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Abstract: Due to their fast response, high accuracy and non-friction force, piezo-actuators 

have been widely employed in multiple degree-of-freedom (DOF) stages for various  

nano-positioning applications. The use of flexible hinges in these piezo-actuator-driven 

stages allows the elimination of the influence of friction and backlash clearance, as 

observed in other configurations; meanwhile it also causes more complicated stage 

performance in terms of dynamics and the cross-coupling effect between different axes. 

Based on the system identification technique, this paper presents the development of a 

model for the 3-DOF piezo-actuator-driven stages with unknown configuration, with its 

parameters estimated from the Hankel matrix by means of the maximum a posteriori 

(MAP) online estimation. Experiments were carried out on a commercially-available  

piezo-actuator-driven stage to verify the effectiveness of the developed model, as 

compared to other methods. The results show that the developed model is able to predict 

the stage performance with improved accuracy, while the model parameters can be well 

updated online by using the MAP estimation. These capabilities allow investigation of the 

complicated stage performance and also provide a starting point from which the  

mode-based control scheme can be established for improved performance. 
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1. Introduction 

Piezo-actuator-driven stages have the advantages of fast response, high precision and generation of 

large forces. As such, they have been widely applied in semiconductors, biomedical science, 

production manufacturing and other devices that require nano-positioning and manipulation [1–5]. 

With the ingenious design of flexible hinges, friction and backlash clearance can be eliminated, 

leading to improved performance. Meanwhile, the use of flexible hinges also caused a more 

complicated stage. Modeling and control for one degree-of-freedom (DOF) piezo-actuator-driven 

stages have drawn considerable attention in the literature [6–10]. Due to the cross-coupling effect 

between different axes, the methods developed for 1-DOF piezo-actuator-driven stages may not be 

readily extended to multiple-axis ones [11], the research of which is still in its early stage. In [12], a  

three-input-three-output state space model was developed for a 3-DOF micro-stage, along with the 

method for parameter identification; and by experiments, it was shown that the developed model was 

able to predict the performance of the micro-stage with acceptable accuracy. An auto-regressive 

exogenous (ARX) model was developed in [13] to describe the dynamic performance of a biaxial 

piezo-stage, and the model was then integrated in a feedforward compensator for precision tracking 

control with experimental verification. However, the cross-coupling between the two axes, which 

might have a negative effect on the performance of the controller, was not considered in the ARX 

model. In [14], a fourth order linear transfer function was identified for a piezoelectric stage, where the 

cross-coupling effect was neglected. On this basis, a chirp signal was applied to each of the axes 

independently, and with the measurement outputs, the parameters in each transfer function were 

estimated by using the system identification technique. In [15], the dynamic equations were combined 

with the Bouc-Wen model for each piezoelectric actuator to describe the performance of a plane-type 

3-DOF precision positioning table or stage. The parameters of the model were optimized based on the 

real-coded genetic algorithm (RGA) method. From the numerical simulations and experimental results, 

the 3-DOF cross-coupling effect was reduced by the proposed control method, and good contour 

tracking performance was obtained, due to successful identification of the dynamic models.  

A straightforward modeling method for multi-DOF piezo-actuator-driven stages can be based on 

the internal configuration by means of physics laws, as mentioned above. However, such details with 

regard to the internal structure are often not provided by the manufactures. Therefore, system 

identification for multi-DOF piezo-actuator-driven stages with unknown configuration is always 

required for the model development. In [16] and [17], modeling of a commercially available 3-DOF 

piezo-actuator-driven stage was formulated as a single-input-single-output nonlinear regression 

problem, with the cross-coupling effect ignored. By employing the online least squares support vector 

machine and relevance vector machine, the model parameters were updated, once the subsequent 

measurement became available. The developed model was applied to the inverse-model-based 

feedforward control scheme combined with proportional-integral-derivative (PID) regulator, and the 

performance of the piezo-actuator-driven stage being controlled was improved. An alternative method 

to improve the performance of multi-DOF piezo-actuator-driven stage is the use of a robust linear 

controller, such as the sliding mode controller [18], in which the nonlinear effects are regarded as 

disturbance and then rejected by the robust controller. As such, a linear state space model for the  

multi-DOF piezo-actuator-driven stage is always desired. To meet this need, in this paper, we report 
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the model development based on the black box system identification of for 3-DOF  

piezo-actuator-driven stages with unknown configuration. Specifically, a linear discrete state space 

model, x(k+1) = Ax(k) + Bu(k) and y(k) = Cx(k) + Du(k) (A, B, C and D are system matrices), is 

adopted and applied to describe the dynamics of the piezo-actuator-driven stage.  

