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Abstract: Emulsion formulations should be monodispersed in terms of their stability. Therefore, there
is a need for a device that can classify droplets of the desired size from polydispersed emulsions in a
fluidized bed manufacturing system. In the previous study, we evaluated the fabrication of a droplet
manipulation device using acoustic radiation forces through simulation using the finite element
method. In this study, particle manipulation experiments using 1, 6, and 10 µm polystyrene particles
were first estimated and evaluated in comparison with their theoretical particle behavior. Based on
the results we obtained, the driving conditions and droplet behavior were derived, and the droplet
manipulation device using ultrasonic waves to shrink monodisperse emulsions was evaluated. As a
result, the droplet classification effect in the microchannel was confirmed to be consistent with the
droplet behavior prediction, and the microchannel structure with a constriction component improved
its classification effect.

Keywords: piezoelectric element; microchannel; particle manipulation; emulsion; droplet

1. Introduction

Emulsions have been reported for applications in pharmaceuticals, foods, cosmetics,
and chemicals [1–14]. Among the emulsion generation techniques available, mechanical
methods, microfluidic methods, and ultrasonic methods have been described. Among
these, the emulsion generation technology that combines microfluidic channels and ultra-
sonic vibration is considered to have advantages in that it does not generate noise, is easy to
assemble and clean due to its simple structure, and can be adapted to continuous flow sys-
tems to ensure sterility. However, the emulsions used in these fields require monodispersed
emulsion droplet sizes to maintain their high concentration and functional stability [15,16].
In the emulsion generation described above, the problem is that the droplet diameter of
the emulsion generated is an unstable, resulting in a loss of uniformity, although this can
be solved by increasing the amount of dispersed phase to generate highly concentrated
emulsions. These classification techniques include vortex trapping using microfluidic
channels, classification using centrifugal forces, sorting by droplet size using filtration,
and classification using magnetic or electric fields [17–24]. However, fluid flow-based
classification techniques that do not use external forces generally have their limitations
of large volume and poor time efficiency, while classification techniques that use external
forces, such as magnetophoresis, require labeling, such as making the droplets magnetic.
To solve these problems, a method for classifying and concentrating microparticles using
ultrasonic vibration has been proposed [25]. It is known that when ultrasonic vibration is
applied to a closed channel, standing waves are generated, and the force caused by these
waves acts on the particles in the channel. This acoustic force is not limited by transparency,
refractive index, electromagnetic properties, etc., so there is no need for labeling of particles,
and the device is simple and can be easily miniaturized. However, in the reported method,
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the transducer that generates ultrasonic vibrations and the microfluidic channel are inte-
grated, and the device cannot be disassembled, making it difficult to clean the inside of
the channel. Therefore, impurities and drugs are likely to remain in the channel, making it
unsuitable for applications in the fields of drug formulation and chemistry. Therefore, a
classification technique in which the transducer that generates ultrasonic vibrations and
the microchannel are independent of each other has been reported [26]. The use of acoustic
radiation forces enables the manipulation of particles at will, and the manipulation of
micro-sized particles was also reported. Prior to this report, an effective classification and
concentration method was proposed using ultrasonic vibration to manipulate droplets
in emulsions [27–29]. In addition, in this study, particle manipulation experiments were
conducted using polystyrene particles to evaluate the range of particle sizes that can be
manipulated. In addition, in order to realize a monodispersed emulsion generation system,
we simulated manipulable droplet diameters in microemulsions, fabricated microchannels
capable of droplet classification, and evaluated the results.

