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Abstract: Grid capacity, reliability, and efficient distribution of power have been major 

challenges for traditional power grids in the past few years. Reliable and efficient 

distribution within these power grids will continue to depend on the development of lighter 

and more efficient sensing units with lower costs in order to measure current and detect 

failures across the grid. The objective of this paper is to present the development of a 

miniature piezoelectric-based sensor for AC current measurements in single conductors, 

which are used in power transmission lines. Additionally presented in this paper are the 

thermal testing results for the sensor to assess its robustness for various operating 

temperatures.  

Keywords: AC current sensor; piezoelectric sensor; non-intrusive sensor; PZT; bimorph; 

force on a magnet; AC magnetic field; smart grid 
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1. Introduction 

The need to improve the reliability and efficiency of electrical distribution has prompted an 

increased interest in developing new technologies and devices for the smart grid. The development of 

the smart grid requires the monitoring and active management of electrical demand [1]. An array of 

wireless current sensors distributed on a network of transmission lines is envisioned to achieve the 

monitoring aspect. However, due to the immense size of distribution networks, low cost and easily 

maintainable sensors are required to allow this large-scale deployment. Furthermore, with the 

necessary retrofitting of existing transmission lines, a non-intrusive sensor that can be installed without 

service disruptions would be beneficial. 

Some examples of existing non-contact current sensors are Hall sensors, Rogowski coils and 

magnetoresistive sensors [2]. However, size, costs and external power requirements are some limitations 

of these technologies [3]. These non-contact sensors operate by interacting with the magnetic field 

induced by the current in the wire to be measured. Another method of interacting with this magnetic 

field is to place a permanent magnet within close proximity. The force from the reacting magnetic 

fields can then be sensed by attaching the magnet to the tip of a piezoelectric cantilever. Due to the 

characteristics of a piezoelectric material (PZT), the sensor would produce a voltage that can be 

correlated to the current in the wire [2–8]. Existing designs that use this principle pertain to sensors 

that are used mainly for circuit breaker panels and dual cable measurements [3,6,9,10]. Similar 

techniques with cantilevers have also had much success in multiple other sensing applications, such as 

biological, chemical and physical, by measuring changes in the resonance response or deflection of the 

cantilever [11].  

This paper presents the theoretical development, design, fabrication and experimental results of a 

miniature non-intrusive AC current sensor. This sensor uses the principle described above and allows 

measurements of multiple harmonics of currents in single conductors primarily used in power 

transmission lines. The design and magnet orientation proposed in this paper particularly allows 

efficient interactions with the magnetic field of a single conductor transmission line which helps 

maximize the sensor sensitivity for this application. Furthermore, we assess thermal robustness of the 

sensor by examining the effects of the temperature variations on the sensor sensitivity.  

2. Theoretical Model  

The sensor consists of a brass substrate beam with two piezoelectric layers and a magnet as shown 

in Figure 1. In the proximity of a wire carrying AC current, the alternating magnetic flux around the 

wire produces an alternating force on the magnet which results in vibrations of the substrate and 

piezoelectric layers [6]. The resulting AC voltage can then be measured and the sensor can be 

calibrated for current measurements. 
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Figure 1. Schematic of the miniature AC current sensor. (a) Side view; (b) Front view. 

 
(a)       (b) 

Presented in this section are the electromagnetic force equation derivations and dynamic modelling 

of the substrate beam with piezoelectric layers. Two sensor orientations are suggested and compared 

for the case of single conductor measurements. For clarification, Figure 2 shows the magnetic field 

schematics of single and double conductors. The double conductors are common in electric appliances, 

which contain the ground (return) wire and are not the intended application for the sensor described in 

this paper.  

Figure 2. Magnetic fields of single and double conductors carrying current. (a) Single 

conductor; (b) Double conductor. 

 
(a)             (b) 

2.1. Electromagnetic Force Modelling 

Presented in this section is the derivation for the electromagnetic force on the sensor tip magnet. 

The interaction between the magnet and the transmission wire can be better understood using 

Equations (1) and (2). Equation (1) gives the force on a current carrying wire element placed in an 

external magnetic field [12]. 

