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Abstract: Human driving behavior significantly affects vehicle fuel economy and emissions on hilly
roads. This paper presents an ecological (eco) driving scheme (EDS) on hilly roads using nonlinear
model predictive control (NMPC) in a mixed traffic environment. A nonlinear optimization problem
with a relevant prediction horizon and a cost function is formulated using variables impacting the
fuel economy of vehicles. The EDS minimizes vehicle fuel usage and emissions by generating the
optimum velocity trajectory considering the longitudinal motion dynamics, the preceding vehicle’s
state, and slope information from the digital road map. Furthermore, the immediate vehicle velocity
and angle of the road slope are used to tune the cost function’s weight utilizing fuzzy inference
methods for smooth maneuvering on slopes. Microscopic traffic simulations are used to show the
effectiveness of the proposed EDS for different penetration rates on a real hilly road in Fukuoka City,
Japan, in a mixed traffic environment with the conventional (human-based) driving scheme (CDS).
The results show that the fuel consumption and emissions of vehicles are significantly reduced by the
proposed NMPC-based EDS compared to the CDS for varying penetration rates. Additionally, the
proposed EDS significantly increases the average speed of vehicles on the hilly road. The proposed
scheme can be deployed as an advanced driver assistance system (ADAS).

Keywords: hilly road; eco-driving; mixed traffic environment; nonlinear MPC; fuzzy inference
techniques

1. Introduction

In recent years, the growing number of automobiles on the road networks has resulted
in enormous fuel consumption and greenhouse gas (GHG) emissions. With a total energy
consumption of around 28% and a contribution to GHG emissions of about 28.5% in
the United States in 2021, the transportation industry is the second-largest emitter in the
country [1]. Particularly, emissions from gasoline-fueled vehicles, respectively, cause 28%,
36%, and 55% of hydrocarbon (HC), nitrogen oxide (NOx), and carbon monoxide (CO)
emissions [2]. In Europe, transportation accounts for 33% of total energy use and 23% of
total GHG emissions [3]. Therefore, researchers and policymakers are concerned about
increasing energy efficiency and lowering GHG emissions.

The various physical factors that affect fuel economy and emissions in automobiles
include the design of the vehicle, the engine, and the power train system [4]. Moreover,
road-geometry characteristics, e.g., road grades, have considerable effects on the fuel
economy and GHG emissions of both light-duty and heavy-duty vehicles [5]. Specifically,
due to the need for a high power to overcome gravity, vehicles use between 5% and 20%
more fuel on uphill stretches of hilly roads than on flat roads [6], while the gravitational
force works in favor of a vehicle while moving downhill, lowering fuel consumption and
emissions [7]. On the other hand, recent research has demonstrated that driving behavior
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substantially affects fuel usage and GHG emissions, with braking and acceleration being
two well-known ways to conserve or waste energy [8]. To resolve this issue, eco-driving
is a promising approach that encourages fuel-efficient driving by avoiding unnecessary
braking and acceleration and by optimizing the vehicle velocity profile while forecasting
surrounding road-traffic situations [9,10]. Studies have shown that an eco-driving system
can lower fuel consumption by about 4–25% [11,12].

In the literature, several eco-driving systems have been reported for sloping roads.
Early studies primarily suggested that driving at a steady speed on constant road grades
reduces fuel usage. Particularly, the first effort aimed at optimizing the velocity trajectory
using a feedback control algorithm that allows the driver to adjust the speed for an optimum
fuel economy on different road grades [13]. A nonlinear vehicle model and Pontryagin’s
maximum principle (PMP) were used to determine the optimal velocity, and it was found
that a constant velocity was most suitable for some constant slopes. A related study found
that keeping a constant speed within the predetermined limits of a constant road slope
produced the best result [14]. In another investigation, a point-mass eco-driving control
system was developed employing PMP for a constant road gradient [15]. These approaches
were proposed under the assumption that road slopes would remain constant; hence, they
are not suitable for situations where there are hilly roads with variable up and down slopes.

