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Abstract: This paper presents the modeling and design of an actuator consisting of an electrical
motor and a magnetic gear. To minimize the overall actuator dimensions, both of the electromagnetic
devices need to be optimally designed and matched. An issue in performing a simultaneous design
as such arises from a high number of design variables that significantly increases the complexity
of the optimization problem. A method to reduce the design variables is discussed in this paper,
which is the application of response surface methodology (RSM) to represent the optimized torques
of the electrical motor and magnetic gear as polynomial functions of their respective dimensions.
Prior to the application of RSM, optimization problem statements are defined for the electrical motor
and magnetic gear, for which the optimization objective and constraint functions are derived from
analytical electromagnetic models of the considered electromagnetic devices.

Keywords: electrical motor; magnetic gear; analytical modeling; response surface methodology;
optimization

1. Introduction

A common type of actuator used in robotic applications is a mechanically-geared electrical motor,
which has a high torque within a relatively small volume. For specific applications such as soft
robotics [1], however, it is not desirable to use mechanical gears due to the presence of static friction
that degrades the force/torque control performance [2]—not to mention that mechanical gears are
vulnerable in the event of torque overload.

A promising solution to address the previous shortcomings of mechanical gears is to replace
them with magnetic gears [3], whose topology is depicted in Figure 1. In a magnetic gear, the torque
between the rotating members (high-speed and low-speed rotors) are transmitted without mechanical
contact, resulting in a major reduction of the static friction. Furthermore, the rotating members would
slip when the load torque exceeds a certain level, giving an inherent overload protection.

There are two possibilities to integrate an electrical motor and a magnetic gear. The first one is a
conventional shaft-coupled motor and gear as shown in Figure 2a. The second one is the so-called
“pseudo” direct-drive motor [4] illustrated in Figure 2b, which integrates all the electromagnetic
components belonging to an electrical motor and a magnetic gear. In this paper, the shaft-coupled
motor and gear is the chosen one to be investigated as it has a smaller outer diameter, which is
a desirable aspect in the considered application.

In robotic/mechatronic applications, the optimal selection of motor and (mechanical) gear
transmission ratio is necessary for the overall system performance [5]. For this particular optimization
problem, generally, a number of off-the-shelf candidate motors and gears are considered, from
which a motor-gear pair is selected based on criteria such as dimension, mass and efficiency [5–7].
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However, when stringent design requirements are considered, it would be preferable to design and
optimize both motor and gear specifically for the intended application, as it would provide flexibility
in selecting design parameters such as outer dimensions.

This paper presents a rapid method to simultaneously optimize an electrical motor and a magnetic
gear for an application. For this purpose, high-accuracy analytical electromagnetic models of an
electrical motor and a magnetic gear are developed based on the harmonic modeling method [8,9].
The models are used to derive the objective and constraint functions from optimization problem
statements for the considered electromagnetic devices. Since the optimization of the motor and
magnetic gear are treated simultaneously, there is a high number of design variables that are involved,
resulting in a slow and computationally-intensive numerical optimization task. For that reason,
a solution is proposed in this paper to reduce the number of design variables by representing
the optimized torques of the motor and magnetic gear as polynomial functions of their respective
dimensions, i.e., outer diameter and axial length. The polynomial functions are approximated by the
application of response surface methodology (RSM) [10] on the optimization routines that are defined
for the motor and magnetic gear. Based on these polynomial models and the reduced design variables,
the simultaneous design optimization of the motor and magnetic gear can be performed rapidly.
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Figure 1. Topology of the investigated magnetic gear.
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Figure 2. Integration possibilities of electrical motor and magnetic gear: (a) shaft-coupled motor and
gear; (b) “pseudo” direct-drive motor.

2. Electromagnetic Modeling

2.1. Harmonic Modeling Method

The goal of applying the harmonic modeling method [9] is to obtain an accurate estimation of
the static magnetic field behavior within different material regions of an electromagnetic device, from
which quantities such as magnetic flux density and torque, can be calculated. Note that the following
assumptions are adhered in the modeling of the rotary electromagnetic devices discussed in this paper:
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1. The electromagnetic problem can be described in a 2D polar coordinate system (r, ϕ)
2. For a given region, the material has linear and homogenous magnetic properties in the r-direction.
3. The ferromagnetic material is infinitely permeable. Consequently, no analytical expression of the

magnetic flux density can be obtained within the ferromagnetic material.

As with the modeling of any electromagnetic devices, Maxwell’s equations govern the field
behavior. From magnetostatic Maxwell equations, the following Poisson equation [8] is obtained

∇2 ~A = −µ0(∇× ~M0)− µ~J (1)

where ~A = Az is the magnetic vector potential, µ0 is the vacuum magnetic permeability, µ is the
material permeability, ~M0 = [Mr, Mϕ] is the residual magnetization vector and~J = Jz is the current
density vector. Considering a 2D polar coordinate system, the Poisson Equation (1) can be expressed as

1
r

∂

∂r
r

∂Az

∂r
+

1
r2

∂2 Az

∂ϕ2 = −µ0
1
r

(
∂(rMϕ)

∂r
− ∂Mr

∂ϕ

)
− µJz (2)

Within the investigated rotary electromagnetic devices, (circular) spatial periodicities are exhibited
by the source terms in Equation (2), allowing them to be expressed by Fourier series

Mr = Mr0 +
N

∑
n=1

(
Mrs sin(

nπ

τk
ϕk) + Mrc cos(

nπ

τk
ϕk)

