuator damage and ensuring high tracking accuracy.
Through rigorous simulations and experiments, the ESKF-based MPC has demonstrated enhanced
model error tolerance and superior disturbance suppression capabilities. Comparative analyses under
varying model parameters and external disturbances highlight its exceptional trajectory tracking
performance, even in the presence of model uncertainties and external noise.

Keywords: model predictive control; extended state Kalman filter; electro-optical tracking system;
disturbance rejection

1. Introduction

The electro-optical tracking system (ETS) plays a pivotal role in enabling the essen-
tial functions of acquisition, tracking, and precise pointing in various applications. ETSs
are extensively utilized across diverse fields such as laser communication, astronomical
observations [1], target tracking [2], space optical communication, quantum communica-
tion, and other fields [3,4]. The versatility of applications demands that these systems,
often mounted on dynamic platforms like aircraft, satellites, and ships, meet increasingly
stringent performance and parameter specifications.

Presently, numerous control methods are employed in ETS, including PID control [5],
sliding mode control [6], and model predictive control [7]. These systems, operating in
diverse environments, are susceptible to multiple external disturbances such as vibrations
in airborne devices [8], wind disturbances [9], and friction torques [10]. Additionally,
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measurement noises stemming from sensor noise and complex environmental sounds
impact these systems. Atmospheric environmental changes caused by non-terrestrial
platforms disrupt the parameters of electrical components within the system, increasing
uncertainty and reducing the modeling accuracy of ETS [11]. Some aforementioned control
methods heavily rely on precise models; in the presence of measurement noise, external
disturbances, and modeling errors, they significantly affect the stability of the Line of Sight
(LOS), impacting tracking accuracy and potentially leading to system instability. Therefore,
developing methods to improve the disturbance rejection is essential.

Currently, many methods have been proposed for disturbance rejection in electro-
optical tracking systems. Techniques like adaptive control [12], disturbance observers
(DOB) [13], active disturbance rejection control (ADRC) [14,15] are utilized for system
disturbance rejection. These methods offer higher system adaptability, stronger disturbance
resistance, and better capability to handle complex dynamic environments compared to PID
control. Each disturbance estimation method has its strengths and weaknesses, potentially
enhancing overall disturbance suppression performance. However, the complexity of
boundary conditions and system uncertainties typically render it challenging to acquire an
exact mathematical model of the controlled object. Consequently, these methods might not
effectively suppress internal and external disturbances, making it challenging to achieve
satisfactory disturbance rejection performance.

MPC determines optimal control values through an online optimization process,
taking physical boundary constraints into account [16]. This method relies on a process
model to predict future behavior at each sampling time. A Kalman Filter (KF)-based MPC
is proposed [17] to suppress system disturbances and reduce output overshoot aspects.
However, its performance significantly degrades in the presence of substantial internal and
external disturbances, as MPC effectiveness depends on precise system and disturbance
models [18]. Since KF is designed to solve linear system problems, many MPC methods
based on EKF and UKF have been proposed to solve nonlinear system problems [19,20].
The trajectory tracking method based on MPC does not consider the impact of measurement
noise, thereby failing to guarantee tracking accuracy. The Extended State Kalman Filter
(ESKF) [21,22] is a filter designed for the timely estimation of unknown dynamics, offering
enhanced robustness and higher estimation accuracy. ESKF considers internal and external
disturbances as extended system state variables for estimation and compensation, without
the need for an exact mathematical model of the system. This aspect of ESKF effectively
addresses the shortcomings of MPC. Tackling these challenges, the present study introduces
a methodology employing ESKF-based MPC, which comprehensively considers both
internal and external disturbances as well as measurement noise, to improve tracking
precision and robustness in practical applications. The principal contributions of this study
are outlined as follows:

1. The formulation of ESKF that estimates the states of the system and external per-
turbations , thereby enhancing the robustness of the electro-optical tracking system
against both internal and external disturbances and mitigating the impact of system
measurement noise.

2. Integration of the ESKF estimation-suppression mechanism as an inner loop to ensure
that the control system dynamics resemble those of an improved system without
disturbances. This approach involves addressing the predictive control issue uti-
lizing a stable discrete state-space model, which is of second-order, resembling a
first-order model with an added integrator, despite potential discrepancies from the
real characteristics of the system being managed. Furthermore, the criteria for both
the practicality and nominal stability of the optimization challenge are provided.