In [16], a dynamic programming (DP)-based on-board look-ahead controller was
developed for a diesel truck using information on the upcoming terrain of the route, which
reduced fuel consumption by 3.5%. A similar study developed an optimal control problem
using DP to minimize the fuel consumption of a light-duty vehicle and achieved fuel
savings of about 5.5% [17]. In [18], an optimal energy management system for fuel cell
hybrid electric vehicles (FCHEVs) was developed using DP considering upcoming road
grade data. Although the solvers based on DP produced a global minimum, they are not
appropriate for actual deployment since they require information on the complete driving
cycle in advance.

Some other works developed model predictive control (MPC) frameworks for energy-
efficient driving on sloping roads. In [19], an eco-driving method was proposed utilizing
MPC, considering vehicle dynamics, road grade data, and the fuel consumption charac-
teristics of the engine. Another work proposed MPC for eco-driving of hybrid vehicles
using traffic signals and road grade information [20]. In our previous work [21], an MPC-
based eco-driving method was proposed using fuzzy-based rules and tested with a single
vehicle on a typical road stretch with simple up-slopes and down-slopes only, whereas
in [22], fuzzy-based MPC was developed for dynamic eco-driving of a host vehicle on
hilly roads in both free-flow and dense traffic environments. The findings demonstrated
that a single host vehicle based on MPC could improve the overall traffic performance
by reducing energy waste (caused by acceleration and braking) compared to traditional
MPC-based approaches.

In this paper, we present an NMPC-based EDS with fuzzy-tuned weights to reduce
the fuel consumption and emissions of vehicles, and we assess its efficacy on a real, hilly
route (with differing up and down slopes) in Fukuoka City, Japan, under a mixed traffic
environment. We design a nonlinear optimization problem that dynamically computes the
optimum velocity trajectory of vehicles considering their longitudinal motion dynamics,
the preceding vehicle states, and information on road grades derived from a digital map of
the route while ensuring driving safety. To better utilize the kinetic energy of a vehicle and
consequently further reduce fuel consumption and emissions, the fuzzy inference method
(considering the instantaneous vehicle speed and road slope angle) is used to tune the
weight of the objective function associated with the velocity term. The fuzzy inference
technique with NMPC is crucial because it allows the velocity increase gained by gravity
to be mostly permitted while running down a slope, preventing frequent braking and
capturing the gravitational potential energy. The findings demonstrate that the proposed
scheme significantly minimizes vehicle fuel usage and emissions compared to the CDS for
different penetration rates while increasing the average speed on the road. As a result, this
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study advances the development of eco-driving techniques, which may enhance overall
driving strategies on hilly roads with varying up–down slopes.

The paper is structured as follows. In Section 2, the comprehensive idea behind our
proposed EDS is first explained. Next, we describe the vehicle longitudinal dynamics
model. Then, we explain the proposed NMPC system and the fuzzy inference technique.
In Section 3, we present numerical simulation results on an actual hilly road, and finally,
Section 4 provides the conclusions and future research directions.

2. Eco-Driving on Hilly Roads

We recall that driving behavior and road slopes have a significant impact on a vehicle’s
fuel economy and emissions. For instance, excessive acceleration, braking, and speeding
consume/waste significant energy and cause emissions. To drive ecologically on a hilly
road, it is crucial to forecast driving states, traffic conditions, and road grades; however,
such predictions are challenging for a human driver. Hence, an eco-driving scheme is a
potential approach to assist a driver on hilly roads to reduce emissions and fuel usage.