)
(3)

Mϕ = Mϕ0 +
N

∑
n=1

(
Mϕs sin(

nπ

τk
ϕk) + Mϕc cos(

nπ

τk
ϕk)

)
(4)

Jz = Jz0 +
N

∑
n=1

(
Jzs sin(

nπ

τk
ϕk) + Jzc cos(

nπ

τk
ϕk)

)
(5)

where N is the number of harmonics to be modeled, Mr0, Mϕ0 and Jz0 are DC components of the
corresponding source terms (Mr, Mϕ, Jz); Mrs, Mrc, Mϕs, Mϕc, Jzs and Jzc are Fourier coefficients of
the source terms, τk is half of the tangential width (ϕ-direction) of a material region k (within the
electromagnetic device) and ϕk is the tangential position within the region k. Due to Equations (3)–(5),
the solution of the Poisson Equation (2), Az, appears as a Fourier series. Given that ~B = ∇× ~A (Gauss’
law of magnetic field), the magnetic flux density in the r and ϕ-directions for a given material region
can also be expressed as Fourier series

Br =
N

∑
n=1

(
Brs sin(

nπ

τk
ϕk) + Brc cos(

nπ

τk
ϕk)

)
(6)

Bϕ =
N

∑
n=1

(
Bϕs sin(

nπ

τk
ϕk) + Bϕc cos(

nπ

τk
ϕk)

)
+ Bϕ0 (7)

where Brs, Brc, Bϕs, Bϕc and Bϕ0 are obtained from the solution of the Poisson Equation (2), given by:

Brs = anr
nπ
τk
−1

+ bnr−
nπ
τk
−1

+ Grs (8)

Brc = −cnr
nπ
τk
−1 − dnr−

nπ
τk
−1

+ Grc (9)

Bϕs = cnr
nπ
τk
−1 − dnr−

nπ
τk
−1

+ Gϕs (10)

Bϕc = anr
nπ
τk
−1 − bnr−

nπ
τk
−1

+ Gϕc (11)

Bϕ0 =
1
2

µJz0r + µ0Mϕ0 −
A0

r
(12)
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where an, bn, cn, dn and A0 in Equations (8)–(12) are obtained by considering the boundary conditions
between the different material regions of the modeled electromagnetic device. The solutions for Grs,
Grc, Gϕs and Gϕc are available in [8].

2.2. Harmonic Modeling of an Electrical Motor

The selected motor topology in this paper is the fractional-slot concentrated-windings PM
motor [11] shown in Figure 3, which has favorable characteristics such as high torque density and low
cogging [12]. For modeling purpose, the motor structure is represented by Figure 4. The structure is
characterized by the material regions (I, II, etc.) described in Table 1 and parameters r0, ...r7. Note that
the slot winding regions IV1,...,IVQ are simplified from its actual shape in Figure 3, as illustrated in
Figure 5, in which wt denotes the tooth width. The equivalent current density of the winding Jeq in
Figure 5 is calculated as

Jeq =
Sactual
Ssimple

J1 + J2

2
(13)

where Sactual and Ssimple are the cross-section areas of the actual and simplified slot winding,
respectively, wt shown in Figure 5 is the tooth width, and J1 and J2 denote any adjacent current
densities within a slot.

PM array
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C+ B+

B-

A+

A-

C- C+

B+

B- A+

A-

C+
C-B-

B+

A-

A+

Figure 3. Fractional-slot concentrated-windings PM motor.
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Figure 4. Representation of the electrical motor structure for modeling purpose.
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Table 1. Modeled regions in the motor, based on Figure 4.

Region Description Parameters

I PM array

- Number of PM pole pairs, p
- Pole-arc to pole-pitch ratio, τm = α1

α2

- Remanence, Br
- Relative permeability, µr

II Airgap N/A

III1, ..., Q Slot air - Number of slots, Q
- Slot opening, αs

IV1, ..., Q Slot winding
- Number of slots, Q
- Slot opening, αs
- Current density, J

Sactual Ssimple

J1 J2 Jeq

αs αs

wt

Figure 5. Slot winding region simplification.

To obtain the expression for the magnetic flux density distribution throughout the investigated
motor, Equations (6) and (7) are defined for each of the regions (Table 1) and the corresponding
unknown coefficients in Equations (8)–(12) are solved through a set of linear equations arising from
the following boundary conditions:

• Neumann boundary condition

This specifies the tangential magnetic field strength to be Hϕ = 0 [8] at the boundary between
two regions of which one has µ = ∞, giving

1. Between region I and rotor ferromagnetic core (r = r1)

Bϕ,I − µ0Mϕ,I = 0 (14)

2. Between region IVq and stator ferromagnetic core (r = r5), for q = 1, ..., Q

Bϕ,IVq = 0 (15)

• Continuous boundary condition

By applying Maxwell equations at the interface between different regions [13], the boundary
conditions Br,k = Br,k+1 and Hϕ,k = Hϕ,k+1 are obtained, where k and k + 1 indicate adjacent
regions having a finite permeability (µ 6= ∞). Considering regions with the same tangential width,
the following continuous boundary conditions are identified:

1. Between regions I and II (r = r2)
Br,I = Br,I I (16)

Bϕ,I − µ0Mϕ,I = µr,inBϕ,I I (17)

2. Between regions IIIq and IVq and stator ferromagnetic core (r = r4), for q = 1, ..., Q

Br,I I Iq = Br,IVq (18)
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Bϕ,I I Iq = Bϕ,IVq (19)