 I  magdF dl B  (1) 

Here, I is the current in the wire, dl is the differential wire element vector (directed along the 

direction of current flow) and Bmag is the magnetic flux density of the magnetic field produced by the 

magnet. This force on the wire is equal and opposite to the force on the magnet element. Equation (2) 



Actuators 2014, 3 165 

 

 

gives the force on a magnetic dipole element placed in an external magnetic field by the wire as 

illustrated in Figure 3 [13]. 

   wiredF dm B  (2) 

Here, dm is the magnetic moment of the magnetic dipole element and Bwire is the time varying 

magnetic flux density of the magnetic field produced by the wire.  

Figure 3. Magnetic dipole element placed in the magnetic field of a current carrying wire. 

 

The magnetic moment of the dipole element shown in Figure 4 can be written as 

ˆˆ ˆ
x y zdm i dm j dm k  dm  (3) 

where xdm , ydm , and zdm  are the x, y and z components for any arbitrary orientation of the dipole.  

Figure 4. Magnetic dipole element and the magnetic moment. 

 

In addition, the magnitude of the dipole moment can be expressed as 

 /rdm B dV   (4) 

where Br is residual magnetic flux density or remanence, dV is the differential volume of the element, 

and μ is the permeability of air. From Equation (1) it can be seen that, to maximize the force on a 
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current carrying element, it is necessary to maximize the cross product of the external magnetic flux 

density and the current unit vector. This can be achieved through two different orientations of the 

magnet. Figure 5 shows the two orientations that allow the magnetic field lines of a single magnet to 

be approximately perpendicular to the wire. The dashed lines represent the magnetic field lines of the 

wire and the solid lines represent the magnetic field lines of the magnet. In orientation “a”, the magnet 

is placed such that its magnetic axis is tangent to the lines that represent the magnetic field of the wire. 

In orientation “b”, the magnet axis is perpendicular to these lines. Both orientations result in a net force 

on the wire that is perpendicular to the axis of the magnet. Once again, note that the force on the wire 

is equal and opposite of the force on the magnet. Intermediate orientations lead to both a reduction in 

efficiency of the magnetic field interactions, and asymmetric forces, which are undesirable for the 

sensor design.  

Figure 5. Magnetic fields for “a” and “b” magnet orientations. 

 

Figure 6. Coordinate system for a single conductor. 

 

For simplicity, Equation (2) is used instead of Equation (1) to obtain the expressions for the total 

force on a tip magnet as described below. Figure 6 shows the coordinate system used for obtaining 

these expressions. In this figure, r is the position vector of any point (y,z) around the wire (r ˆˆyj zk  ). 

The wire is placed along the x axis, therefore: 
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ˆ ˆsin(2 )aIi I vt i I  (5) 

Here Ia is the current amplitude, v is the frequency and t is time.  

Using Ampere’s law [12], 

enclosedB dl d I      J s  (6) 

the magnetic field around an infinitely long current carrying wire can be expressed as: 

 22
wire

r




 B I r  (7) 

Using the coordinate system show in Figure 6, Equation (7) simplifies to: 

2 2

ˆˆ( )

2
wire

I zj yk

y z





 



B  (8) 

By substituting Equations (3) and (8) in Equation (2), the force on the differential volume of the 

magnetic element can be found as: 

2 22 2

2 2 2 2 2 2 2 2 2 2 2 2

(2 ) ( )( ) ( 2 ) ˆˆ
2 ( ) ( ) ( ) ( )

y yz z
dm yz dm z ydm z y dm yzI

j k
y z y z y z y z





    
               

dF  (9) 

For orientation “a”, the j components of the force cancel out due to symmetry. In addition, the 

magnetic dipole moment along the i and k directions is zero. Thus, for this orientation, the following 

expression for the force on a differential element volume is obtained using Equations (4) and (9): 

2 2

2 2 2

( ) ˆ
2 ( )

rIB dV z y
k

y z





dF  (10) 

Similarly, the following expression is obtained for orientation “b”: 