The comprehensive idea of our proposed NMPC-based EDS on a hilly route is de-
picted in Figure 1. The EDS incorporates information on road grades up ahead and the
longitudinal motion dynamics of vehicle i in the presence of its preceding vehicle i − 1
to determine the eco-control input ui that generates the optimum velocity vi during the
trip interval. The traffic environment is considered to be mixed with conventional human-
driven vehicles and is referred to as the conventional driving scheme (CDS) hereafter. The
dynamic behavior of CDS vehicles is modeled using the intelligent driver model (IDM),
a microscopic car-following model that imitates human driving behavior [23]. For each
vehicle, the acceleration function defines the IDM regarding the position and velocity dy-
namics. The IDM computes the effect of road grades on vehicle acceleration and produces
the control input necessary for maintaining a constant speed on hills. The instant acceler-
ation of CDS vehicle i + 1 (as shown in Figure 1) in response to its preceding vehicle i is
given by the function facc as

ai+1(t) = facc(vi+1(t), xi+1(t), vi(t), xi(t))

= a
[

1 −
(

vi+1(t)
vd(t)

)δ
−

(
s∗(vi+1(t),∆vi+1(t))

∆xi+1(t)

)2
]

,

s∗(vi+1, ∆vi+1) = s0 + vi+1T +
vi+1∆vi+1

2
√

ab
,

(1)

where xi+1 is the position, vi+1 is the velocity, ai+1 is the acceleration, vd is the desired ve-
locity, δ is the driver assertiveness, s0 is the minimum gap, T is the minimum time headway,
a is the maximum acceleration, and b is the comfortable deceleration. ∆xi+1 = xi − xi+1
and ∆vi+1 = vi − vi+1, respectively, denote the space gap and velocity difference between
vehicles.

Figure 1. Fundamental idea of the proposed EDS using NMPC. The vehicles are traveling on a hilly
road with up–down slopes. The traffic environment includes the EDS (green) and CDS (orange)
vehicles. The system is constantly updated with information on the road grade and neighboring
traffic conditions.
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We presume the traffic environment is dense and mixed, and vehicles are running in
synchronous flow. The location of vehicles is determined by the global positioning system
(GPS), and the EDS has access to the information on the road slope of the entire route from
three-dimensional (3D) digital road maps. We develop a suitable performance metric and
adjust one of its weights via fuzzy inference methods to assess the effectiveness of the
proposed EDS, which generates the optimal speed trajectories using NMPC.

2.1. Vehicle Dynamics Model

In this study, the optimization solely employs the vehicles’ longitudinal motion dy-
namics; the driver is responsible for controlling the lateral dynamics. The state transition
function fst of vehicle i at time t is given by

ẏi(t) = fst(yi(t), ui(t), ξ(t)), (2)

where yi(t) = [xi(t), vi(t), xi−1(t), vi−1(t)]T denotes the state vector, with xi and vi as the
position and speed of the following vehicle i and xi−1 and vi−1 as the position and speed of
the preceding vehicle i − 1; ui is the eco-control input (or acceleration/braking); and ξ(t) is
an external parameter denoting the acceleration ui−1 of the preceding vehicle i − 1, which
is obtained from the measured speed.

The motion of vehicle i on the slope is susceptible to the total forces working on it,
as illustrated in Figure 2, and is expressed as

mi
dvi(t)

dt
= FT

i (t)− FR
i (t), (3)

where mi is the equivalent mass, FT
i is the traction force, and FR

i is the motion resistance
forces including rolling resistance, gravitational force, and aerodynamic drag, which is
given as

FR
i = µmigcosφ(xi) + migsinφ(xi) +

1
2 CDρa Aiv2

i (t), (4)

where µ, g, φ(xi), CD, ρa, and Ai, respectively, are the friction coefficient, gravitational
acceleration, grade angle, drag coefficient, air density, and frontal area of vehicle i. The
traction force is given by FT

i (t) = miui(t). Thus, the state Equation (2) is expressed as

f (yi(t), ui(t), ξ(t)) =
vi(t)

−µgcosφ(xi)− gsinφ(xi)− 1
2mi

CDρa Aiv2
i + ui(t)

vi−1(t)
ui−1(t)

.
(5)

Figure 2. Longitudinal motion dynamics of a vehicle while running on hills.

The information on route elevation is provided by a digital map, which is utilized to
determine φ(xi) as

φ(xi) = tan−1
(

Ralt(xi + ∆xi)− Ralt(xi)

∆xi

)
, (6)
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where Ralt is the road altitude and ∆xi is the horizontal distance between vehicle i − 1 and i.