• Combination of Neumann and continuous boundary conditions

Each slot air region III1, ..., Q has different tangential widths with respect to the radially adjacent
airgap region II. This gives rise to a combination of both Neumann and continuous boundary
conditions which hold at certain intervals between regions II and IIIq, for q = 1, . . . , Q:

Br,I I Iq = Br,I I , for 0 ≤ ϕjq ≤ αs (20)

Hϕ,I I =
Q

∑
q=1

HϕI I Iq
, for 0 ≤ ϕjq ≤ αs,

= 0, elsewhere

(21)

The slots introduce tangential Neumann boundary conditions on region IIIq, resulting in Hr = 0
at the tangential boundaries ϕjq = 0 and ϕjq = αs. Consequently, the cosine component of Br

in in region IIIq vanishes, resulting in Brc = 0 and Bϕs = 0. Therefore, the boundary condition
Equation (20) can be expressed as

M

∑
m=1

Brs,I I Iq sin
(

mπ

(αs/2)
ϕjq

)
=

N

∑
n=1

Brs,I I sin
(

nπ

τk
ϕk

)
(22)

where M denotes the number of modeled harmonics in region I I Iq. To simplify Equation (22),
a correlation technique is applied [8], resulting in

Brs,I I Iq =
N

∑
n=1

(Brs,I Iεs + Brc,I Iεc) (23)

The boundary condition Equation (21) can be expressed as

N

∑
n=1

[(
BϕsI I − µ0MϕsI I

)
sin
(

nπ

τk
ϕI I

)
+
(

BϕcI I − µ0MϕcI I

)
cos

(
nπ

τk
ϕI I

)]
=

Q

∑
q=1

[
M

∑
m=1

[(
Bϕc,I I Iq − µ0Mϕc,I I Iq

)
cos

(
mπ

(αs/2)
ϕjq

)
+ Bϕ0,I I Iq

]] (24)

which can be simplified through the correlation technique as follows:

BϕsI I − µ0MϕsI I =
Q

∑
q=1

[
M

∑
m=1

[(
Bϕc,I I Iq − µ0Mϕc,I I Iq

)
κc + Bϕ0,I I Iq κ0

]]
(25)

BϕcI I − µ0MϕcI I =
Q

∑
q=1

[
M

∑
m=1

[(
Bϕc,I I Iq − µ0Mϕc,I I Iq

)
ζc + Bϕ0,I I Iq ζ0

]]
(26)

where εs, εc, κc, κ0, ζc and ζ0 are the correlation terms (see [8] for the solutions).

2.2.1. Model Verification

The analytical model is verified by comparing the calculated spatial magnetic flux density
distribution with that obtained from a 2D nonlinear FEM (Finite Element Method) model. Table 2
presents the motor parameters used for the model verification. As evident from Figure 6, there is an
excellent agreement between the calculated airgap (region II) magnetic flux density from the analytical
and FEM models. Furthermore, the simulation duration of the analytical model is significantly shorter
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than that of linear and nonlinear FEM models by factor 20 and 120, respectively, as apparent from
Table 3.

Table 2. Motor parameters for the model verification.

Parameter Value

No. of PM pole pairs, p 7
No. of slots, Q 12
Inner shaft radius, r0 2.7 mm
Inner ferromagnetic core outer radius, r1 3.7 mm
Inner PM outer radius, r2 5.7 mm
Inner airgap outer radius, r3 6 mm
Slot air outer radius, r4 6.5 mm
Slot winding outer radius, r5 10.5 mm
Outer stator radius, r6 12.5 mm
Axial length, L 18 mm
Slot opening, αs 5◦

Tooth width, wt 2 mm
PM pole-arc to pole-pitch ratio, τm 1
PM remanence, Br 1.39
PM relative permeability, µr 1.05
Ferromagnetic core material (for FEM) M330-35A
Current density, J 5 A/mm2
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Figure 6. Airgap radial magnetic flux density (region II) of the motor.

Table 3. Simulation duration of the analytical and FEM (Finite Element Method) models, as executed
in a PC with Intel Core i5-2500 (3.3 GHz) processor, 16 GB RAM and 64-bit Windows 7 OS.

Duration

Analytical (Linear) FEM (Linear) FEM (Nonlinear)

0.05 s 1 s 6 s

2.3. Harmonic Modeling of a Magnetic Gear

The considered magnetic gear topology in this paper is depicted in Figure 1, which for modeling
purpose is represented by the structure in Figure 7. The modeled material regions (I, II, etc.) of the
magnetic gear are described in Table 4.
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Figure 7. Representation of the magnetic gear structure for modeling purpose.

Table 4. Modeled regions in the magnetic gear.