2 2

2 2 2

( ) ˆ
2 ( )

rIB dV z y
j

y z





dF  (11) 

The total force on the magnet can then be found by integration over the magnet volume. Figures 7 

and 8 present the theoretical force per unit current and unit residual flux density for both orientations 

“a” and “b” for various distances between the wire and the magnet. The results are obtained for both 

cuboid and cylindrical magnets. Three different magnet lengths of 0.5 cm, 1 cm, and 1.5 cm with a 1 cm
2
 

cross section are used for both geometries. As illustrated in these figures, the optimal orientation (“a” 

or “b”) depends on the magnet length. For both cuboid and cylindrical geometries, orientation “a” is 

shown to produce greater magnetic force values if the length of the magnet is larger than the width 

(diameter). For lengths equal to the width (diameter) both configurations give similar results. 

For the prototype, a cylindrical magnet and orientation “a” were chosen. Orientation “b” is not the 

most suitable option for a single wire measurement because the force along the magnet varies along its 

length due to the varying distances of the magnetic elements from the wire. This will result in 

additional torsional vibrations, which are not desired for the sensor measurement calibration. 

Additionally, a cylindrical magnet was selected as it allows for a smaller contact area with the beam. 
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This geometry simplifies the dynamic modelling of the sensor since it allows modelling the magnet as 

a tip mass.  

Figure 7. Theoretical force per unit current and unit residual flux density for  

cuboid magnets. 

 

Figure 8. Theoretical force per unit current and unit residual flux density for  

cylindrical magnets. 

 

2.2. Piezoelectric Modelling  

The schematic of the proposed model of the sensor is shown in Figure 9. This sensor configuration 

allows a more effective forcing mechanism for the sensor compared to Reference [10] due to the 

chosen orientation of the magnet with respect to the sensor substrate layer.  

A mathematical model is required to predict the sensor output and its dynamic behaviour. The 

sensor must be designed for the frequency range of interest in such a way that its natural frequency is 

far from the frequencies of operation. This results in a fairly constant frequency response function 

(FRF) for the frequency range of interest, which aids in obtaining a non-variable calibration ratio. 
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Additionally, this results in relatively small cantilever deflections for these frequencies as they are far 

from resonance. Therefore, the deflections are also assumed to have no significant influence on the 

electromagnetic forces on the tip magnet and this force is assumed to have a harmonic form.  

Figure 9. Schematic of the cantilevered beam sensor. 

 

In order to obtain the natural frequency of the sensor, the governing partial differential equation 

(PDE) for base excitations applied to the clamped end are considered. The theoretical frequency 

response function for the sensor output voltage to base excitation is later validated through a shaker 

harmonic testing. The PDE for the sensor depicted in Figure 9 may be found as follows: 
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 (12) 

The transverse deflection of the beam relative to the base input excitation at position x and time t  is 

),( txwrel
, while the base excitation is denoted by ( , )bw x t . Note that the total deflection can be found 

as ( ) ( ) ( )total b relw t w t w t  . The terms Ics  and ac  are the strain rate damping and air damping terms 

respectively. Air damping is assumed to be negligible in this analysis. The strain rate damping, known 

as Kelvin-Voight damping, is later incorporated in the modal coordinates through model damping 

ratios obtained from the experiments [14]. 
effL is the effective length of the beam which is measured 

from the clamped end to the center of the magnet and tM  is the total tip mass which includes the 

magnet, the tip of the beam and the epoxy bonding the two. Finally, v(t) and   are the voltage and the 

electromechanical coupling term for the piezoelectric layers in a parallel configuration respectively. 

The electromechanical coupling term   is given by: 
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Here, Esde 113131   is a piezoelectric coupling constant, 
pt and st are the thicknesses of the 

piezoelectric (one layer) and substrate material, respectively, w is the width of the beam and 
pztn  is the 
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distance from the neutral axis of the substrate to the neutral axis of the piezoelectric layer. Equation 

(12) as a whole is very similar to the expression found in [14], however, due to the discontinuity in the 

piezoelectric material, care has been taken to modify the mass per unit length term m(x) and the 

bending stiffness term EI(x) [15]. 