2. Overview of Droplet Manipulation
2.1. Principle of Droplet Manipulation

Figure 1a displays the straightforward configuration of the device. Within the mi-
crochannel, a standing wave acoustic field is generated, resulting in the formation of
pressure nodes. Figure 1b illustrates the results of the finite element method analysis,
depicting the pressure distribution across the cross-section of the flow channel within the
droplet manipulation device used in this study. This figure specifically zooms in on the
cross-sectional view of the channel, as analyzed by the two-dimensional model; the red
areas in the diagram show the positive maximum pressure, and the blue areas show the
negative maximum pressure. Droplets accumulate at the nodes highlighted in green in
this figure, driven by the acoustic radiation force [27–29]. The magnitude of the acous-
tic radiation force acting on each droplet is contingent on its size. Consequently, larger
droplets cover longer distances, while smaller ones tend to remain relatively stationary. This
disparity facilitates the manipulation and separation of the droplets based on their sizes.
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Figure 1. Finite element method simulation result of pressure distribution in a cross-section of a
microchannel Simulation results of pressure distribution. (a) Device configuration. (b) Simulation result.

2.2. Relationship between Sound Pressure and Droplet Diameter Required for
Droplet Manipulation

The behavior of a droplet in a closed space can be analyzed using from the combined
horizontal forces, the acoustic radiation force, and the viscous force; to determine the
amount of displacement and the velocity of movement [30]. When the pressure is PA; the
volume of the particle is V0; the wavenumber is k; the distance from the pressure node is x;
the sound velocity in the continuous phase is c f ; the sound velocity in the dispersed phase
is cp; the density in the continuous phase is ρ f ; and the density in the dispersed phase is ρp;
the acoustic radiation force Facoustic can be obtained using Equations (1) and (2) as follows:
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Facoustic =
V0P2

Aksin2kx
4ρ f c2

f

[
5δ − 2
2δ + 1

− 1
δσ2

]
, (1)

∅ =
5δ − 2
2δ + 1

− 1
δσ2 . (2)

σ is the ratio of the sound velocities of the continuous and dispersed phases, expressed
in Equation (3), and δ is the ratio of the densities of the continuous and dispersed phases,
expressed in Equation (4) as follows:

σ =
cp

c f
, (3)

δ =
ρp

ρ f
. (4)

Furthermore, Equation (1) can be rewritten as Equation (6) using ε in Equation (5)
as follows:

ε =
P2

A
4ρ f c2

f
, (5)

Facoustic = k∅V0ϵsin2kx. (6)

The viscous force, Fstokes, acting on the particles is expressed in Equation (7) as follows:

Fstokes = 6πµrup. (7)

From Equations (1)–(6) for the acoustic radiation force, Facoustic, and Equation (7) for
the viscous force, Fstokes, the sound pressure values required to manipulate the droplet,
which encompasses each droplet’s diameter, can be calculated. The relationship between
the sound pressure value required to focus the polystyrene particles and the radius of the
particles is shown in Figure 2, and the parameters and physical properties used in the
estimation are shown in Table 1. This indicates that particles that encompass a diameter
larger than 10 µm can be manipulated by applying a pressure higher than 99.8 kPa in
the channel.
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Table 1. Parameter values for the estimation of the relationship between the pressure value required
to focus polystyrene particles and the particle size.