Region Description Parameters

I Inner PM array

- Number of inner PM pole pairs, pin
- Pole-arc to pole-pitch ratio, τm,in = α1

α2

- Remanence, Br
- Relative permeability, µr

II Inner airgap N/A

III1, ..., Q Air between pole-pieces
- Number of pole-pieces, Q
- Tangential width, αpp
- Pole-piece arc-to-pitch ratio, τQ = 1− αpp

2π/Q
IV Outer airgap N/A

V Outer PM array

- Number of outer PM pole pairs, pout
- Pole-arc to pole-pitch ratio, τm,out =

α3
α4

- Remanence, Br
- Relative permeability, µr

As in the case of the electrical motor modeling, the magnetic flux density in the magnetic gear is
obtained by considering the following boundary conditions:

• Neumann boundary condition at r = r1 and r = r6

• Continuous boundary condition at r = r2 and r = r5

• Combination of Neumann and continuous boundary conditions at r = r3 (between regions II and
III1, ..., Q) and r = r4 (between regions IV and III1, ..., Q)

• Conservation of the magnetic flux around the pole pieces

This boundary condition concerns Gauss’ law for magnetic field given by∮
S
~Bds = 0 (27)

By applying the the above to the pole-piece depicted in Figure 8, the following is obtained∫ ϕq+1

ϕq
Br,IV

∣∣∣
r=r4
−
∫ ϕq+1

ϕq
Br,I I

∣∣∣
r=r3

+∫ r4

r3

Bϕ,I I Iq+1

∣∣∣
ϕ=ϕq+1

−
∫ r4

r3

Bϕ,I I Iq

∣∣∣
ϕ=ϕq

= 0
(28)
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for which q = 1, . . . , Q− 1, with Q− 1 being the number of independent equations. An extra
equation is required to solve all the unknowns, obtained from the application of Ampere’s law at
the pole-pieces radial boundary highlighted in Figure 8, as follows:

lim
hc→0

∮
C
~Hdl =

∫
S
~Jds (29)

for which J is zero, resulting in

Q

∑
q=1

αppHϕ,I I Iq = 2πHϕ,IV (30)

where hc is the infinitesimal height of the boundary between region IV and IIIq. Since Bϕ0,IV = 0,
the following is obtained:

Q

∑
q=1

αpp

µ0
Bϕ0,I I Iq = 0 (31)

IIIq

IIIq+1

µ
µ

IV

II

r4 r3
ϕq

ϕq+1

∆q

∆q+1

r

r

ϕ j1

ϕ j2

r

ϕk

hc

Figure 8. Geometric parameters of the pole-pieces.

2.3.1. Model Verification

Table 5 presents the magnetic gear parameters used for the model verification. As evident
from Figure 9, there is an excellent agreement between the calculated airgap magnetic flux density
distributions from the analytical and FEM models.
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Figure 9. Airgap radial magnetic flux density (region II) of the magnetic gear.
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Table 5. Magnetic gear parameters for the model verification.

Parameter Value

No. of inner PM pole pairs, pin 2
No. of outer PM pole pairs, pout 5
No. of pole-pieces, Q = pin + pout 7
Transmission ratio, Nmg = Q

Pin
3.5

Inner shaft radius, r0 2.5 mm
Inner ferromagnetic core outer radius, r1 4.5 mm
Inner PM outer radius, r2 5.5 mm
Inner airgap outer radius, r3 6 mm
Pole-piece outer radius, r4 8.5 mm
Outer airgap outer radius, r5 9 mm
Outer PM outer radius, r6 10 mm
Stator outer radius, r7 12.5 mm
Inner PM pole-arc to pole-pitch ratio, τm,in 1
Outer PM pole-arc to pole-pitch ratio, τm,out 0.9
Pole-piece arc to pitch ratio, τQ 0.5
PM remanence, Br 1.39
PM relative permeability, µr 1.05
Ferromagnetic core material (for FEM) Steel 1010

3. Definition of Optimization Problem Statements

To optimize the shaft-coupled motor and magnetic gear, optimization problem statements are
defined separately for the two considered electromagnetic devices. A general optimization problem
statement [14] is given as follows:

Minimize the objective function
f (~X) (32)

subject to inequality constraints
ga(~X) ≤ 0 for a = 1, ..., x (33)

equality constraints
hb(~X) = 0 for b = 1, ..., y (34)

and bound constraints
Xl

c ≤ Xc ≤ Xu
c for c = 1, ..., z (35)

where ~X = [X1 X2 ... Xo] is the design variable vector, Xl
c and Xu

c are the lower and upper bounds of
a design variable, respectively. Based on the design requirements, the functions Equations (32)–(34)
are derived from the model of the investigated electromagnetic device. In this paper, the chosen
optimization algorithm is the interior-point method [15] that can deal with nonlinear constraints and
known for its speed and robustness [16].

3.1. Optimization Problem Statement for the Electrical Motor

• Objective function

The considered application requires that the motor and magnetic gear are compact and lightweight.
An objective function that handles these requirements is the inverse of the mass torque density

fmot(~Xmot) =
mmot

T̂mot
(36)

where mmot is the motor mass and T̂mot is the motor peak torque, defined as the highest level of
torque that can be sustained for a period of time while the winding temperature rise does not
exceed its limit. A thermal model is therefore developed, which is used to estimate the motor
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winding temperature and to derive the respective inequality constraint function (further described
in the next part of this paper subsection).

The motor torque Tmot can be calculated using Maxwell stress tensor as follows:

Tmot =
Lr2

in
µ0

∫ 2π

0
Br,I I Bϕ,I Idϕ (37)

where L is the axial length, rin = r2+r3
2 is the radius of the middle of airgap region II in Figure 4,

Br,I I and Bϕ,I I are the radial and tangential magnetic flux densities in region II.