To identify the parameters of the state space model, methods have been reported in the  

literature [19–25]. In [22], a modified frequency domain subspace identification algorithm was 

developed based on the previous work. The power spectrum estimates was strongly consistent when 

the measurements were corrupted by bounded random noise. In [23], the numerical algorithms for the 

subspace state space system identification (N4SID) method was combined with the multivariable 

output-error state space (MOESP) method for improved performance. The state space model was 

obtained in [24] by identifying the Markov parameters (a kind of matrix impulse response) that were 

indirectly calculated from an identified auto-regressive model or transfer function. In [25], the system 

matrices in the state space model were derived through singular value decomposition (SVD) of the 

Hankel matrix, which was directly identified from a Hankel-Toeplitz model using the least squares 

method. The parameters are time-invariant, and thus, the model cannot be applied if the performance 

of piezo-actuator-driven stage changes with the environmental condition, such as the temperature. 

To develop a state space model with updating parameters, the SVD of the Hankel matrix is 

strategically combined with maximum a posteriori (MAP) online estimation in this study. The 

parameters can be updated as new observations become available. Furthermore, MAP estimation 

utilizes prior information regarding the parameters and the measurement errors. Inclusion of posteriori 

parameter information can have the beneficial effect of reducing the variances of parameter estimators. 

To verify the effectiveness of the state space model identified by using the MAP online estimation, 

experiments were carried out on a commercially available piezo-actuator-driven stage. The estimation 

errors obtained from the Hankel matrix using online estimation were compared to those reported  

in [25], for the illustration of the proposed method effectiveness. 

2. System Identification for a 3-DOF Piezo-Actuator-Driven Stage with Unknown Configuration 

In this section, it is assumed that the configuration or the internal structure of 3-DOF  

piezo-actuator-driven stages is unknown. Also, it is assumed that the stage is regarded as a linear 

multiple-input and multiple-output (MIMO) system by ignoring the nonlinearity, which is reasonable, 

as illustrated in the experiments presented later in this paper. To represent the linear dynamics and 

cross-coupling effect of the stage, the simplified Hankel-Toeplitz model is adopted and employed in 

the present study, in which the Hankel matrix is to be identified by implementing the MAP online 

estimation method.  

2.1. Simplified Hankel-Toeplitz Model 

For a linear MIMO system, the discrete state space representation is given by:  

( 1) ( ) ( ) ( )

     ( ) ( ) ( ) ( )

x k Ax k Bu k w k

y k Cx k Du k v k

   
  

 (1) 



Actuators 2013, 2 4 

 

 

where n nA R  , n mB R  , q nC R   and q mD R   are system matrices, 1nx R   is the state, 1mu R   is 
the input, 1qy R   is the output, 1nw R   and 1qv R   represent the ignored nonlinearity and 

uncertainties of the piezo-actuator-driven stage and m and q are the number of inputs and outputs, 

respectively. By iteration, one has: 

( ) ( ) ( ) ( )

     ( ) ( ) ( ) ( 1) ( )

p
p p p p

p p p p p p p

x k p A x k B u k w k

y k C x k D u k w k v k

    

     
 (2) 

for any }{ | , 0p p p Z p   , where 
pu  and 

py  are defined as column vectors of the input and output 

data going p steps towards the future, 

( ) ( )

( 1) ( 1)
( ) , ( )

( 1) ( 1)

p p

u k y k

u k y k
u k y k

u k p y k p

   
        
   
         

 
 

(3) 

pv  and 
pw  are defined as column vectors of the noises and disturbance going p steps towards the 

future, 
pB  is the controllability matrix, 

pC is the observability matrix, 
pD  is the Toeplitz matrix for the 

system Markov parameters and 

1 2 2 1

2 3 4 2 3

, ( ) ( ) ( ) ,

0 0 0 0 0 0 0

0 0 0 0 0

, ,0 0 0

0

Tp p n pm T T T p T pq n
p p

pq pm pq pn
p p

p p p p p

p

B A B A B AB B R C C CA CA CA R

D

CB D C

D R RCAB CB D CA C

CA B CA B CA B D CA CA C

    

 

    

         
   
   
   
       
   
   
      

 