2.2.1. Mode Shape Functions 

Using mode summations, the response of the system can be described as a series of eigenfunctions 

(mode shapes) as is commonly done using the separation of variables: 







1

)()(),(
r

rrrel txtxw   (14) 

Here, )(xr is the mass normalized eigenfunction for an undamped vibration, and )(tr is the  

modal mechanical coordinate expression for the r
th

 vibration mode. However, due to the discontinuity 

of the piezoelectric layer in the beam, the solution to the spatial ODE is segmented in piecewise 

sections [15]: 

For piezoelectric-substrate (Section 1): 
pLx 0  

)sinh()sin()cosh()cos()( 1,1,1,1,1,1,1,1,1, xDxCxBxAx rrrrrrrrr    (15) 

For substrate only (Section 2): 
effp LxL   

)sinh()sin()cosh()cos()( 2,2,2,2,2,2,2,2,2, xDxCxBxAx rrrrrrrrr    (16) 

Here constants ,1r and ,2r  are mode shape parameters for each of the two sections. The relation 

between ,1r  and ,2r  may be found as [15]: 

1/4

2 1
,2 ,1

1 2

( )

( )
r r

m EI

m EI
 

 
  

 
 (17) 

where m1 and m2 are the mass per unit lengths for each of the two sections. Also, (EI)1 and (EI)2 are the 

bending stiffness of the two sections. 

2.2.2. Boundary Conditions 

The boundary conditions and continuity equations that describe the system shown in Figure 9 are 

presented in this section. Equations (18) and (19) are the boundary conditions at the clamped end (x = 0): 

,1(0) 0r   (18) 

,1

0

( )
0

r

x

d x

dx





  (19) 

Equations (20) to (23) are the continuity conditions between the two segments of the beam: 

,1 ,2( ) ( )r p r pL L   (20) 

,1 ,2( ) ( )r p r pd L d L

dx dx

 
  (21) 
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2 2
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3 3
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Equations (24) and (25) are the boundary conditions at the free end of the beam (x = Leff): 
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Here, It and Mt are the mass moment of inertia and mass of the tip mass. The stated boundary and 

continuity conditions can be described in the matrix form as follows: 

. 0P Q  (26) 

where Q is a vector of the mode shape coefficients and P is the multiplier matrix: 

,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2[ , , , , , , , ]T

r r r r r r r rA B C D A B C DQ  (27) 

For a non-trivial solution, the determinant of P has to vanish. Using this method, the natural 

frequencies (short-circuit condition) of the system can then be found as: 
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2.2.3. Governing Equations of Motion 

The equations for the modal coordinates can then be determined using Equations (12) and (14) and 

applying the orthogonality condition as: 
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where the modal electromechanical coupling term is: 
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The modal mechanical forcing function for base acceleration is described as: 

2

2

2,

0 0

2,2

2

21,2

2

1

)(
)()(

)(
)(

)(
)(

dt

twd
LMdxx

dt

twd
mdxx

dt

twd
mtf b

effrt

L L

r
b

r
b

r

p p

     (31) 

and the modal mechanical damping ratio r  is found using experimental results through the half  

power method. 
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2.2.4. Electrical Circuit Equation 

The coupled electrical circuit equation for the bimorph connection in parallel can be derived using 

Kirchhoff’s law in which the piezoelectric layers are modelled as two current sources in parallel with 

internal capacitances as shown in Figure 10 [14]. The large internal resistance of the measurement unit 

results in an open circuit condition. 

Figure 10. Piezoelectric sensor circuit representation (parallel circuit connection). 

pC~pC~ )(~ tip
)(~ tip lR

)(tv

 

Using Kirchhoff’s law the following equation is formed. 
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Here, lR  is the load resistance (measurement unit), and 
eff

pC is the effective capacitance of both 

piezoelectric layers. This equation represents the coupled electrical circuit equation used to determine 

the voltage response of the sensor due to base excitations.  