• Inequality constraint functions

– Winding temperature

Based on Equation (36), the following constraint on the peak torque is defined

g1,mot = Θw,10s ≤ 100 ◦C at P̂w (38)

where Θw,10s is the winding temperature that can be sustained for 10 s (given that its initial
temperature at time = 0 s is the same as the ambient temperature), while the peak winding
copper loss P̂w is maintained. Note that core (iron) losses also contribute to the temperature
increase, although this is neglected in the considered application since the motor maximum
speed is 3000 rpm, which is relatively low for the investigated topology and this occurs
only in a transient task. Ultimately, constraint function Equation (38) imposes a limit on
the winding current density when the motor peak torque is applied. A simple transient
thermal equivalent circuit (TEC) in Figure 10 is developed to estimate the temperatures in
the winding (Θw) and stator (Θs) as functions of time, which are obtained by solving[ 1

Rtw+Ry,1
− 1

Rtw+Ry,1

− 1
Rtw+Ry,1

1
Rtw+Ry,1

+ 1
Ry,2+Rconv

] [
Θw

Θs

]
+

d
dt

[
Cw 0
0 Cs

] [
Θw

Θs

]
=

[
Pw

Θamb
Ry,2+Rh

]
(39)

where Rtw, Ry,1, Ry,2 are the radial conductive thermal resistances of the winding, stator
yoke (inner and outer part), respectively, and Rh is the convective thermal resistance (natural
cooling is assumed). Cw and Cs are the thermal capacitances of the winding and stator,
respectively. The calculation of thermal resistances and capacitances are based on the method
described in [17]. The winding copper loss Pw is calculated as

Pw =
Q(J/

√
2)2ρculcoilScoil

k f
(40)

where J is the current density, lcoil is the single-turn length of a winding coil loop, Scoil is the
coil cross-section area and k f is the slot fill-factor. Figure 11 illustrated the temperatures of
the motor winding and stator dynamically respond to the changes in copper loss, at ambient
temperature of 20 ◦C. A good agreement between TEC and FEM is apparent.

Pw

Rtw R1r,y R2r,y Rh

Θamb

ΘsΘw

Cw Cs

Figure 10. Simplified thermal equivalent circuit (TEC) of the motor.
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Figure 11. Motor winding and stator temperature dynamic responses for changing values of copper
loss, at ambient temperature of 20 ◦C.

– Magnetic flux density in the ferromagnetic cores

The used ferromagnetic core material has a typical saturation point at B = 1.5 T in its B− H
characteristic. Thus, to maintain a linear current-torque relation in the motor, the following
constraint functions are defined

g2,mot(~Xmot) = Bt ≤ 1.5 T (41)

g3,mot(~Xmot) = Bs ≤ 1.5 T (42)

where Bt and Bs are the magnetic flux density in the stator tooth and stator yoke, respectively,
given by

Bti =
φti
Lwt

(43)

Bsj =
φsi

L(r6 − r5)
(44)

where wt is the tooth width, φti and φsj are the flux that goes through the i-th tooth and j-th
yoke part (see Figure 12), respectively, estimated as

φti = Lr3

∫ ϕi,2

ϕi,1

BI I,rdϕ (45)

φsj = −
1
Q

Q−1

∑
j=1

φtmod(j+i−1,Q) (46)

where mod(j + i− 1, Q) in (46) is a modulo operation, giving the remainder after division
between j + i− 1 and Q, while the integration limits ϕi,1 and ϕi,2 are depicted in Figure 12.

– Torque ripple

A smooth torque characteristic is required in the considered application. For that reason, the
ripple in the motor torque shown Figure 13 is constrained by the following function

g4,mot(~Xmot) =
max(T̂mot)−min(T̂mot)

T̂mot,avg
≤ 1 % (47)



Actuators 2016, 5, 10 13 of 22

where T̂mot is the motor peak torque and T̂mot,avg is the average value of motor peak torque.

φt1 φt2 φt3

φs1 φs2

ϕ2,1 ϕ2,2

φs3φs3

r6r5r4r3
r

ϕ wt

Figure 12. Flux in the stator tooth and yoke.

θmot [◦]

T m
ot

[N
m

]

0 5 10 15 20
0.032

0.0325

0.033

0.0335

Figure 13. Torque ripple as a function of motor rotor mechanical position θmot.

• Equality constraint functions

A series of optimization tasks will be performed on the motor. For a given optimization task, fixed
values of motor outer dimensions are assigned. Therefore, the following equality constraint on
outer diameter Dmot is introduced

h1,mot(~Xmot) = Dmot (48)

Meanwhile, the motor axial length Lmot is assigned as a design parameter.

• Design variables and bound constraints

The design variable vector ~Xmot consists of motor geometric parameters (see Figure 4) and
current density

~Xmot = [r0, (r1 − r0), (r2 − r1), (r3 − r2), (r4 − r3), (r5 − r4), (r6 − r5), αs, τm, wt, J] (49)

for which each variable adheres to the following lower and upper bound vectors (~Xl
mot and

~Xu
mot, respectively),

~Xl
mot =

[
1 mm, 1 mm, 1 mm, 0.2 mm, 0.2 mm, 1 mm, 1 mm, 3◦, 0.5, 1 mm,

J
10

]
(50)

~Xu
mot =

[ r6

2
,

r6

2
,

r6

2
,

r6

2
,

r6

2
,

r6

2
, 15◦,

r6

2
, 1, 1 mm, 10J

]
(51)
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3.2. Optimization Problem Statement for the Magnetic Gear

• Objective function

Similar to the electrical motor optimization, the defined objective function of the magnetic gear is
the inverse of mass torque density

fmg(~Xmg) =
mmg

T̂mg,out
(52)

where mmg is the magnetic gear mass and T̂mg,out is the peak value of the outer rotor torque, which
has a sinusoidal torque-position characteristic. This is shown in Figure 14 together with the torque
characteristics of the inner rotor and stator. The outer rotor torque Tmg,out is calculated as follows:

Tmg,out = Tmg,stat − Tmg,in

=
L
(

r4+r5
2

)2

µ0

∫ 2π

0
Br,IV Bϕ,IVdϕ−

L
(

r2+r3
2

)2

µ0

∫ 2π

0
Br,I I Bϕ,I Idϕ

(53)

where Tmg,stat and Tmg,in are the magnetic gear stator and inner rotor torque, respectively.