Experimental Condition and
Physical Property Value Unit

Frequency 3.14 MHz
Wavelength 3.95 × 10−4 m

Density of solvent 853.3 kg/m3

Density of particles 940 kg/m3

Viscosity of solvent 1.4 × 10−3 Pa·s
Sound velocity of solvent 1252.8 m/s

Sound velocity of particles 2340 m/s
Flow rate 100 µL/min

Cross-sectional area of flow channel 0.08 mm2

2.3. Polystyrene Particle Manipulation Experiment

As detailed in this section, the pressure on the channel is calculated from the experi-
mental data using polystyrene particles of uniform diameter. Based on these results, the
behavior of emulsion droplets was predicted. In this experiment, a solution of polystyrene
particles suspended in 95% ethanol was used. Figure 3 also shows a photograph of the
ultrasonic vibration device used in these experiments. This device has dimensions of
50 × 80 × 21.2 mm and, as shown in Figure 4, is assembled by bolting together four plates:
a vibration plate with a piezoelectric PZT attached, a microfluidic plate with a 400 µm wide
and 200 µm thick microchannel, a transparent plate, and a base plate. Figure 5 shows the
results of the admittance measurements performed to identify the resonance frequency
of the device. Measurements of 1.32 to 3.18 MHz were retrieved, and resonance points
were identified near 1.35 MHz, 2.24 MHz, and 3.14 MHz. Therefore, the experiments de-
scribed below are based on the pressure distribution calculated from the frequency response
analysis of the finite element method in the vicinity of these resonance frequencies and
predicted frequencies. Figure 6 shows the vibration velocity measured when this device
was driven at 1.35 MHz, which is predicted to represent the resonance frequency of this
device. The measurement point of the vibration velocity is the center of the glass plate on
the backside of the device, as shown in Figure 3b. When the device was driven at 100 Vp−p,
a value of 6.9 mm/s was obtained. We conducted our manipulation experiments using
polystyrene particles to calculate the sound pressure applied to the channels in the device.
The experimental setup is shown in Figure 7.
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Figure 4. Configuration of droplet manipulation device.
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immediately after the voltage was applied to the device. As shown in Figure 11, the 1 µm 

Figure 7. Schematic of the droplet manipulation experiment.

Polystyrene particles of 10 µm were used in these experiments. Manipulation experi-
ments with polystyrene particles were carried out using 95% ethanol as the solvent. The
flow rate of the syringe pump was set at 100 µL/min; the driving frequency of the device
was set to 3.14 MHz; and the applied voltage to the piezoelectric element was 100 Vp−p.
Figure 8 shows the appearance of the flow path during the experiment. The polystyrene
particles were focused on the flow path, forming two lines. The time from the start of the
voltage application to the device until the polystyrene particles converged was measured.
The result we obtained was 0.602 s, and the pressure value in the channel was calculated
backwards from the balancing relationship between Equations (6) and (7) to be 131 kPa. As
mentioned earlier, the pressure required to focus the polystyrene particles at 10 µm was
99.8 kPa, and the estimated sound pressure in the channel was larger, suggesting that it
was possible to focus the polystyrene particles in the microchannel. The comparison of
the estimated sound pressure values with the graph in Figure 2 revealed that polystyrene
particles larger than 8 µm in diameter can be manipulated in this experiment.
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Figure 8. Photographs of the results of polystyrene particle manipulation experiment when the radius
of polystyrene particle was 10 µm; (a) Without vibration. (b) With vibration.

The device was also driven under similar conditions using 1 µm and 6 µm polystyrene
particles. As shown in Figure 9a, the 1 µm polystyrene particles hardly moved. As shown
in Figure 2, this is because the pressure in the channel did not meet the pressure required
for focusing 1 µm polystyrene particles. On the other hand, the 6 µm polystyrene particles
shown in Figure 9b were observed to converge to the pressure nodes when the voltage
was applied. However, the focusing width of the particles was larger than when the
10 µm polystyrene particles shown in Figure 9 were manipulated. Therefore, the sound
pressure required to move the 1 µm and 6 µm polystyrene particles to the pressure node
was considered insufficient. The syringe pump was stopped, and the device was driven
to observe the 1 µm and 6 µm polystyrene particles. The appearance of the channel is
shown in Figure 10. The time for the polystyrene particles to converge was measured
immediately after the voltage was applied to the device. As shown in Figure 11, the 1 µm
polystyrene particles focused in 8.44 s, and the 6 µm polystyrene particles focused on to
the pressure nodes in 2.64 s. The results for each of the two sizes of polystyrene particles
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are shown in Figure 11. These results indicate that stopping the flow enabled acoustic
focusing of the 1 µm and 6 µm particles, but the particles stayed in the channel for 1.64 s
when they were pumped at 100 µL/min, suggesting that the pressure was insufficient to
manipulate the particles under the device driving conditions in this experiment. Based
on these experimental results, sufficient pressure must be applied to the channel for the
desired diameter range to classify the particles, and the distance traveled by the particles
should be considered when designing the device.
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2.4. Travel Distance and Calculation of Droplets in Emulsions