 

 
 
 

         
 

1 2p p n pnA A A I R     

(4) 

If pm n , there exists an interaction matrix M such that: 

0p
pA C M  (5) 

Substituting Equation (5) into Equation (2) yields: 

( ) ( ) ( ) ( ) ( 1) ( ) ( )p p p p p p p p px k p B D u k y k w k v k w k         M M M M  (6) 

Combining Equations (2) and (6) leads to the following equation, which is the so-called simplified 

Hankel-Toeplitz model: 

( ) ( ) ( ) ( 1) ( )

         ( ) ( ) ( ) ( ) ( ).M M

p p p p p p p

p p p p p p p p

y k C x k D u k w k v k

C B D u k p C y k p D u k k

     

       
 (7) 

where 

( ) ( 1) ( ) ( 1) ( ) ( ).M Mp p p p p p p p p p pk w k v k C w k p C v k p C w k p                

Using the following denotations: 

( ),  p p p pC B D C   Γ M Φ M , (8) 

one has Equation (7) rewritten as:  
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( )

( ) ( ) ( )

( )

p

p p p

p

u k p

y k D y k p k

u k

 
       
  

Γ Φ  
(9) 

where ( )k  represents the combined model noises and can be regarded as the model estimation error.  
Define: 

0 p p pC B D  H Γ Φ  (10) 

the square matrix, 
0H , can be estimated without knowing M. 

Once 
0H  is identified, an adjacent 

1
p

p pC A BH  can be calculated by using Equation (5) such that:  

1 0( ) ( )p p p p p pC C B C C B    H M M ΦH  (11) 

Similarly, 

0( ) ( ) ( ) ( ) ( )H M M M M Φ Hp i i
i p p p p p p p p p pC A B C C C B C C C B          (12) 

Using 
0 1, ,H H   as building blocks, a Hankel matrix of any size can be constructed. For example: 

 0 1

T

nH H H H  (13) 

2.2. Reconstruction of the System Matrices 

The Hankel matrix is arranged with Markov parameters of increasing order going from left to right. 

Let the Hankel matrices be: 

1 1

1 1

2 2 1 2 2 2 1 2

12

1 22 2 3

1 1 2 1

(0) , (1)H H

n n

n n

n n n n n n n n

CB CAB CA B CAB CA B CA B

CAB CA B CA B CA B CA B CA B

CA B CA B CA B CA B CA B CA B



 

     

   
   
    
   
   
   

 
 

       
 

 
(14) 

where 
1 2,n n  Z . Comparing Equation (14) with Equations (4), (12) and (13); (0)H  and (1)H can then 

be extracted from H by rearrangement of its elements. The state space matrices are reconstructed from 

the Hankel matrix by employing the following Lemma 1. 

Lemma 1: An s-th order state space model can be reconstructed as: 
1 1

2 2(1)T
s s s sA U V
 

  H  (15) 

where B is the first m columns of 
1

2 T
s sV , C is the first q rows of 

1

2
s sU   and 

1 2
min{ ( 1), ( 1)}s m n q n   . The 

matrix 
sU  and 

sV  are made up of s left and right singular vectors of (0)H , and the diagonal matrix, 
s , 

is made up of s corresponding singular values of (0)H [24]. 

2.3. MAP Online Estimation 

Equation (9) can be rewritten as, by ignoring ( )k :  

( ) ( )py k X k  θ . (16) 

where  
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( )

, ( ) .

( )

p

p p

p

u k p

D X y k p

u k

 
      
  

θ Γ Φ  

By using the least squares method, θ is identified to be a time-invariant matrix, which might not be 

able to accurately describe the environment-dependent performance of the piezo-actuator drive stage. 

In order to apply the state space model in the control of piezo-actuator-driven stage, the model 

parameters should be updated as new observation data is available. Therefore, MAP online estimation 

was employed to identify the parameter matrix in Equation (16) instead.  

The MAP online estimation method is used to update the parameters as the new observation data 

points becomes available, which is given by:  
1

1 1 1 1 1
T

i i i i i i


     θ θ P X σ E  (17) 

where X has the same definition as the one given in Equation (16), 
iθ  is the value of identified 

parameters based on the first i groups of data, 
iP  is the covariance of identified parameters from the 

first i groups of data, 
iσ  is the variance matrix of measurement errors and 

iE  is the estimation error of 

the i-th group of data. Integration of the prior information regarding the parameters and the information 

regarding the measurement errors can have the beneficial effect of reducing variances of parameter 

estimators. As a result, the parameter identification could be improved. 
Since the Hankel-Toeplitz model is a regression model given the zero initial condition, 

iE  was also 

calculated by using the regression method as:  

1i pi piy y  E
  (18) 

where 
piy  is the measurement output of the piezo-actuator-driven stage and 

piy
  is the estimation output 

of the piezo-actuator-driven stage calculated through i-1 iterations. 