2.2.5. Frequency Response Function and Forcing Functions 

Assuming harmonic functions, i.e., 
tj

rr eHt  )( and
tjVetv )( , the steady state modal mechanical 

response of the beam and steady state voltage response across the resistive load, Equations (29) and 

(32) become: 
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By substitution of Equations (33) and (34), one can obtain the open circuit natural frequency and 

steady-state voltage response as [14]: 
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The voltage output to base acceleration FRF can then be found as: 
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where 2

0r rF W   defines the base acceleration forcing function, r  defines the forcing function as: 

)()()( 2,2,2
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1,1 effrt
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rr LMdxxmdxxm
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p

p

    (37) 

and W0 is the base displacement amplitude. The FRF found using this method can then be validated 

through testing by mounting the sensor on a shaker that provides base acceleration in order to produce 

the voltage output in the piezoelectric layers. The analytical and experimental test results are compared 

and discussed later in Section 3 of this paper.  

The second part of this modelling focuses on obtaining the sensor sensitivity which is defined as the 

sensor output voltage per input current passing through a wire in the proximity of the sensor. As 

discussed previously, the input current results in an electromagnetic force on the tip magnet. This force 

can be obtained by integrating Equation (10) over the volume of the cylindrical magnet shown in 

Figure 9 as follows: 

/2 2 2 2
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

    FEMF
 (38) 

Here, h is the distance from the center of the wire to the closest point of the magnet, the length  

of the magnet L is measured along the magnetic axis and R is the radius of the magnet. This relation is 

then used to obtain the output voltage for the sensor when placed at the proximity of a current  

carrying wire.  

2.2.6. Design Considerations 

2.2.6.1. Voltage Loss 

If a voltage measurement unit with finite inner resistance is connected to the contacts of the 

piezoelectric sensor, a current Iloss will flow and, thus, the charge displacement on the piezoelectric 

electrodes will change. Figure 11 shows this equivalent circuit and the current loss schematic. 

Figure 11. Equivalent circuit and the current leakage. 
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This change in charge displacement will result in a voltage loss across the piezoelectric layers, 

which is not desirable for a sensing application. Using Ohm’s law and the constitutive equations for a 

piezoelectric bimorph, the following equation may be found for the relative voltage-loss in a quarter 

period of the oscillating voltage across the piezoelectric layers.  


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period

eff

p
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wL

t

v

v

4

33

0




 (39) 

Here, v0 is the amplitude of the output voltage, Tperiod is the period of the sinusoidal function, Ri is 

the inner resistance of the voltage measurement unit, which is assumed to be 100 times the impedance 

of the sensor (see Section 2.2.6.2), and
33

S is the dielectric permittivity at constant strain. A value of 

approximately 2.36% was obtained for this ratio for the sensor after parameter optimization, which is 

acceptable for the design criteria. In addition, gravity effects, temperature expansion or an offset of the 

input signal may all produce a static offset for the sensor measurements. However, this is not a concern 

for an AC current sensor since the offset will be in the form of a static signal and will decay after a 

short period of time. 

2.2.6.2. Sensor Impedance  

As shown by Staines et al. [16], and also demonstrated in Equations (39) and (40), the voltage loss 

through the sensor is inversely proportional to the capacitance of the sensor. Note that the sensor 

capacitance is also inversely proportional to its impedance. Hence, generally, the sensor must be 

designed in a way that its impedance is low (high capacitance) compared to the inner resistance of the 

measurement device in order to reduce the measurement noise level. A ratio of 100 was considered 

between the impedance of the sensor and the voltage measurement unit to be used during the sensor’s 

actual operation. On the other hand, the sensor must be designed to guarantee an operation mode close 

to an open circuit condition, which ultimately requires a large impedance. The sensor capacitance 

under unstrained condition is defined as: 

332 S

peff

p

p

wL
C

t


  (40) 

Here, S

33  is the dielectric permittivity of the piezoelectric material. The factor of two appears 

because the sensor is configured in parallel mode. The sensor impedance was found to be about 55 kΩ. 

