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Abstract:



Soft actuators have been employed in various fields recently. A miniature pneumatic bending rubber actuator is one of the soft actuators. This actuator will be used for medical and biological fields. Its flexibility and high safety are suitable for fragile objects. However, its modeling is difficult due to its nonlinearity. There are no suitable sensors to measure the output of this actuator. In this paper, the particle swarm optimization-support vector regression (PSO-SVR)-based estimation method with the generalized Gaussian kernel is proposed. An experimental result with the operator-based robust nonlinear control system is employed to verify the effectiveness of the proposed method.
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1. Introduction


Soft actuators have been getting increased attention with the development of medical techniques and in other fields. Soft actuators are actuators that are composed of flexible materials. Because of their flexibility and high safety for fragile objects, they are expected to be applied in the medical, biological and welfare fields. Many of the soft actuators are driven by air pressure; for example, McKibben artificial muscles and straight fiber-type artificial muscles. However, these actuators have some problems. First, because of their complicated manufacturing process, miniaturizing and cutting cost are limited. Second, if they can be miniaturized, they cannot move greatly. Finally, the number of tubes that are supplied air pressure is increased with increasing the number of bending directions. Thus, a miniature pneumatic bending rubber actuator [1] was developed to solve these problems as above. A miniature pneumatic bending rubber actuator is one of the soft actuators. It is made of silicone rubber and has a bellows construction on one side. Because of its structure, a miniature pneumatic bending rubber actuator can be made simply, small and inexpensively (a miniature pneumatic bending rubber actuator is often called “a micro-hand” because it will be used in three actuators). On the other hand, this actuator is difficult to model and control due to its nonlinearity. This actuator should be controlled by without sensors, because it is expected to be used for medical fields, especially in operations. Moreover, we have no sensor that can attach itself to this actuator directly because this actuator is too small. Thus, a motion estimation method and nonlinear control system are needed for this actuator.



In this paper, support vector regression (SVR) is utilized for output estimation. SVR is a regression machine that is extended from support vector machine (SVM) [2,3,4]. SVR has been utilized by many researchers recently. SVR has some advantages, for example high generalization ability with few training data and valid for a nonlinear model, etc. SVR uses the kernel method. The kernel method makes SVR’s calculation easier. If one function satisfies some properties, it can become a kernel function. Various kernel functions are used for SVR. Especially, the Gaussian kernel, which is applied by the Gaussian distribution (GD), is mainly used for a kernel function in SVR. However, many distributions do not follow GD. The distribution of this actuator is also the same. To solve this problem, SVR with the generalized Gaussian kernel, which is applied from the generalized Gaussian distribution (GGD) [5], for the estimation of the actuator was proposed [6]. The effectiveness of SVR with the generalized Gaussian kernel was verified. Thus, this research utilizes GGD for a kernel function. SVR with the GGD kernel has four parameters. Selecting good parameters is needed to improve the estimation ability of SVR. In this paper, particle swarm optimization (PSO) [7] is utilized for the parameter selecting method. In previous research [4], SVR-based estimation and nonlinear control for this actuator are considered. However, the estimation ability can be improved. Thus, this research considers improving estimation ability by the method above. To verify the proposed estimation method, an experiment was conducted with a nonlinear control system based on operator theory [8,9,10,11,12].




2. Structure of a Miniature Pneumatic Bending Rubber Actuator


In this section, the structure of the miniature pneumatic bending rubber actuator [1] is explained. The actuator is made of silicone rubber without fiber reinforcement and designed by using the finite element method (FEM). Figure 1 shows the appearance and moving principle of the actuator. The actuator is bent by providing air pressure. The actuator has a semicircular-shaped tube, and one side has a bellows construction. Its bellows part extends and contracts greatly by positive and negative air pressure. Its flat part extends and contracts slightly by positive and negative air pressure. The difference of the extension and contraction between the bellows and the flat part cause its bending motion. Because of this structure, the actuator can bend without using fiber reinforcement. Moreover, the structure of the bellows makes the actuator bend greatly. The actuator can be made small and inexpensive because a micro-hand has only one tube, and the actuator does not use fiber-reinforced rubber.


Figure 1. The principle of movement.



[image: Actuators 06 00006 g001]






In case of providing positive air pressure, the bellows part expands greatly and the flat part expands slightly. Therefore, the actuator bends with the state for which the bellows part is outside. On the other hand, in the case of providing negative air pressure, the bellows part shrinks greatly, and the flat part shrinks slightly. Therefore, the actuator bends with the state for which the flat part is outside. For the reasons stated above, the actuator can perform two-way bending with only one tube by providing air pressure. The thickness of silicon rubber and the minimum diameter of the expansion chamber were designed to bend efficiently by using nonlinear finite element analysis. Figure 2 shows the states of movement when air pressure is provided for the actuator.