In this section, the behavior of emulsion droplets is predicted with the aim of clas-
sifying these droplets according to their diameter. The emulsions used were the 1 wt%
SDS solution for the continuous phase and n-dodecane for the dispersed phase. To realize
droplet manipulation using a bifurcated channel, the droplet must travel at least 224 µm,
the distance from the center of the channel to the pressure node, during the time that the
acoustic radiation force acts on the droplet. The time during which the acoustic radiation
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force acts on the droplet is the time between the droplet’s entry into the channel and its
arrival at the branching channel. As the distance in this range is 35.8 mm, the time for the
acoustic radiation force to act on the droplet was calculated to be 1.64 s. Figure 12 shows
the relationship between the droplet size and distance traveled, and Tables 2 and 3 show
the parameters and physical properties used in our estimations. The vertical blue dashed
line in the diagram shows the time for the acoustic radiation force to act on the droplet,
while the horizontal yellow dashed line indicates the travel distance required for droplet
manipulation. From these graphs, droplets with diameters larger than 5 µm can obtain the
required travel distance.
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Table 2. Parameters used to derive travel distance.

Experimental Condition Value Unit

Pressure in the microchannel 1.54 × 105 Pa
Frequency 2.25 MHz

Wavelength 6.65 × 10−4 m

Table 3. Physical properties of substances used.

Material Physical Property Value Unit

n-dodecane
Density 750 kg/m3

Speed of sound 1280 m/s

1 wt% SDSsolution
Density 1000 kg/m3

Speed of sound 1500 m/s
Viscosity 8.9 × 10−4 Pa·s

3. Experiments and Results
3.1. Overview of the Droplet Manipulation Experiment

In the present study, a new narrowing section is added to the microchannels of a
droplet manipulation device irradiated with ultrasonic vibrations to achieve the effect of
classification. A comparison between a three-branch microchannel without a constriction
and a three-branch microchannel with a constriction is shown in Figure 13. In the channel
without a constriction, large droplets in the emulsion are collected at the pressure nodes of
the channel and are collected from both end channels, while smaller droplets, which are
less affected by the acoustic radiation force, are distributed in all branching channels. In
contrast, when a channel with a constriction part is used, the droplets in the emulsion are
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first collected in the center using the constriction section, and then the larger droplets are
manipulated by the acoustic radiation force and collected in the channels on both sides. As
a result, smaller droplets are collected in the central channel compared to the channels on
both sides, thus achieving a classification effect. When microchannels with a constriction
section are used, the acoustic radiation force acts on the droplets after they pass through
the constriction. The time required for the irradiation of the acoustic force was reduced to
0.66 s because the flow path before the bifurcation was shortened to 14.4 mm compared
to the case of a normal flow path. Figure 14 shows the relationship between the droplet
size and travel distance when microchannels with a constriction are used. The parameters
and physical properties used are the same as those shown in Tables 1 and 2. The vertical
blue dashed line in the figure indicates the time at which the acoustic radiation force acts
on the droplet, which was found to be 0.66 s. The horizontal yellow dashed line indicates
the travel distance, 224 µm, required for droplet manipulation. The graph indicates that
droplets with diameters larger than 9 µm can achieve the required travel distance when
microfluidic channels with a constriction section are used.
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3.2. Experiments on Droplet Manipulation Using Flow Channels with Narrowed Sections

As shown in Figure 15a,b, a microfluidic plate was fabricated, and experiments were
conducted using devices stacked in the same configuration as in Figure 4. The channel
width of this channel plate is 400 µm, and the channel constriction section is 30 µm.
The experimental setup of these experiments is shown in Figure 16. First, emulsion is
generated by the shear force of the continuous phase using microchannels with Y-shaped
channels. The emulsion is then pumped into a droplet manipulation device, and the droplet
manipulation is observed under an optical microscope.
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Figure 16. Schematic of droplet Manipulation Experiments.