2.4. Model of the 3-DOF Piezo-Actuator-Driven Stage 

A three-input-three-output state space model (1) is employed for the 3-DOF piezo-actuator drive 

stage. By implementing the singular value decomposition on the Hankel matrix, which is estimated 

based on the Hankel-Toeplitz model, as shown in Lemma 1, the system matrices of the state space 

model can be derived. 

Since the 3-DOF piezo-actuator-driven stage is previously assumed to be linear, the model 

identification can be implemented on each input channel individually. For example, when an input 
signal is only provided in one channel ( 1, 2, 3)iu i  , the three-dimensional output 

1 2 3[ ]T
i i i iy y y y , 

can be obtained from the identified one-input-three-output model by applying the method  

mentioned above: 

( 1) ( ) ( ) ( )

     ( ) ( ) ( ) ( )
i i i i i i

i i i i i i

x k A x k B u k w k

y k C x k D u k v k

   
  

 (19) 

where 3 3
iA R  , 3 1

iB R  , 3 3
iC R   and 3 1

iD R   are system matrices of the one-input-three-output system.  

The states for all three channels in Equation (19) may be stacked as: 
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1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

1 2 3

( 1) ( ) ( )

( 1) ( ) ( )

( 1) ( ) ( )

+ ( ) ( ) ( ) .
T

x k A x k B u k

x k A x k B u k

x k A x k B u k

w k w k w k



  



         
         
         
                  

 
(20) 

According to the definition of the linear system, the output can be expressed as the sum of ( 1, 2,3)iy i  , 

such that: 

   
1 1

2 2 1 2 3

3 3

1 2 3 1 2 3 1 2 3

( ) ( )

( ) ( ) ( ) ( ) ( ).

( ) ( )

x k u k

y C C C x k D D D u k v k v k v k

x k u k

y y y
   
          
      

    
(21) 

As such, the state space model for the three-input-three-output system can be expressed as: 

( 1) ( ) ( ) ( )

     ( ) ( ) ( ) ( )

x k Ax k Bu k w k

y k Cx k Du k v k

   
  

. (22) 

where: 
 1 2 3A diag A A A ,  1 2 3B diag B B B ,  1 2 3C C CC  ,  1 2 3D D D D , 

1 1 1

2 2 2

3 3 3

( ) ( ) ( )

( ) ( ) , ( ) ( ) , ( ) ( ) ,

( ) ( ) ( )

x k u k w k

x k x k u k u k w k w k

x k u k w k

     
            
          

1 2 3( ) ( ) ( ) ( ).v k v k v k v k   

3. Results and Discussion  

To verify the effectiveness of the state space model and the proposed identification method, 

experiments were implemented on a commercially-available 3-DOF piezo-actuator-driven stage  

(P-558.TCD, Physik Instrumente), as shown in Figure 1a. Driven by four piezoelectric actuators, the 

P558.TCD can generate linear displacements in the vertical direction Z and rotation around two 
orthogonal horizontal axes 

xR  and 
yR . Table 1 shows the motion range and resolution in each DOF.  

Table 1. Motion range and resolution in each degree-of-freedom (DOF) 

DOF Z  
x

R  
y

R  

Motion range 50 μm ±250 μrad ±250 μrad 

Resolution 0.5 nm 50 nrad 50 nrad 

Figure 1. Experimental settings on the piezo-actuator-driven stage: (a) picture  

and (b) schematic.  

 
(a) (b) 
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For displacement measurements, three capacitive sensors built in the stage are employed. All 

displacements were measured with a sampling interval of 2 ms in the present study. Both the actuators 

and the sensors in the stage were connected to a host computer via a digital controller (E-761, Physik 

Instrumente) and controlled through Labview, as shown in Figure 1b. As instructed by its manual, the 

piezo controller can drive the actuator with a maximum operating frequency of 10-20 Hz if an input 

voltage in the range of 30–50 V is applied. During operation, the motion of the four piezoelectric 

elements must be coordinated to reduce the internal forces generated due to the over actuation, which 

may cause reduced stiffness and even break or damage the piezo-actuator-driven stage. This is realized 

by a user program interface provided by the manufacturer, which is used to generate the voltage input 

of each piezoelectric actuator from the user defined reference signal. 