• Inequality constraint functions

– Magnetic flux density in the ferromagnetic cores

Constraints on the magnetic flux density in the pole-pieces and stator core of the magnetic
gear are introduced to avoid saturation in the ferromagnetic cores, which leads to the
inaccuracy of the analytical model with respect to the FEM model that accounts for nonlinear
B− H curve of the ferromagnetic steel 1010. The constraint values are selected such that
the resulting torque is maximized while the analytical model accuracy is not significantly
sacrificed. Figure 15 shows the variations of torque and discrepancy between analytical
and FEM models for different values of the constraints Bsat,PP and Bsat,SC, belonging to the
pole-pieces and stator core, respectively. The constraints Bsat,PP = 3 T and Bsat,PP = 3 T as
calculated by the analytical model are selected based on the previous consideration on torque
and model accuracy; thus, the following constraint functions are defined:

g1,mg(~Xmg) = BSC ≤ 3 T (54)

g2,mg(~Xmg) = BPP ≤ 3 T (55)

where BSC is the magnetic flux density in the stator core, estimated through

BSC =
φSC

L(r7 − r6)
=

Lr6
∫ αSC

0 Br,Vdϕ

L(r7 − r6)
(56)

where φSC is flux that enters the stator core over a range, from ϕ = 0◦ to ϕ = αSC as
illustrated in Figure 16, for which the angle αSC is determined from the zero crossing of the
vector potential spatial distribution Az,V in region V. Meanwhile, BPP is the magnetic flux
density in the pole-piece

BPP =
√

B2
r,PP + B2

ϕ,PP =

√(
1

rPP

∂Az,PP

∂ϕ

)2
+

(
−∂Az,PP

∂r

)2
(57)
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where Az,PP is the vector potential distribution throughout regions III1,...,IIIQ and the pole
pieces, obtained through the the following linear interpolation

Az,PP = Az,I I
r4 − rPP
r4 − r3

+ Az,IV
rPP − r3

r4 − r3
(58)

where Az,I I and Az,IV are the inner and outer airgap vector potential distributions,
respectively, while rPP = r3+r4

2 (see Figure 7 for r3 and r4). As can be seen from Figure 17,
there is a good agreement between the analytical and FEM estimated values of BSC and BPP.
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Figure 14. Torque exerted on the the magnetic gear rotors and stator as a function of inner rotor position
θmg,in, while the outer rotor position is fixed.
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Figure 15. Optimized magnetic gear outer rotor peak torque T̂mg,out and its estimation error, as
functions of magnetic flux density saturation constraints in the pole-pieces and stator core, Bsat,PP and
Bsat,SC, respectively.
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Figure 17. Estimated magnetic flux densities in the stator core BSC and pole-pieces BPP as a function of
inner rotor position θmg,in.

• Equality constraint functions

Following Equation (48), the following constraint on the magnetic gear outer diameter Dmg

is introduced
h1,mg(~Xmg) = Dmg (59)

Additionally, the magnetic gear axial length Dmg is fixed as a design parameter.
• Design variables and bound constraints

The design variable vector ~Xmg consists of the magnetic gear geometric parameters (see Figure 7)

~Xmg = [r0, (r1 − r0), (r2 − r1), (r3 − r2), (r4 − r3), (r5 − r4), (r6 − r5), (r7 − r6), τQ, τm,out] (60)

Each of the design variables has lower and upper bounds defined in the vectors ~Xl
mg and ~Xu

mg,
respectively, as follows:

~Xl
mg = [1 mm, 1 mm, 1 mm, 0.2 mm, 1 mm, 0.2 mm, 1 mm, 1 mm, 0.3, 0.3] (61)

~Xu
mg =

[ r7

2
,

r7

2
,

r7

2
, 1 mm,

r7

2
, 1 mm,

r7

2
,

r7

2
, 0.7, 1

]
(62)

4. Optimization of the Shaft-Coupled Electrical Motor and Magnetic Gear

4.1. Modeling

The torque Tmmg and speed ωmmg of the shaft-coupled electrical motor and magnetic gear are
expressed in terms of motor torque Tmot Equation (37), speed ωmot and magnetic gear transmission
ratio Nmg as follows:

Tmmg = NmgTmot (63)

ωmmg =
ωmot

Nmg
(64)

where
Nmg =

pin + pout

pin
(65)

where pin and pout are the numbers of inner and outer PM pole pairs of the magnetic gear, respectively.
Meanwhile the combined length of the integrated actuator, Lmmg, is given by

Lmmg = Lmot + Lmg + Dmmg (66)
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where Lmot and Lmg are the axial lengths of the motor and magnetic gear, respectively, and Dmmg is
the diameter of the integrated actuator, which is a factor to account for the extended length due to the
shaft coupling and housing.