3. The estimation-suppression technique of the ESKF reduces the necessity for precise
modeling of the controlled device, focusing instead on inherent system attributes
like static gain and observable time constants. This approach simplifies the model-
dependent aspects of predictive control and removes the requirement for intricate
system identification.
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The structure of the remainder of this article is outlined as follows: Section 2 details the
electromechanical model pertinent to the electro-optical tracking system. In Section 3, the
development and implementation of the proposed ESKF-based MPC for LOS regulation are
discussed, highlighting how adopting error as a state variable streamlines the tracking and
disturbance rejection design process. Following this, Sections 4 and 5 showcase simulation
and experimental outcomes, respectively, demonstrating the viability of the suggested
control strategy. Finally, Section 6 offers concluding remarks.

2. Modeling of an Electro-Optical Tracking System

As a widely implemented ETS, this article validates experiments on an Inertial Stabi-
lization Platform (ISP). Mounted above a disturbance platform, the ISP ensures the stability
of the LOS, while the latter simulates complex external disturbances. LOS errors are de-
duced by calculating the central position deviations measured by the detector. A digital
controller computes control commands from the received error signals to drive the ISP.
Figure 1 presents the physical structural model of ISP, from which Equation (1) is derived
using potential energy and torque balance equations [23].

dIa
dt = 1

La
(Ua + w − Ue − Ra Ia)

dθa
dt = Kbωa = Ue

θa =
1

Km

(
Cm Ia − J dωa

dt − Bmωa

)
θ = θa + n

(1)

where Ua denotes the armature voltage and Ia represents the armature current. Ra and
La are the equivalent resistance and inductance in the motor drive circuit, respectively.
Cm is the motor torque coefficient, Bm the load friction coefficient, Km the spring stiffness
coefficient, JL the load inertia moment, and Jm the rotational inertia of the motor. J is
the sum of JL and Jm, representing the equivalent inertia on the motor shaft. ω stands
for external disturbances, Ue is the back electromotive force generated by the coefficient
Kb, ωa and θa, respectively, signify the system deflection angular velocity and angular
displacement, and θ is the system angular displacement output, including the deflection θa
and measurement noise n.

Figure 1. The physical motion model diagram of the ISP.

Within the control frequency band, it is possible to derive the transfer function relating
the armature voltage U to the angular displacement of the load θ:

G(s) =
θ(s)
U(s)

=
K(

s
ωn

)2
+ 2ξs

ωn
+ 1

(2)

where G(s) is the transfer function, K = 0.26, ωn = 35.2, ξ = 0.25.
The analytical representation of the ISP using a linear model often fails to capture

a range of uncertainties. These include actuator saturation, back electromotive force
(EMF) [24], hysteresis, and various complex nonlinear phenomena that naturally occur in
the system structures, actuators, and sensors. When moving from theoretical models to
practical simulations and experiments, these uncertainties and unaccounted-for specific
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parameters become evident in the results. In practice, robust control methods are required to
effectively reject the real disturbances. Therefore, to validate the robustness of the proposed
method, we take sinusoidal disturbances to simulate the real disturbances in experiments.

3. ESKF-Based MPC Design

MPC requires high fidelity in model accuracy; with a suitable model, MPC can be a ro-
bust algorithm, offering optimal control behavior satisfying process constraints, dependent
on the feasibility of the optimization problem. However, this model-based characteristic
can impair system performance significantly in cases of model mismatch, especially in
processes characterized by intricate dynamics and varied operational states.

ESKF-based MPC is less dependent on model accuracy compared to traditional control
methods. ESKF actively estimates the internal and external disturbance, encompassing
model uncertainties and unknown perturbations, to achieve enhanced robustness and
estimation accuracy. This allows for a certain degree of model error. It integrates un-
modeled dynamics into estimated states without additional model information, providing
appropriate control.