3.1. Linearity of the 3-DOF Piezo-Actuator-Driven Stage 

To examine the linearity of the 3-DOF piezo-actuator-driven stage, a case study was conducted 

prior to the system identification. In particular, a 1 Hz 1 μm sinusoidal reference signal with 1 μm 

offset, a 2 Hz 200 μm sinusoidal reference signal with 2 s time delay and a 100 μm step reference 
signal with 3 s time delay were provided to the Z, 

xR  and 
yR channel, respectively, and the 

corresponding outputs were measured. Then, the stage displacement output, as these three signals were 

applied simultaneously, was measured. The criterion used for the linearity examination is that if the 

output with three input signals equals or approximately equals the sum of the outputs when the signals 

is applied individually, the 3-DOF piezo-actuator-driven stage is linear or can be approximately 

considered to be linear. Figure 2 shows the comparison between the two outputs mentioned above. It 

can be seen that they overlapped with each other, indicating that the stage can be approximately 

considered to be a linear system. Differences between the measured output when the three inputs were 

provided to the different channels simultaneously and the sum of the outputs when the three inputs 
were provided separately exist. For example, in the 

xR  direction, the maximum difference is 

approximately 3 μm, which is only 1.5% of the amplitude of the reference signal. This difference 

might be due to the nonlinearities of the 3-DOF piezo-actuator-driven stage, which is ignored in the 

model development presented in this paper.  

Figure 2. Linearity of the 3-DOF piezo-actuator-driven stage: (a–c) comparison between 

the measured output when the three inputs were provided to the different channels 

simultaneously and the sum of the outputs when the three inputs were provided separately; 

(d–f) difference between these two outputs.  

 
(a) (b) (c) 
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Figure 2. Cont. 

 
(d) (e) (f) 

3.2. System Identification of the 3-DOF Piezo-Actuator-Driven Stage 

Figure 3 shows the flow chart of system identification. Since different signals applied in system 

identification may lead to the difference in the model identified, the effects of applying the random 

signal and the chirp signal in the parameter estimation were investigated in the signal selection in this 

study. The two signals were compared, and the one with less model prediction error was employed as 

the input for order selection, in which state space models with different orders were identified and 

compared. The one with less model prediction error was employed as the model for the  

piezo-actuator-driven stage. 

Figure 3. Flow chart of black box system identification. 

Random input Chirp input

Which one leads to 
better prediction?

Initial order = 3

Minimum error?

Order +1

No

Compare with least square method in [22]

Data verification

 

For signal selection, a 20 μm reference chirp signal with 20 μm offset and frequency ranging from 1 

to 100 Hz was provided to channel 1 (reference Z channel), and the corresponding output in each 

channel was measured. Based on the empirical knowledge of our previous study on piezoelectric 
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actuators, the order of the state space model was originally set to be three, and 
0θ  in Equation (17) was 

set to be a zero matrix. Since the covariance of the parameters is unknown, 
0P  is set to be a diagonal 

matrix with big covariance designated in the diagonal elements. By applying online estimation with 

the identified Hankel matrix, the system matrices of the state space model (Equation (19), I = 1)  

were obtained. 

The estimation error varied, depending on the values of parameter p in Equation (2). Figure 4 (a–c) 

shows the estimated error versus the p-value. It can be seen that if p = 8, the estimation errors in all 

three output directions approached or reached their individual minimum values. Therefore, it is 

reasonable to set p = 8, as the chirp signal is provided to channel 1. 

Figure 4. Estimation error changes with p-value when reference input was applied in 

channel (a) Z direction; (b) Rx direction; (c) Ry direction. 

 
(a) (b) (c) 

For other two channels, a 200 μrad reference chirp signal with frequency ranging from 1 to 100 Hz 

was applied. By employing the aforementioned procedure, p was set to 25 and 27 for channel 2 and 3 

respectively. Table 2 shows the prediction error in each direction, as a 1 Hz sinusoidal reference input 

was applied to the three channels, respectively. The prediction errors are calculated in terms of the  

2-norm of the error vector (defined as the difference between the measurement and the model 

prediction). It is seen that the diagonal prediction error is 0.1944 μm, 4.864 μrad and 4.3387 μrad in 
the Z, 

x
R  and 

y
R  direction, respectively, which is 0.49%, 2.43% and 2.16% of the desired movement in 

the individual direction. 