4.2. Design Requirements

The shaft-coupled electrical motor and magnetic gear will be used as an actuator in a robotic
application that has to be compact and lightweight. These qualitative requirements are taken care
by optimization objective functions Equations (36) and (52). An important design aspect to note
related to the magnetic gear is the choices of inner PM pole pairs pin and transmission ratio Nmg,
which significantly influence the optimized volume torque density as can be seen in Figure 18. As the
numbers of PM pole pairs pin and pout (see Equation (65)) increase, the ferromagnetic cores become
less prone to saturation and therefore they can be made thinner to improve the torque within a given
magnetic gear volume. However, this improvement has its limitation since increasing the number of
magnets implies smaller magnets that deliver less flux, and therefore the volume torque density is
reduced again for higher Nmg and pin. Based on this and the characteristics in Figure 18, the values
pin = 3 and 3.33 ≤ Nmg ≤ 9.67 are chosen for the design.

As for the quantitative requirements, the actuator has to deliver a peak torque of 1 Nm and
has a maximum speed of 300 rpm. Note that from Equation (64), the required maximum speed can
be achieved regardless of the magnetic gear transmission ratio, since the motor maximum speed is
3000 rpm (see Section 3.1). Additionally, there are following requirements related to dimensions

• The diameter of motor is equal to that of magnetic gear.
• The maximum axial length of the actuator is twice its diameter.
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Figure 18. Optimized volume torque density characteristic of the magnetic gear as a function of its
transmission ratio.

4.3. Response Surface Methodology

To reduce the computational burden associated with the simultaneous electrical motor and
magnetic gear optimization, a major reduction of design variables, from 21 Equations ((49) and (60))
to five variables, is performed by expressing the electrical motor and magnetic gear peak torques
as functions of their respective outer dimensions and transmission ratio, i.e., T̂mot(Dmot, Lmot) and
T̂mg,out(Dmg, Lmg, Nmg). The functions are approximated through the application of response surface
methodology from a series of motor and magnetic gear optimization tasks.

Response surface methodology (RSM) is a technique to approximate a functional relationship
between a response y and a number of input variables x1, x2, ..., xk [10] of a given system. The
approximated function is in the form of a first-order or the following second-order polynomial model:

y = β0 +
k

∑
i=1

βixi + ∑
i<j

∑
j

βijxixj +
k

∑
i=1

βiix2
i + ε (67)
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where β0, βi, βij, βii are regressions coefficients and ε is a random error. Equation (67) can be
expressed as

y = Xβ + ε (68)

where X is a n× p matrix containing p variables from Equation (67) obtained from n experiments, β is
a vector of regression coefficients and ε is a vector of random errors from n experiments. The estimated
value of the regression coefficients vector, β̂, is obtained from the least-square method as follows [10]:

β̂ =
(
X′X

)−1 X′y (69)

In the context of this paper, an experiment refers to the set-up of the optimization design variable
and parameter values that are chosen based on the Design of Experiment (DOE) method. Several DOE
methods for first- and second-order polynomial models are described in [10]. The chosen DOE method
in this paper is the popular one for approximating second-order models, i.e., Central Composite Design
(CCD) [18,19].

To apply the CCD, a range of input variable values are initially selected. Based on pre-calculations,
the following input variable range of values are expected to fulfil the design requirements

• 20 mm ≤ Dmot ≤ 40 mm, 5 mm ≤ Lmot ≤ 15 mm
• 20 mm ≤ Dmg ≤ 40 mm, 10 mm ≤ Lmg ≤ 20 mm, 3.33 ≤ Nmg ≤ 9.67.

Next, CCD design matrices are defined for the motor and magnetic gear, as denoted by DCCD,mot
and DCCD,mg in Equation (70) , respectively. Each matrix contains the normalized values of the previous
input variable values, which are used as design parameters in the optimization problem statements in
Sections 3.1 and 3.2. Note that for a given optimization task, the electrical motor assumes the same
values of p, Q, Br, µr as in Table 2 while for the magnetic gear, the same values of Br, µr in Table 5.

DCCD,mot =



−1 −1
1 −1
−1 1
1 1
−
√

2 0√
2 0

0 −
√

2
0

√
2

0 0


, DCCD,mg =



−1 −1 −1
1 −1 −1
−1 1 −1
1 1 −1
−1 −1 1
1 −1 1
−1 1 1
1 1 1

−1.682 0 0
1.682 0 0

0 −1.682 0
0 1.682 0
0 0 −1.682
0 0 1.682
0 0 0



(70)

By applying the previously described RSM on a series of optimization tasks arising from the CCD
design matrices Equation (70), the following polynomial models are obtained

T̂mot =
[
1 Dmot Lmot (DmotLmot) D2

mot L2
mot

]
β̂T

mot (71)

T̂mg =
[
1 Dmg Lmg Nmg (DmgLmg) (DmgNmg) (LmgNmg) D2

mg L2
mg N2

mg

]
β̂T

mg (72)
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where T̂mot and T̂mg are the optimized peak torques of the motor and magnetic gear, respectively, and
the regression coefficients vectors β̂mot and β̂mg are given by

β̂mot = [0.8709 − 0.0513 − 0.0958 0.0045 0.0006 0.0006]

β̂mg = [2.236 − 0.2294 − 0.1718 0.2848 0.0103 0.0042 0.0008 0.0036 0.0003 − 0.0288].

The motor and magnetic gear peak torque values from the series of optimization tasks are shown
in Figure 19. There is a good agreement between the torque values calculated from the RSM and
analytical model. Based on this finding, the simple polynomial functions obtained from RSM, i.e.,
T̂mot(Dmot, Lmot) and T̂mg,out(Dmg, Lmg, Nmg), are used for the optimization of the shaft-coupled motor
and magnetic gear.
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Figure 19. RSM approximated motor and magnetic gear torque.