Moreover, the diagram illustrates a control system that integrates MPC with ESKF as
shown in Figure 2. This architecture melds the disturbance rejection ability of ESKF with
the forward-looking features of MPC. The MPC processes a reference signal to determine
an initial control action, which is adjusted by a compensation factor from the ESKF that
accounts for estimated disturbances. The combined control signal is then fed into the
system, which reacts and produces an output. Meanwhile, the ESKF continually estimates
the state of this system and the total perturbations, using this information to refine the
disturbance compensation. The output of this system is also influenced by noise, which
the ESKF attempts to filter out to ensure the system output closely follows the desired
reference signal.

Figure 2. Proposed control architecture.

3.1. ESKF Design

Based on the controlled object model in (2), a continuous varying nonlinear model can
be obtained as follows:

ÿ = − 1
τ

ẏ +
K
τ

u + d (3)

Consider adopting a second-order integrator model to characterize the behavior of
the revised device, with the anticipation that the ESKF will align with the actual dynamics
observed. The variable to be controlled is expressed as y, the variable under manipula-
tion is u, with K indicating the static gain, τ as the apparent time constant, and d is the
total disturbances.

Employing a second-order integrator model to depict the updated process yields
considerable merits: it creates a predetermined analytical structure with an explicit order
for the control process, thereby streamlining the identification of parameters. It mirrors
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the integrative behavior that is typically present in industrial operations and simulates
additional primary dynamics using a term influenced by a time constant. This additional
temporal characteristic enhances the observer capacity for estimation, offering a more
comprehensive dynamic insight than what is provided by a basic series of integrator. The
continuous-time state-space representation is given in (4):{

dxt = Ātxt dt + B̄tut dt + Ḡt ft dt + H̄t dωt
dyt = C̄txt dt + D̄t dvt, t ∈ [t0, ∞)

. (4)

with Āt =

[
0 1
0 −1/τ

]
,·B̄t =

[
0

K/τ

]
, C̄t =

[
1 0

]
, Ḡt =

[
0
1

]
. xt ∈ R2 represents

the system state, ut ∈ R1 represents the control input, yt ∈ R1 represents the comprehensive
measurement, ft ∈ R2 includes disturbances and unknown nonlinear dynamics, and
ωt ∈ R2 and vt ∈ R1 are standard Wiener processes in two and one dimensions, respectively.
It is assumed that xt, ωt and vt are independent. H̄t and D̄t, respectively, determine the
covariances of the process and measurement noise.

Drawing upon the concept of an Extended State Observer (ESO) [25], the external
disturbance ft is treated as an extended state, xt,3 ≈ ft, which then allows for the design of
an ESKF to estimate the system states and external disturbances as follows:

d
[

xt
ft

]
=

[
Āt Ḡt
0 0

][
xt
ft

]
dt +

[
B̄t
0

]
utdt

+

[
0
δt

]
dt +

[
H̄t
0

]
dωt

dyt =
[

C̄t 0
][ xt

ft

]
dt + D̄t dνt

(5)

where δt = ḟt. Let 

Xt ≜

[
xt

ft

]
, ∆t ≜

[
0
δt

]

At ≜

[
Āt Ḡt

0 0

]
, Bt ≜

[
B̄t

0

]
, Ht ≜

[
H̄t

0

]
Ct ≜

[
C̄t 0

]
, Dt ≜ D̄t

(6)

Then, system can be rewritten as:{
dXt = AtXt dt + Btut dt + ∆t dt + Ht dωt
dyt = CtXt dt + Dt dνt

. (7)

The ESKF design, which incorporates the advantages of both ESO and KF, is as follows:
dX̂t = AtX̂t dt + Btut dt + Kt

(
dyt − CtX̂t dt

)
Ṗt = AtPt + Pt AT

t − KtCtPt + ηPt + Qt
Kt = PtCT

t R−1
t

. (8)

with Qt =

[
Q̄t,x 0

0 1
η Q̄t, f

]
, Rt = R̄t, Q̄t, f = H̄t H̄T

t , R̄t = D̄tD̄T
t .