2.2. Nonlinear Model Predictive Control

Notably, high levels of braking and acceleration are not advantageous for fuel economy
or riding comfort. We develop an NMPC-based EDS that calculates the optimum speed
profile required for safe and efficient driving within the prediction horizon by measuring
the vehicle state at any given time. In particular, we develop a constrained optimization
approach to determine the optimum speed for the EDS. An appropriate prediction horizon
(similar to a human driver) is regarded; a long horizon would not be useful because the
traffic flow is subject to significant changes. The safe gap sg of vehicle i from its preceding
vehicle i − 1 is given by

sg(t) = s0 + t∗gvi(t), (7)

where s0 is the minimum desired net distance and t∗g is the safe time gap to the preced-
ing vehicle.

For vehicle i with state dynamics (2) and (5), we implement NMPC by solving an
optimal control problem with a cost function, which is minimized at each time t as

J(yi(t), ui(t)) =
∫ t+T

t
[w1(vi(t), φ(t)(vi(τ|t)− vr)

2 + w2u2
i (τ|t)

+ w3

(
1 + e−λ(t∗g−tg(τ|t))

)−1
] dτ,

(8)

subject to
vmin ≤ vi(τ|t) ≤ vmax,
umin ≤ ui(τ|t) ≤ umax,
xi−1(τ|t)− xi(τ|t) ≥ sg(τ|t),

where T is the prediction horizon for which the optimum profiles from present time t
are calculated, vr is the reference speed, λ is a positive constant, tg(τ|t) = (xi−1(t) −
xi(t)− s0)/(vi(t) + ϵ) denotes the immediate time gap with a positive threshold ϵ to avoid
singularity, and w1(vi, φ), w2, and w3, respectively, are the weights associated with speed,
acceleration, and safe headway terms. The cost for the present speed variation from vr
is shown in the first part of the objective function. The second part represents the cost
associated with the vehicle’s acceleration force and the third part represents the cost of
deviating from the reference distance. The weight w1(t) is tuned based on fuzzy inference
techniques, while weights w2 and w3 are assigned high values.

In this paper, we employ the Mamdani fuzzy inference technique, which is one of
the most popular fuzzy inference techniques, and works with crisp data as inputs [24]. To
implement the fuzzy logic, we apply three consecutive steps: fuzzification, fuzzy inference,
and defuzzification. In the fuzzification step, we take account of the immediate speed vi(t)
and grade angle φ(t) as inputs to tune w1(vi, φ). We define trapezoidal-shaped membership
functions with ‘Low’ (L) and ‘High’ (H) for vi(t) and ‘Negative’ (N) and ‘Positive’ (P) for
φ(t), as illustrated in Figure 3a. Then, the corresponding membership values are computed
for speed {µL(vi), µH(vi)} and grade {µN(φ), µP(φ)}. Next, the fuzzy control rules are
defined as illustrated in Figure 3b, and expert knowledge is considered to develop the
rules [22].
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Figure 3. Fuzzy inference (a) membership functions of velocity vi(t) and grade angle φ(t), and
(b) control rules.

In such a scenario, the fuzzy rules exhibit two predecessors, and thus, using the
fuzzy AND operator, one value is obtained that represents the outcome of the predecessor
evaluation. The conjunction of the rule predecessors is given as

µjk(vi, φ) = µj∈{L,H}(vi) ∩ µk∈{N,P}(φ) = min{µj(vi), µk(φ)}.

Then, we determine the control output by associating membership functions with
fuzzy rules as

Fc(vi, φ) = ∑ µjk(vi, φ)Wjk,

where Wjk, jk ∈ {NL, NH, PL, PH} denotes constant fuzzy weights. Note that µjk(vi(t), φ(t))
is time-varying since vi(t) and φ(t) vary with time.