Figure 17 shows the effect of the ultrasound application on droplet manipulation.
Prior to applying the ultrasound application, relatively large droplets, shown in black in
Figure 17, are concentrated in the center of the channel by the constriction. Small droplets
are difficult to examine but are concentrated in the center of the channel as well as the large
droplets. In contrast, when ultrasound is applied, as shown in Figure 1, a node of sound
pressure is formed, and the droplets are subjected to the acoustic radiation force, resulting
in the observed large droplets being collected in the bifurcated channels on both sides.
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3.3. Comparison of the Droplet Manipulation Results with and without a Constriction

The experimental conditions were as follows: the flow rates of the continuous phase
(1 wt% SDS solution) and the dispersed phase (n-dodecane) were 100 µL/min and 2 µL/min,
respectively. The driving frequency of the droplet manipulation device was 2.25 MHz, and
the applied voltage was 120 Vp−p. The emulsions collected from each channel after the
droplet manipulation process were observed, and the droplet diameters were measured
using image analysis software. Figure 18 shows the measured droplet diameters of the
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emulsions generated by the Y-type microchannel in Figure 16. Figure 19 shows the droplet
diameter distributions of the emulsions collected in the channels on both sides and in the
central channel, respectively, after the droplet manipulation process using the microchannel
without a constriction. Compared with the droplet diameter distribution in the emulsion
before the operation, the emulsion collected from the central channel contained more
droplets with diameters of 20 µm or less. The droplet diameters of the emulsions collected
from the channels on both sides were polydispersed compared to the droplet diameters of
the emulsions collected from the central channel.
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Next, similar experiments were carried out using a microchannel with a constriction:
Figure 20 shows the droplet diameter distributions of the emulsions collected from both
channels after droplet manipulation and from the central channel, respectively. The propor-
tion of droplet diameters of 20–30 µm in the emulsions collected from the channels on both
sides after the operation was higher than that of the microchannel without a constriction.
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Figure 20. Droplet size distribution of emulsion with constriction; (a) Collected from both side
channels. (b) Collected from the central channel.
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To clarify the effect of the microfluidic channel with a constriction, Figure 21 shows
graphs comparing the number of droplets in the emulsion before the operation and the
number of droplets in the recovered emulsion, using the amount of the ratio integrated from
the smallest diameter to the largest. The side and center mean locations of the collected
droplets are depicted in Figure 16. The emulsion collected at the center of the channel
after droplet manipulation had a droplet content of 94% with a diameter of 9 µm or less,
while the emulsion collected from the channels on both sides after manipulation had a
droplet content of 7%. Furthermore, the 21% content of droplets smaller than 9 µm in the
emulsion prior to their manipulation suggests that droplets larger than 9 µm could have
been manipulated. This result is consistent with the theoretical value derived in Figure 14.
The effect of the microchannel with a constriction was also observed, as the emulsion
collected in the center of the channel after droplet manipulation had a droplet content of
90% for droplets smaller than 9 µm and 18.4% for emulsions collected from the channels on
both sides after the manipulation.
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Figure 21. Comparison of droplet diameters in recovered emulsions; (a) Without constriction compo-
nent. (b)With constriction component.

4. Conclusions

In this study, theoretical values and particle behaviors with polystyrene particles were
estimated and, the effect of the classification of microfluidic channels with a narrowing in a
stacked droplet manipulation device using acoustic emission forces was evaluated. The
behavior of the particles correlated with the predictions obtained from the theoretical values
in manipulation experiments using 1, 6, and 10 µm polystyrene particles. The device was
also evaluated in manipulation experiments on droplets in microemulsions and droplets
in nano emulsions, where the continuous phase consisted of 1 wt% SDS solution and the
dispersed phase consisted of n-dodecane. Our results showed that the droplet manipula-
tion device was effective in classifying droplets in the experiments with microemulsions.
Furthermore, the use of microfluidic channels with a constriction component reduced the
proportion of relatively large droplets in the emulsion that were collected from the central
channel and enabled us to carry out out a more effective classification.
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