The continuous-time ESKF design is presented to provide an intuitive understanding
of its theoretical foundation and dynamic characteristics. However, for experimental
implementations and real-time applications, the discrete form is employed, following
standard practices in digital control systems. In our study, we discretize the continuous-
time ESKF model using the forward Euler method.
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3.2. MPC Design

At the k instant, the cost function J for prediction is expressed as:

J =
n−1

∑
k

ET
k NEk + UT

k RUk + ET
n MEn (9)

where ek = xk − rk. J includes the sum of error weighting, input weighting, and terminal
error. Here, N and M are weight coefficient matrices and both are diagonal matrices. The
optimization objective is to minimize the cost, i.e., to minJ. The expression for J involves
two variables (the input u and the state e), which is one more variable compared to the
general form of quadratic programming. Since the control goal is the control input, it is
necessary to eliminate the variable e.

Assuming the prediction horizon is n, then the control inputs uk and states EK at the
prediction boundary can be described as:

ūk = [u(k | k), u(k + 1 | k), · · · , u(k + n − 1 | k)]⊤

Ēk = [Ê(k + 1 | k), Ê(k + 2 | k), · · · , Ê(k + n | k)]T
(10)

The system mathematical model can be rewritten through the tracking error e = x1 − r:{
ė = ẋ1 + ṙ

ë = − 1
τ ė + K

τ u + d
. (11)

with τ = − Ra
La

, d is considered as an uncertain variable. Let ek,2 = ˙ek,1, then we have:{
ėk,1 = ek,2

ek,2 = − 1
τ ek,2 +−K

τ uk + d
(12)

Let ek = [ek,1; ek,2]; we can obtain that: ėk = Āek + B̄uk. Now, Ek can be expressed as:

Ek = Tek + CUk (13)

where

T =


I
Ā
Ā2

...
Ān

, C =



0 0 · · · 0

B̄
...

ĀB̄ B̄
. . .

...
Ān−1B̄ Ān−2B̄ · · · B̄


(14)

Simplifying the cost function yields:

J = ET
k N̄Ek + UT

k R̄Uk (15)

N̄ =


N 0 · · · 0
0 N · · · 0
...

. . .
...

0 0 · · · M

, R̄ =


R 0 · · · 0
0 R · · · 0
...

. . .
...

0 0 · · · R

 (16)

Ek = Tek + CUk (17)

Substituting ek into the above equation, eliminating the variable Ek and simplifying:

J = eT
k Gek + 2eT

k EUk + UT
k HUk (18)
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wherein G = TT N̄T, E = TT N̄C, H = CT R̄C + R.
Solving for the quadratic standard form cost function, the optimal output ūk can be

obtained. Taking the first item u(k|k), the current optimal output uk is obtained.

4. Simulation

In this section, the ESKF-based MPC simulations are carried out, which is designed
with the ISP in Equation (2) as the controlled objects. The key parameters of ESKF are
as follows: τ = 1 is the apparent time constant, K = 0.001 represents the static gain,
Q̄t,x = 0.0001, Q̄t, f = 0.0001 , η = 1, Rt = 0.01. The key parameters of MPC are as
follows: the prediction horizon n = 1, the weight coefficient matrices N = 1000 × I2,
M = 1000 × I2, R = 0.1. By using the forward Euler method, the continuous-time ESKF
model is discretized into an algorithm form executable by a digital computer.

In the simulations, the tolerance to model errors and the disturbance suppression abil-
ity of the ESKF-based MPC were evaluated. Initially, in the absence of external disturbances,
the model parameters a11 of the controlled object state-transfer matric A in the closed-loop
system were altered, as illustrated in Table 1. Under varying model conditions, the MPC
method based on Kalman filters (KF-based MPC) exhibited increased amplitude and phase
lagas, as shown in Figure 3. In contrast, the ESKF-based MPC method demonstrated
superior tracking performance even when the model changed.

Table 1. Uncertain parameters of model error simulations.

Simulation a11

(a) accurate model parameter 0.99
(b) small model error 0.89

(c) big model error 1.99

(a) Accurate model

(b) Small model error (c) Big model error

Figure 3. Closed-loop response of ISP subject to KF-based MPC and ESKF-based MPC for
sinusoidal signal.
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Considering external disturbances, two sets of experiments were conducted with
different types of disturbances: one with step disturbances and the other with sinusoidal
disturbances. In the simulations, step disturbances with an amplitude of 2 and a step time
of 5 were introduced, as well as mixed step disturbances with an amplitude of 1, a step
time of 2, and an amplitude of 2 with a step time of 5, as shown in Figure 4. It was observed
that, regardless of whether the disturbance was a step or sinusoidal, the ESKF-based MPC
method outperformed the KF-based MPC method in terms of disturbance rejection.