Finally, using the defuzzification (D f ) technique known as center of gravity (COG),
the fuzzy output is converted into a crisp output as

w1(vi, φ) = D f Fc(vi, φ) =
Fc(vi, φ)

∑jk∈{NL,NH,PL,PH} µjk(vi, φ)
. (9)

The NMPC scheme avoids excessive acceleration/braking of vehicles, while tuning
the objective function with fuzzy inference techniques causes smooth variations in speeds
on road grades.

3. Simulation Results and Discussion
3.1. Simulation Settings

To demonstrate the effectiveness of the proposed NMPC-based EDS, we developed
a simulation framework using MATLAB. Next, we solved the nonlinearly constrained
optimization problem (8) in discrete time employing the MATLAB optimization tool-
box. The vehicle parameters are set as mi = 1000 kg, µ = 0.015, g = 9.8 m/s2, CD = 0.318,
ρa = 1.18 kg/m3, and Ai = 2.4 m2. The safe time gap t∗g and minimum desired net distance
s0 are, respectively, set as 1.7 s and 4 m. The MPC reference speed vr is set as 22.23 m/s
or 80 km/h, and the constraints for speed and acceleration are, respectively, chosen as
vi ∈ [0, 25] m/s and ui ∈ [−7, 2] m/s2. The weights w1, w2, and w3 in the cost function (8)
are, respectively, chosen as 0.15, 9, and 30. Note that the weight values w1 and w2 are
chosen to uphold the priority of acceleration and velocity on a comparable scale since
the terms are squared, while the weight w3 is selected to only dominate other terms in
safety-critical circumstances (to guarantee safety). Subsequently, the weight values w1 and
w2 are adjusted further following the fuel economy improvements. Then, the road slope
angle and vehicle current speed are used to infer the fuzzy weights at any location along the
slope. By tuning, the optimum fuzzy weights WLN, WLP, WHN, and WHP are determined
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as 0.06, 0.12, 0.17, and 0.10, respectively. Using a prediction horizon of T = 12 s with
24 steps, the simulation step is set at dt = 0.5 s. The vehicles initially move at a speed vi of
vi(0) =22.23 m/s. The IDM parameters are chosen as vd = 22.23 m/s, s0 = 2 m, T = 1.5 s,
a = 2 m/s2, and b = −2.5 m/s2.

Two types of driving schemes are assessed for comparison using microscopic traffic
simulations on a real road in Fukuoka City, Japan, i.e., the conventional driving scheme,
which is regarded as a fixed-speed drive (FSD), and the proposed NMPC-based EDS.
The FSD precisely generates a suitable control action on road grades to maneuver vehi-
cles at a steady speed. To calculate the fuel consumption and emission rates of vehicles,
the VT-Micro model [25,26] is employed. Note that a vehicle’s fuel consumption (or engine
efficiency) depends on the engine’s characteristics and working behavior (engine speed
and torque). The VT-Micro model intrinsically considers the engine behavior of vehicles
with an automated transmission (AT) system. In a vehicle with an AT system, by relating
the instantaneous speed and acceleration to the required driving power, the appropriate
gear position is automatically adjusted to track the best operating point concerning the
torque–speed–efficiency characteristics of the vehicle. The VT-Micro model was developed
from experiments with regular-emitting light-duty vehicles, and the polynomial fuel con-
sumption model was developed by fitting the speed and acceleration characteristics with
observed fuel consumption data. The VT-Micro model is widely used in transportation
studies for computing the fuel consumption and emissions of vehicles, and is given by

ln(MOEei) =
3

∑
p=0

3

∑
q=0

(Ke
p,qvp

i uq
i ), (10)

where MOEei (measure of effectiveness) denotes the emission and fuel consumption rates
of vehicle i, Ke

p,q is the regression coefficient, and p and q, respectively, denote the power of
velocity and acceleration. The regression coefficients Ke

p,q of the model are calibrated using
the experimental data [26] and are given in [27]. The speed and acceleration data at each
simulation time step can be fed into (10) to compute the fuel consumption and CO2, HC,
CO, and NOx emissions of the vehicles.