Table 2. Model prediction error if chirp inputs were applied. 

Direction 
Z 

(μm) x
R  (μrad) 

y
R  (ΜRAD) 

1 Hz 20 μm sinusoidal inputs with 20 μm 
offset in channel 1 

0.1944 0.4030 0.2008 

1 Hz 200 μrad sinusoidal inputs in  
channel 2 

0.0192 4.8640 0.0760 

1 Hz 200 μrad sinusoidal inputs in  
channel 3 

0.0263 0.2060 4.3387 
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Similar to the use of the chirp signal, 40 μm and 200 μrad reference random signals were also 

applied to each channel, respectively. The order of each sub-model was chosen to be three, and p was 

set to nine, 14 and 13 for the three channels, respectively. The same 1 Hz sinusoidal inputs were 

provided to difference channels, and the output was measured and compared with the model 

prediction. Table 3 illustrates the model prediction error. In contrast to the chirp signal, it can be 

concluded that the model prediction errors is much bigger when random signals are used in the model 

identification. For example, when a 1 Hz 200 μrad sinusoidal reference input was provided to channel 
2, the model prediction error in the 

x
R  direction reached 57.362 μrad by using the random inputs, 

which is over 10-times larger than that derived by using the chirp signal. As a result, a chirp signal was 

employed as the reference input for model identification below. 

Table 3. Model prediction error if random inputs were applied. 

Direction Z (μm) 
x

R  (μrad) 
y

R  (ΜRAD) 

1 Hz 20 μm sinusoidal inputs with 20 μm offset in 

channel 1 
0.8670 0.8946 0.2061 

1 Hz 200 μrad sinusoidal inputs in channel 2 0.0542 57.362 0.1020 

1 Hz 200 μrad sinusoidal inputs in channel 3 0.0624 1.0143 45.9597 

To determine the order of the state space model, the parameter identification, as described 

previously, was repeated with varying values of n (Equation (1)) in each channel. Tables 4–6 show the 

estimation errors in each channel.  

Parameter p was chosen to have different values for varying orders based on the method mentioned 

above. It can be concluded that if the chirp signal was used in channel 1, the estimation error in the Z 

direction reached its minimum value of 1.4906 μm with the order of the sub-model being six or seven. 
For the

y
R  direction, the optimal choice was to set n = 7. Therefore, the sub-model for channel 1 was 

considered to be a seventh order state space system. The system matrices were determined as given in 

Equation (23). Using a similar procedure, the orders of the sub-model for the other two channels were 

both chosen to be four, and the system matrices were determined, as shown in Equations (24) and (25). 

1

0.9239 0.1747 0.0057 0.0297 0.0026 0.0045 0.0004

0.1757 0.6973 0.0604 0.2463 0.0262 0.0333 0.0031

0.0219 0.1592 0.8761 0.0622 0.0504 0.0266 0.011

0.0291 0.2297 0.4 0.4512 0.1 0.1691 0.0169

0.0101 0.0321 0.095 0.

A

    
   

   
  

 
1

0.3094

0.2819

0.0608

, 0.0912

1506 0.9447 0.1266 0.0155 0.0185

0.0068 0.0231 0.0439 0.3232 0.1645 0.6283 0.0277 0.0199

0.0044 0.0093 0.116 0.085 0.00008 0.1766 0.8136 0.0061

B

   
      
   
      
  
  
     
       

1 1 3 3

0.3052 0.2798 0.0221 0.0891 0.0073 0.0153 0.0018

0.0134 0.0259 0.0453 0.0533 0.0381 0.0397 0.0108 ,

0.0033 0.0215 0.0189 0.0416 0.0061 0.0375 0.0039

DC 






 
    
     

 0

 

(23) 
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2 2

2

0.9493 0.1175 0.0173 0.0233 0.2595

0.1161 0.7929 0.1205 0.1509 0.2232
, ,

0.0001 0.072 0.9273 0.2011 0.0325

0.0238 0.1573 0.0285 0.7314 0.0693

0.00002 0.00001 0.00002 0.00024

0.2402

A B

C

   
         
     
      
   

 2 3 30.2215 0.0502 0.0687 , .