(a) (b)

(c) (d)

Figure 4. Closed-loop response of ISP subject to KF-based MPC and ESKF-based MPC for sinusoidal
reference. (a) Sinusoidal disturbance (amplitude = 0.2 , frequency = 20π). (b) Sinusoidal disturbance
(amplitude = 0.5 , frequency = 40π). (c) Step disturbance amplitude = 1 , step time = 5. (d) Multiple
step disturbances amplitude = 1 , step time = 5 s and amplitude = 2 , step time = 2 s.

5. Experiments
5.1. Experiment Setup Description

The experimental setup of this study, as depicted in Figure 5, comprises three main
components: a mechanical structure module, a driver module, and a control box module.
The control box is primarily outfitted with a digital controller that operates on the VxWorks
real-time operating system (RTOS), a flight board that utilizes a field-programmable gate
array (FPGA), and a MOXA PC/104 serial card.

Figure 5. ISP experiment setup.
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The primary function of this apparatus is to ensure that the light signal remains
centered on the position-sensitive detector. To achieve this, the disturbance platform
replicates external disturbances, applying them to the electro-optical tracking system (ETS)
to emulate real-world errors. In response to these simulated disturbances, the controller
computes the necessary control values to counteract the errors. These corrective signals are
then relayed to the driver module, which adjusts the ETS’s attitude accordingly, ensuring
the stabilization of the Line of Sight (LOS). The experimental device operates at a working
frequency of 5000 Hz, enabling it to respond rapidly to the dynamic conditions of the
tracking environment.

5.2. Experiment Results

The subsequent experimental results were obtained to evaluate the performance
of the KF-based MPC and the method proposed in this study. The specific parameter
configurations for ESKF-based MPC are as follows: τ = 1 is the apparent time constant,
K = 0.01 represents the static gain, Q̄t,x = 0.01, Q̄t, f = 0.01 , η = 1, Rt = 0.01. The key
parameters of MPC are as follows: the prediction horizon n = 1, the weight coefficient
matrices N = 6500 × I2, M = 6500 × I2, R = 1.The experiments setup is shown in Table 2.

Table 2. Experiments setup.

Comparison Experiment Comparison Performance Related Parameters

E1 Tracking performance of
sinusoidal signal fre: 1 Hz, amp: 100 (arcsec)

E2 Disturbance rejection ability of
step disturbance amp: 600 (arcsec)

E3 Disturbance rejection ability of
sinusoidal disturbance fre: 5 Hz, amp: 500 (arcsec)

Tracking performance is a fundamental performance indicator for electro-optical track-
ing systems. To validate the proposed method, we conducted comparative experiments on
an experimental platform with a given signal of 1 Hz frequency and 100 arcsec amplitude,
comparing the proposed method against KF-based MPC, Extended State Observer (ESO)
and the Disturbance Observer (DOB). The results of Experiment E1 are depicted in Figure 6.
It is evident that the maximum tracking error of the KF-based MPC reached 46.9 arcsec,
while the proposed method reduced the maximum error to 5.2 arcsec, achieving an 88.9%
reduction. The ESO observed a maximum tracking error of 84.8 arcsec, from which we can
conduct that the ESKF-based MPC achieved a 93.9% reduction. The maximum tracking
error of DOB was 77.99 arcsec, leading to the conclusion that the ESKF-based MPC realized
a 93.3% reduction.

(a) Result of tracking performance (b) Result of tracking error

Figure 6. Comparison of experiment E1.

With the expanding application scenarios of electro-optical tracking systems in com-
plex environments, multiple disturbances have become the main factors affecting the
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stability of the LOS. In practical applications, step and sinusoidal disturbances are the
most common perturbations impacting LOS stability. We have performed comparison
experimental analysis on the proposed method against step and sinusoidal disturbances.