Note that traffic patterns in real-world situations are dynamic; we ran numerical
simulations several times with varied speeds via random number generation of the sim-
ulator and averaged the outcomes to prevent randomness biasing the simulation results.
Specifically, we simulated a similar set of tests (for varying penetration rates in the EDS)
ten times using different random speeds.

3.2. Validation and Impact Assessment

The impact of the proposed NMPC-based EDS is demonstrated and validated for
different penetration rates using data of a real road section named Yuniba Dori and its
extension, situated in Fukuoka City, Japan, as illustrated in Figure 4a. The road section
is approximately 2.5 km long. The information on the road altitude is retrieved every
five meters from Fukuoka City’s digital road–land elevation map and the grade angle is
computed using (6). The elevation of the road is 26 m at the south point and 6 m at the
north point and features intricate uphill and downhill grades of varying degrees, as shown
in Figure 4b.

For a demonstration, we examined a ten-vehicle cluster in a synchronous and mixed
traffic environment, including CDS vehicles. The first vehicle is the conventional vehicle,
which is set as a reference. The objective is to determine (i) how energy-efficiently the EDS
vehicles drive regarding complex up–down slopes while following the conventional vehicle
(preceding the CDS) and (ii) the impact of EDS vehicles on the overall traffic flow at varying
penetration rates. Therefore, the EDS vehicle penetration rates range from 0% to 100%, with
a 20% increment. Next, trajectory data are generated via numerical simulations from the
studied hilly road section from the north point to the south point. Figure 5 illustrates the
simulation results of the velocity trajectories of vehicles for varying EDS penetration rates.
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It is found that when the penetration is 0%, i.e., all vehicles are conventional, the speed of
the following CDS vehicles consecutively drops from the desired speed vd initially due to
close gaps under dense traffic flow. As the penetration rates of the EDS vehicles increase
from 20% to 100%, the speed of all vehicles starts to increase to about the desired speed vd,
increasing the overall traffic average speed. This is because the EDS vehicles also improve
the driving behavior by following the CDS (for 20–80% penetration rates) by minimizing
their braking actions. Moreover, the higher penetration rate of the EDS (80–100%) smooths
the speed trajectories of vehicles on varying up–down slopes. Such smooth trajectories are
due to the anticipatory behavior of EDS vehicles.

Figure 4. (a) The studied hilly road section in Fukuoka City, Japan, captured from Google Maps, and
(b) the altitude of the road and slope profile. The distance of the road section is 2.5 km.
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Figure 5. Velocity trajectories of vehicles on the experimental hilly road section for various penetration
rates of the EDS, while commuting a distance of 2.5 km from the north point to the south point.

The acceleration profiles of vehicles at different penetration rates of the EDS are
shown in Figure 6. It is found that the EDS vehicle can maintain acceleration and de-
celeration/braking (control input ui) at the optimum level at different penetration rates
while precisely anticipating the movement of the preceding CDS and varying up–down
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slopes. Such smooth variations in speed, acceleration, and deceleration can substantially
reduce the GHG emissions and fuel consumption of vehicles. Table 1 gives the average
total fuel consumption; CO2, HC, CO, and NOx emissions; and average speed for varying
penetration rates of EDS vehicles on the studied hilly road section. The average total
fuel consumption and CO2, HC, CO, and NOx emissions are calculated by summing the
instantaneous fuel consumption and CO2, HC, CO, and NOx emissions (obtained from
the VT-Micro model) of vehicles and averaging them over the number of simulation ex-
periments. Then, we calculated the percentage reductions in fuel consumption, CO2, HC,
CO, and NOx emissions, and average speed for different penetration rates of EDS vehicles,
as illustrated in Figure 7.
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Figure 6. Acceleration profiles of vehicles on the experimental hilly road section for various penetra-
tion rates of the EDS while commuting a distance of 2.5 km from the north point to the south point.

Table 1. Effects of different EDS penetration rates on average total fuel consumption; CO2, HC, CO,
and NOx emissions; and average speed of vehicles.