0.0002 0.00053 0.00049 0.0011

0D 

 
    
     

 

(24) 

3 3

3

0.9485 0.1204 0.0134 0.0261 0.2574

0.1184 0.7981 0.0779 0.1711 0.2229
, ,

0.003 0.0094 0.9656 0.1719 0.015

0.0225 0.1825 0.0783 0.711 0.0775

0.00002 0.00001 0.0001 0.00022

0.0043 0.

A B

C

    
         
    
      
   

 2 3 30018 0.0031 0.0028 , .

0.239 0.2205 0.0376 0.0762

0D 

 
    
   

 
(25) 

Table 4. Estimation error from the chirp inputs in channel 1.  

Order p 
Estimation error 

Z (μm) 
x

R (ΜRAD) 
y

R (ΜRAD) 
2 11 1.5635 1.1174 0.1614 
3 8 1.5368 1.2597 0.1631 
4 11 1.4936 0.8100 0.3496 
5 14 1.4914 0.1876 0.1607 
6 31 1.4906 0.1184 0.1238 
7 38 1.4906 0.1192 0.0908 
8 38 1.4907 0.1180 0.1099 
9 38 1.4907 0.1202 0.1031 

10 30 1.4912 0.1195 0.1251 
11 30 1.4913 0.1186 0.1236 
12 28 1.4912 0.1266 0.1180 

Table 5. Estimation error from the chirp inputs in channel 2. 

Order p 
Estimation error 

Z (μm) 
x

R (μrad) 
y

R (μrad) 
2 47 0.0118 18.0440 0.0565 
3 25 0.0106 17.8752 0.0474 
4 42 0.0107 17.7877 0.0476 
5 47 0.0128 17.7751 0.0483 
6 42 0.0129 17.8071 0.0477 
7 42 0.0125 17.8073 0.0480 
8 47 0.0133 17.8073 0.0477 
9 42 0.0118 17.8179 0.0484 

10 39 0.0103 17.8363 0.0479 

11 42 0.0120 17.8154 0.0475 

12 42 0.0119 17.8166 0.0481 
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Table 6. Estimation error from the chirp inputs in channel 3. 

Order p 
Estimation error 

Z (μm) x
R (μrad) y

R (μrad) 

2 41 0.0124 1.0996 16.9180 

3 27 0.0108 1.0995 16.7524 

4 39 0.0111 1.0994 16.5991 

5 41 0.0144 1.1006 16.5917 

6 39 0.0109 1.0993 16.6212 

7 39 0.0111 1.0996 16.6183 

8 39 0.0112 1.0996 16.6183 

9 39 0.0112 1.0996 16.6177 

10 39 0.0111 1.0996 16.6188 

11 39 0.0111 1.0993 16.6184 

12 39 0.0111 1.0994 16.1686 

3.3. Model Verification  

To illustrate the effectiveness of the MAP online estimation method, 1, 5 and 10 Hz sinusoidal 

reference inputs were provided to different channels, respectively. For comparison, the estimation 

method introduced in [25] was implemented as well. The parameter p was defined as 21, four and 

seven, respectively, for the three input channels. Tables 7 and 8 show the prediction error in each 

direction based on the different identification methods. The prediction errors were calculated in terms 

of the 2-norm of the error vector, illustrating that the prediction error increases with the frequency. 

Table 7. Estimation error by applying the online estimation method. 

Input Channel Z (μm) 
x

R  (μrad) 
y

R (ΜRAD) 

1 Hz 10 μm 1 0.1468 0.1584 0.0642 
1 Hz 200 μrad 2 0.0176 1.0305 0.0742 
1 Hz 200 μrad 3 0.0196 0.2574 9.9402 

5 Hz 10 μm 1 0.3666 0.3743 0.0956 
5 Hz 200 μrad 2 0.0538 2.3801 0.2044 
5 Hz 200 μrad 3 0.0510 0.2128 3.1906 
10 Hz 10 μm 1 0.5296 0.2699 0.0576 

10 Hz 200 μrad 2 0.0530 6.3244 0.3327 
10 Hz 200 μrad 3 0.0517 1.1101 5.6707 

In contrast to the identification method introduced in [25], the use of posteriori parameter 

information in MAP online estimation leads to better estimations on the Hankel matrix. For example, 

the estimation errors for the 5 Hz, 10 μm sinusoidal inputs to channel 1 were 0.3666 μm, 0.3843 μrad 
and 0.0956 in the Z, 

x
R  and 

y
R  directions, respectively. These results are 7.3%, 40.6% and 24%, 

respectively, of those derived using the identification method introduced in [25]. 
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Table 8. Estimation error by applying the identification method introduced in [25]. 