The experiment E2 results are shown in Figure 7, demonstrate that the proposed
method effectively and accurately tracks the given sinusoidal signal compared to the
KF-based MPC. It is evident that the maximum tracking error for the KF-based MPC
reached 83.5 arcsec, whereas the proposed method achieved a maximum tracking error
of 16.2 arcsec, representing a decrease of 80.5%. The maximum tracking error for the ESO
reached 84.6 arcsec, representing a decrease of 80.9%. And the maximum tracking error for
the DOB reached 76.8 arcsec, representing ESKF-based MPC realized a decrease of 78.9%.

(a) Result of tracking performance (b) Result of tracking error

Figure 7. Comparison of experiment E2 with step disturbance.

Disturbances affecting the performance of electro-optical tracking systems are primar-
ily concentrated in the mid to low frequency range. In the experiments, we introduced a
sinusoidal disturbance at a frequency of 5 Hz. The experiment E3 results are depicted in
Figure 8, show that the proposed method can accurately track the given signal, significantly
reducing the maximum error compared to the KF-based MPC, ESO and DOB. The maxi-
mum error reduction was 166.9 arcsec, 126.9 arcsec, 170.9 arcsec, respectively. To further
clarify the impact of periodic disturbances on the system, a spectral analysis was conducted.
The spectral analysis results, as shown in the figure, indicate that at 5 Hz, the amplitude
reached by the proposed method, KF-based MPC, ESO, DOB was 16.7 dB, 37.2 dB, 30.6 dB
and 35.9 dB. At 1 Hz, the amplitude reached by the proposed method, KF-based MPC, ESO,
DOB was 4.4 dB, 26.2 dB, 32.5 dB and 31.7 dB. The results showed that both DOB and ESO
have better disturbance rejection ability than KF-based MPC, but KF-based MPC has better
tracking accuracy than ESO and DOB. More importantly, we can obtain the conclusion
that ESKF-based MPC has the best disturbance suppression effect and the highest tracking
accuracy among the four experimental methods.

(a) Result of tracking performance (b) Result of tracking error

Figure 8. Cont.
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(c) Result of tracking error in the frequency domain

Figure 8. Comparison of experiment E1 with sinusoidal disturbance.

Above all, the proposed method has exhibited outstanding performance in both track-
ing accuracy and disturbance suppression. Compared to the KF-based MPC, ESO and
DOB, the proposed method has reduced the tracking error by 88.9%, 93.9%, 93.3%. On
the other hand, in terms of disturbance suppression capability, the proposed method has
shown significant effectiveness against both step and sinusoidal disturbances. Specifi-
cally, for sinusoidal disturbances, the amplitude at the disturbance frequency both 1 Hz
and 5 Hz, ESKF-based MPC shows the best tracking accuracy and the best disturbance
rejection, respectively.

6. Conclusions

Despite the excellent disturbance rejection capabilities of traditional electro-optical
tracking control algorithms, their disturbance suppression performance can be degraded
by concurrent internal and external disturbances, along with sensor noise. To achieve
satisfactory disturbance suppression performance, this paper develops an ESKF-based
MPC algorithm. Initially, the ESKF is designed to discern both the system states and the
disturbances from inside and outside, actively offsetting these disturbances and mitigating
the effects of measurement noise. Next, amid the influence of both internal and external
disturbances, along with measurement noise, the ESKF-based MPC is developed. This
controller devises an objective function that prioritizes the minimization of tracking dis-
crepancies and the increments in control inputs, thereby transforming the task of trajectory
tracking into an optimization challenge. Thirdly, the ESKF-based MPC prompts the actual
process dynamics to align with a revised process model resembling a first-order integrator.
Following this, a predictive control strategy is formulated based on a second-order state
space, which is predicated on merely two parameters: the apparent time constant and the
nominal control gain. This is in contrast to traditional MPC frameworks, which are exten-
sively reliant on a meticulously recognized model. By characterizing the revised process
model as a second-order integrator, the predictive model’s order is securely established.
Thus, the intricacy of the optimization task tied to the derivation of the predictive control
strategy hinges solely on the extent of the time horizon chosen. Finally, experimental results
tracking trajectory after model parameter modifications and two different types of external
disturbances demonstrate the effectiveness and robustness of the controller under external
disturbances, measurement noise, and model uncertainties.
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