Penetration Rates of EDS
0% 20% 40% 60% 80% 100%

North to South:
Fuel consumption [mL] 3142.95 3028.49 2991.80 2972.20 2954.94 2942.12
CO2 emission [g] 7209.34 6958.31 6892.16 6860.33 6838.14 6820.56
HC emission [g] 3.49 3.22 3.08 2.92 2.80 2.72
CO emission [g] 79.85 71.42 66.10 60.80 56.10 53.92
NOx emission [g] 9.12 8.22 7.60 7.08 6.69 6.39
Speed [km/h] 75.45 76.32 76.97 77.90 78.86 79.58

Note that when a vehicle’s acceleration (including up slope factors) is high at some
higher speeds, the engine often requires a large driving power at an operating point where
the engine efficiency is low. Fuel is not entirely burnt in such conditions, producing more
CO, HC, and NOx emissions. However, the amount of CO, HC, and NOx emissions is
much lower than that of CO2 (as shown in Table 1), and a small change in driving behavior
(smooth or aggressive driving) causes significant variations in their amounts. Since eco-
driving avoids aggressive driving, it can remarkably reduce such emissions. Therefore,
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controlling the input acceleration by eco-driving significantly affects the production of CO,
HC, and NOx, compared to that of CO2. Moreover, these values were calculated using the
VT-Micro model that calculates fuel consumption and CO2, HC, CO, and NOx emissions
by relating vehicle acceleration to the engine operating characteristics.
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Figure 7. The percentage improvements in (a) fuel consumption, (b) CO2 emissions, (c) HC emissions,
(d) CO emissions, (e) NOx emissions, and (f) speed for different penetration rates of EDS vehicles.

The findings indicate that the vehicle’s fuel consumption and CO2, HC, CO, and NOx
emissions gradually reduce as the rate of EDS penetration increases. Specifically, only
20% of EDS vehicles considerably reduced the fuel usage and emissions of the overall
traffic, because they also constrain the following CDS vehicles to drive ecologically. On
the other hand, the average speed of vehicles significantly increases with the increased
penetration rates of the EDS. Hence, managing mixed traffic on hilly roads using the EDS
can remarkably improve the fuel efficiency, environmental sustainability, and overall traffic
flow performance.

In the proposed study, an eco-driving system is developed considering the driving
behavior of internal combustion engine (ICE) vehicles. Recently, electric vehicles (EVs)
and hybrid electric vehicles (HEVs) have become attractive options for vehicle users due
to the rising cost of gasoline, and they are prevalent in many countries worldwide. Our
proposed method can be utilized to improve the driving behavior of EVs and HEVs.
In some studies, the consumption of auxiliaries of electric vehicles has been optimized
concerning mission profiles [28], and such an approach can be adapted to our work as
possible future development.

4. Conclusions

In this paper, we have developed an NMPC-based EDS to reduce the GHG emissions
and fuel consumption of vehicles on hilly roads in a mixed-traffic environment. A non-
linearly constrained optimization problem is designed that considers the host vehicle’s
longitudinal motion dynamics, the preceding vehicle’s state, and the slope of the route
ahead to generate the optimum speed trajectory. Moreover, using fuzzy inference tech-
niques, the weight parameter (associated with velocity deviation) of the objective function
is tuned to prevent abrupt variations in velocity, considering the vehicle’s current speed
and the angle of the road slope. The effectiveness of the proposed EDS is evaluated on a real
hilly road stretch. The results demonstrate that the proposed EDS significantly reduces the
fuel consumption and emissions of vehicles compared to the CDS for different penetration
rates. In addition, the average speed of vehicles increases by almost 5.5%.
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In this work, the eco-driving actions of vehicles are independently governed by NMPC
without considering vehicle–vehicle communication. However, such communications or
information sharing can further benefit our proposed system. In future work, we will
consider such communications between vehicles. In addition, applying the proposed
method to hybrid and electric actuation considering the current development of traction
systems would be an interesting future study.
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