Input Channel Z (μm) 
x

R  (μrad) 
y

R  (ΜRAD) 

1 Hz 10 μm 1 1.1124 0.9433 0.3675 
1 Hz 200 μrad 2 0.0180 2.2639 0.3403 
1 Hz 200 μrad 3 0.0374 0.3065 5.3670 

5 Hz 10 μm 1 5.0639 0.9224 0.3974 
5 Hz 200 μrad 2 0.0541 4.5928 0.3567 
5 Hz 200 μrad 3 0.0608 0.6449 11.349 
10 Hz 10 μm 1 6.2860 0.9419 0.4139 

10 Hz 200 μrad 2 0.0525 17.785 0.2683 
10 Hz 200 μrad 3 0.0543 1.0064 13.497 

Figure 5 shows the output in each direction as a result of a 10 μm 10 Hz sinusoidal reference input 

with 10 μm offset in the Z direction compared with the model prediction. It can be clearly seen that the 

identified state space model is able to describe the coupling effect between each axle. 

Figure 5. Comparison of experimental results and model prediction under 10 μm 10 Hz 

sinusoidal input in channel 1: (a) Z direction; (b) Rx direction; (c) Ry direction.  

 

(a) (b) (c) 

3.4. Case Study with Combined Inputs 

To verify the identified linear state space model with combined inputs, three experiments were 

implemented. In the first experiment, the reference inputs simultaneously applied to the three channels 

are a 1 Hz and 20 μm sinusoidal reference with a 20 μm offset, a 2 Hz and 200 μrad sinusoidal 

reference with a time delay of two seconds and a 100 μrad step input with a time delay of three 

seconds. The outputs in the three directions were measured, and the predicted outputs were obtained 

according to the identified state space model of Equations (23–25), respectively. In the second 

experiment, a 1 Hz and 1 μm sinusoidal input with 1 μm offset and a 2 Hz, 0.5 μrad sinusoidal 

reference input with a 2 s time delay were provided to the piezo-actuator-driven stage with the third 

channel kept zero. The outputs were measured and compared to the predicted outputs. To validate the 

model in high frequency, the input of 1 Hz and 2 μm sinusoid in channel 1 was replaced with a 10 Hz 

40 μm one in the third experiment. Also, the corresponding outputs in the three directions were 
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measured and compared to the outputs predicted by the identified state space model. The comparison 

is shown in Figure 6, from which it can be concluded that the model is able to describe the 

performance (both dynamics and cross-coupling effect) of the 3-DOF piezo-actuator-driven stage. 

Figure 6. Comparison of experimental results and model prediction from combined inputs 

to all three channels in the first experiment (a–c); in the second experiments (d–f) and in 

the third experiments (g–i).  

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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4. Conclusions  

A straightforward modeling method for multi-DOF piezo-actuator-driven stages is based on the 

internal configuration by means of physics laws, as reported in the literature [12–15]. However, such 

details with regard to the internal structure are often not provided by the manufactures. Therefore, 

system identification for multi-DOF piezo-actuator-driven stages with unknown configuration is 

always required for the model development.  

The contribution of this paper is the development of a black box model used to describe the 

dynamics of 3-DOF piezo-actuator-driven stages with unknown physical configuration, which allows 

the investigation of the complex system performance with unknown physical configuration by means 

of the linear state space model. By combining the MAP online estimation methods, the Hankel matrix 

of the state space model was identified and the model parameters were updated as new observations 

were available. To show the effectiveness of the proposed estimation method, model verification 

experiments were carried out on the piezo-actuator-driven stage, and the outputs obtained were 

compared to the predictions of the state space model identified using the method introduced in [25]. 

From the model verification results, it was shown that the linear state space model can predict the 

dynamic performance of a piezo-actuator-driven stage with improved accuracy. By making use of the 

posteriori parameter information, the MAP online estimation method performs better in the model 

identification than the least squares method. Moreover, the identified parameters are updated online as 

new and more data becomes available. The developed model and parameter identification methods 

provide a starting point from which to adaptively compensate for the dynamics and cross-coupling 

effects of the piezo-actuator-driven stage by means of the mode-based control scheme. 
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