2.2.6.3. Electromagnetic Loss  

The substrate material is a nonmagnetic material and is used in commercially available bimorph 

sensors and actuators. In addition, the induced eddy currents due to vibration of the substrate and the 

variable magnetic field are assumed negligible in this research. These eddy currents will result in 

additional damping and power loss by the substrate that can be approximated by [17]: 

2 2 2 2

6

p s

loss

s

B t f
P




  (41) 
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where Ploss is the total power dissipation, Bp is the peak flux density, f is the frequency at which 

magnetic flux density changes, and ρs is the resistivity of the substrate. Therefore, due to the relatively 

high resistivity of the brass substrate and its small thickness, the power loss due to the eddy current 

effects is ignored.  

2.2.6.4. Final Design Parameters  

The design specifications and constraints considered for this sensor are shown below in Table 1. 

Table 1. Design specifications and constraints considered for the sensor design. 

Specification Value/Range 

Sensor operating current range  10 A–200 A 

Sensor accuracy within  1% @ 10–100 A, 4% @ 100–200 A 

Operating temperature  −40 °C to 80 °C 

Output voltage for 10,000 A  ±1.75 V 

Sensor impedance  55 kΩ 

The internal impedance of the sensor was chosen to be small compared to the voltmeter circuit inner 

impedance in order to reduce the measurement noise level as explained previously. Based on the 

design constraints, the values shown in Table 2 were obtained and selected for the sensor dimensions 

and other parameters. A D66SH (K&J Magnetics) magnet and the PZT-5A piezoelectric material were 

selected as they were the most suitable for the wide range of design temperatures. In particular,  

PZT-5A has a high sensitivity and very good temperature stability over the operating range of 

temperatures and is commonly used for commercially available sensors and actuators [18].  

Table 2. Sensor Parameters. 

Property Value/Type 

Substrate material Brass 260 (McMaster Carr) 

Ls 26 mm 

ts 1.55 mm 

w 14.45 mm 

Leff 20.5 mm 

Piezoelectric material PZT-5A4E (Piezo Systems, Inc.) 

ξ 0.75 

Lp ξ · Leff (mm) 

tp 0.127 mm (each layer) 

Magnet  D66SH (K&J Magnetics) 

Rl 1 MΩ (Measurement Device Resistance) 

3. Testing  

The fabricated sensor, shown in Figure 12, consists of a brass alloy 260 substrate, a neodymium 

magnet (K&J Magnetics D66SH) and two laser-cut piezoelectric layers of PZT-5A (Piezo System 

T105-A4E-602). The sensor was assembled using two grades of epoxy. One was an aircraft grade 

epoxy (Loctite Hysol E-120HP), which was used to attach the magnet and the piezoelectric material to 
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the substrate. The other was an electrically conductive epoxy (MG Chemical 8331), which was used to 

create electrically conductive bonds between the piezoelectric material and the substrate, and between 

the piezoelectric material and the measurement wires. As shown in Figure 12, the sensor was mounted 

onto a current carrying wire (single conductor) and the voltage generated by the sensor was measured 

and recorded.  

Figure 12. Current sensor prototype testing. 

 

3.1. Sensor Sensitivity  

The facilities in an Ottawa Hydro test lab were used for the sensor sensitivity testing. A variable 

voltage supply was placed under a resistance load and the current was measured. Sensor peak voltage 

readings were obtained at various distances from a current carrying wire. The test results shown in 

Figure 13 demonstrate the linearity of the response for currents up to 150 A (RMS), which aids with 

the sensor calibration. Figure 14 shows the theoretical and measured sensor sensitivities for varying 

distances. As expected, the sensor sensitivity increased when the sensor was mounted closer to the 

wire. As shown in this figure, the theoretical and experimental results are in very good agreement.  

Figure 13. Experimental sensor output voltage for various currents. 
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Figure 14. Theoretical and experimental sensor sensitivity.  

 

3.2. Thermal Sensitivity 

One major requirement for using this sensor in various environments is to ensure that the sensor 

design is thermally robust. To examine the temperature dependence of the sensor sensitivity, the sensor 

was placed inside a CSZ MicroClimate Benchtop Test Chamber for sensitivity testing. A wire was run 

through the chamber and loaded with a 1500 W portable space heater. For comparison purposes, a 

Fluke i400s current clamp (15 cm × 7 cm × 3 cm) was used to measure the actual current in the wire. 