4.4. Definition of Optimization Problem Statement

Multiple objectives are considered in the optimization of the shaft-coupled motor and magnetic
gear, namely for the minimization of outer diameter Dmmg and transmission ratio Nmg. A single
objective function can be formulated by the scalarization [20] of the two objective functions as follows:

fmmg(~X) = w1Dmmg + w2Nmg (73)

where w1 and w2 are linear weights (with 0 ≤w1 ≤ 1 and 0 ≤w2 ≤ 1) that will be varied in a series of
optimization tasks to obtain a Pareto front. Meanwhile, the following constraints are defined based on
the design requirements discussed in Section 4.2:

g1,mmg(~X) = T̂mmg ≥ 1 Nm (74)

g2,mmg(~X) =
Lmmg

Dmmg
≤ 2 (75)

h1,mmg(~X) = Dmot = Dmg = Dmmg (76)

Additionally, the following inequality constraint is imposed on the magnetic gear peak torque

g3,mmg(~X) = T̂mg,out ≥ 120 % T̂mmg (77)
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where the additional 20% in Equation (77) is a margin provided above the magnetic gear peak torque
to prevent rotor slip. The design variable vector Xmmg is given by

Xmmg = [Dmot, Lmot, Dmg, Lmg, Nmg] (78)

for which the lower and upper bounds of the variables are based on the RSM input variable range of
values in Section 4.3.

4.5. Results

Figure 20 depicts a Pareto front constructed from the objective function Equation (73), which is
useful to evaluate design trade-offs between the magnetic gear transmission ratio Nmmg and the outer
diameter of the shaft-coupled motor and magnetic gear Dmmg. As the ratio between the weights in
Equation (73), w1

w2
increases, the objective function minimization is emphasized on the diameter Dmmg,

resulting in the decrease of motor and magnetic gear outer dimensions (see Equations (75) and (76)),
while the magnetic gear transmission ratio Nmmg increases. This illustrates how the magnetic gear
ultimately contributes in reducing the motor size. On the other hand, it is also evident from Figure 20
that there is little improvement in motor size reduction for higher values of magnetic gear transmission
ratios. This is caused the decrease of magnetic gear torque density as the transmission ratio increases
after a certain value, as apparent from Figure 18. Additionally, from a practical point of view, a high
magnetic gear transmission ratio implies more difficult manufacturing due to the increasing number
of the required permanent magnets (see Equation (65)). Therefore, a specific optimum solution has to
be chosen from Figure 20 to account for the trade-off between the transmission ratio and overall size of
the shaft-coupled motor and magnetic gear.

The chosen optimum solution is marked in Figure 20, corresponding to the variable values
Nmg = 5.3, Dmot = Dmg = 24 mm, Lmot = 9.8 mm and Lmg = 14.2 mm. The resulting
magnetic gear transmission ratio has to match the transmission ratio Equation (65), with pi = 3.
Furthermore, a specific value of the number of outer PM pole pairs po has to be selected such that the
resulting cogging torque is low [3,21]. Based on these considerations, Nmg = 5.33 (which coincidentally
is very close to the selected solution in Figure 20) is chosen as the transmission ratio value. A verification
of the optimum solution is performed by separately re-optimizing the motor and magnetic gear using
the analytical model as discussed in Section 3, based on the previous selected outer diameters, axial
lengths and transmission ratio. The optimization results are shown in Figure 21, the average value of
the motor peak torque is 0.19 Nm (resulting in T̂mmg = 1.01 Nm), while the magnetic gear outer rotor
peak torque is 1.29 Nm, which fulfil the design requirements. By comparing the outer dimensions and
volume of the shaft-coupled motor and magnetic gear, with those of an optimized electrical motor
(having the same design requirements) in Table 6, there is an apparent benefit in terms of size reduction
if the former actuator type is used.

Table 6. Comparison between outer dimensions and volume of the shaft-coupled motor and magnetic
gear, and an electrical motor.

Parameter Shaft-Coupled Motor and Magnetic Gear Electrical Motor Only

Diameter 24 mm 30 mm
Axial length (incl. housing) 48 mm 45 mm

Volume 2.2×104 mm3 3.2×104 mm3
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Figure 20. Pareto front constructed from the multiobjective optimization results.
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Figure 21. Optimized peak motor torque T̂mot and magnetic gear outer rotor torque
Tmg,out characteristics.

5. Conclusions

An actuator based on a shaft-coupled electrical motor and magnetic gear is described in this
paper. High-accuracy analytical electromagnetic models of the electrical motor and magnetic gear are
developed and verified. Based on these models, design optimization objective and constraint functions
are formulated in detail to account for electromagnetic and performance aspects such as magnetic
saturation of the ferromagnetic cores, torque ripple/cogging and torque density.

For the simultaneous optimization of the electrical motor and magnetic gear, response surface
methodology (RSM) is employed to reduce the number of design variables originating from the two
electromagnetic devices, by representing their optimized torques as polynomial functions of their
respective outer dimensions and transmission ratio (for the magnetic gear). A factor four of design
variables reduction is achieved, and, as the polynomial functions are used to model the actuator,
optimizations can be performed rapidly without sacrificing the accuracy of their results. From the
constructed Pareto front, it is evident that the actuator size can be reduced by increasing the magnetic
gear transmission ratio up to a certain level, after which the magnetic gear torque density limitation
becomes more apparent and no further actuator size reduction can be achieved.
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