Figure 15. Experimental sensor sensitivity for various temperatures and sensor-wire distances. 
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trade-off between the distance between the sensor and the wire and the accuracy of the current sensor 

measurements. It is not ideal to locate the sensor at large distances from the wire due to low sensor 

sensitivity. On the other hand, small distances increase the dependence of the sensor readings on the 

ambient temperatures. The results show that a 30 mm distance between the sensor and the wire 

exhibits a fairly robust thermal behaviour for the sensor readings. 

3.3. Natural Frequency and FRF Testing 

As stated previously in this paper, in order to be able to effectively calibrate the sensor over a wide 

range of harmonics, the fundamental natural frequency of the sensor should be sufficiently larger than 

the highest frequency of interest. A natural frequency of about 800 Hz was chosen for this design. The 

natural frequency of the sensor was measured through modal testing using a Model Shop Model 2075E 

dual-purpose electromagnetic shaker as shown in Figure 16. To ensure no interference between the 

sensor tip magnet and the magnetic core of the shaker, an aluminum spacer was mounted on the shaker 

to provide base excitations to the sensor. Sine sweep testing with a constant acceleration (0.42 g) was 

performed to obtain the FRF of the sensor due to shaker excitations. An LMS SCADAS Mobile 

SCM05 data acquisition system was used for the FRF measurements. The natural frequency obtained 

using this test was 781 Hz.  

Figure 16. Sensor modal testing setup. (a) Overview of setup; (b) Close-up of sensor 

mounted on the electromechanical shaker. 

 

The theoretical fundamental natural frequency of the system can be determined for both short and 

open circuit conditions using the model presented in the previous section of the paper. Based on the 

theoretical model, fundamental natural frequency values of 794.85 Hz and 815 Hz were predicted for 

the short circuit condition (Rl = 0) and the open circuit condition (Rl = 1 MΩ) respectively. This 

constitutes an overestimation error of less than 5% between the model and experimental open circuit 

fundamental natural frequencies. Additionally, the eddy current effects in the substrate, PZT layers, 

and the magnet are assumed to be negligible and are not accounted for in this model. 
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Figure 17. Theoretical and experimental FRF (open circuit condition). 

 

3.4. Current Harmonic Testing 

The PZT sensor and the Fluke i400s current clamp were used to measure the current running 

through a wire loaded by a 1500 W space heater. The piezoelectric sensor voltage output was 

calibrated using a constant ratio for the range of frequencies to find the current measurements for this 

sensor based on the current clamp readings. The results are shown and compared in Figure 18. It was 

observed from the tests that the voltage from the PZT sensor was proportional to the current in the wire 

for the range of frequencies of interest for any given distance between the sensor and the wire. As 

presented in this figure, the results show very good agreement between the current clamp and the 

piezoelectric based sensor for the designed range of frequencies, i.e., the first five harmonics (0–300 

Hz). Additionally demonstrated in this figure is the diminished accuracy of the PZT sensor 

measurements for frequencies in the vicinity of the fundamental natural frequency of the sensor. As 

explained previously, in order to obtain a constant output voltage to current ratio for a range of 

frequencies, the highest frequency of interest should be far below the fundamental frequency. For this 

design, a value of 2.5 was found for the ratio between the fundamental frequency and the highest 

frequency of interest to provide accurate readings for the first 5 current harmonics.  

Figure 18. Experimental current measurements of the sensor prototype and a Fluke i400s. 
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4. Conclusions  

A miniature piezoelectric material based sensor was designed to measure current in single 

conductors used in power transmission lines. The model predictions for the natural frequency and the 

sensor sensitivity are in strong agreement with the experimental test results. Testing was also 

performed in a thermal chamber to assess thermal robustness of the fabricated sensor and to evaluate 

its thermal sensitivity. The sensor shows excellent accuracy compared to a conventional current 

measurement device while being about 100 times smaller in volume.  
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