Figure 2. The states of movement of the actuator.
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This can ensure the two-way bending of the actuator according to positive or negative air pressure being provided. The force characteristics were studied in [1]. The measurement range is from 0 to 40 [image: there is no content] under positive pressure and from [image: there is no content] to 0 [image: there is no content] under negative pressure. The maximum force are [image: there is no content][image: there is no content] at 40 [image: there is no content] and [image: there is no content][image: there is no content] at [image: there is no content][image: there is no content].




3. Mathematical Preliminaries


3.1. Support Vector Regression


In this paper, we utilize support vector regression (SVR) [2,3,4]. SVR is an extension of SVM for regression. SVR makes a model from relationship between inputs and outputs. The goal of SVR is to identify a function [image: there is no content] from the training data. SVR is available for nonlinear functions and has generalization capability. The regression model [image: there is no content] is shown as


[image: there is no content]



(1)




where [image: there is no content] means the input vector, [image: there is no content] shows the weight vector, b is the offset and [image: there is no content] is a nonlinear function that maps the input space into a higher dimensional feature space. In the SVM modeling, the slack variables are


ξi+=0(yi−f(xi)≤ϵ)yi−f(xi)−ϵ(yi−f(xi)>ϵ)and



(2)






[image: there is no content]



(3)




where ϵ is a configuration parameter and [image: there is no content] is the training data. Then, the SVR approach defines an optimization problem as follows.


[image: there is no content]



(4)







Subject to equality constraints,


yi−ωTϕ(xi)−b≤ϵ+ξi+,i=1,⋯nωTϕ(xi)+b−yi≤ϵ+ξi−,i=1,⋯nξi+,ξi−≥0,i=1,⋯n,



(5)




where C controls the penalty associated with deviations larger than ϵ and n is the number of training data.



Introducing Lagrange multipliers [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], Equation (5) can be rewritten as the following optimization problem,


[image: there is no content]



(6)







Optimum solutions are the points where the partial differentiation of [image: there is no content] about [image: there is no content] is zero, so the following equations hold for the optimum solutions.


[image: there is no content]



(7)






[image: there is no content]



(8)






[image: there is no content]



(9)






[image: there is no content]



(10)







From Equation (7), the vector [image: there is no content] is shown as


[image: there is no content]



(11)







Equation (1) is rewritten as


[image: there is no content]



(12)







An optimization problem holds by substituting Equations (7), (9) and (10) for Equation (6).


maxλi−,λi+Lp=maxλi−,λi+[−12∑i=1n∑j=1n(λi+−λi−)(λj+−λj−)ϕ(xi)Tϕ(xj)+∑i=1nyiλi+−λi−−∑i=1nϵλi++λi−]



(13)







Constraint conditions are shown as follows.


[image: there is no content]



(14)







A kernel function is shown as follows.


[image: there is no content]



(15)







Applying a kernel function, Equation (13) is rewritten as follows.


[image: there is no content]



(16)







Applying a kernel function, Equation (12) is rewritten as follows.


[image: there is no content]



(17)







The Gaussian kernel is usually used as kernel function and is shown as follows.


[image: there is no content]



(18)








3.2. Generalized Gaussian Distribution


The generalized Gaussian distribution (GGD) [5] is used for a kernel function to improve the ability of generalization in this paper. The generalized Gaussian distribution includes all normal and Laplace distributions and all continuous uniform distributions on bounded intervals of the real line. The probability density function (PDF) of GGD with mean μ and shape parameter α is given by


f(x;μ,α,β)=α2βΓ(1/α)exp−∥x−μ∥βαand



(19)






[image: there is no content]



(20)




where Γ defines the Gamma function given by [image: there is no content]. μ, [image: there is no content] and β denote the mean, shape and scale parameters, respectively. GGD can match many distribution by changing shape parameter α. GGD is applied for the kernel function in this paper.



Figure 3 illustrates the PDFs of generalized Gaussian distribution for various α with [image: there is no content] and [image: there is no content]. Two special cases are the Laplacian distribution for [image: there is no content] and the Gaussian distribution for [image: there is no content]. For the limited case of α, generalized Gaussian distribution approaches an impulse function and the uniform distribution as [image: there is no content] and [image: there is no content], respectively.


Figure 3. PDFs of generalized Gaussian distribution (GGD) for [image: there is no content], 1.0, 2.0, 100 [image: there is no content], [image: there is no content].



[image: Actuators 06 00006 g003]






The generalized Gaussian kernel is given as follows.


[image: there is no content]



(21)






[image: there is no content]



(22)








3.3. Particle Swarm Optimization


Particle swarm optimization (PSO) [7] is a population-based stochastic approach for solving continuous and discrete optimization problems. The algorithm of PSO is given as follows.



	
Initialize the particle’s position and velocity in the swarm randomly, and set ranges of position and velocity.



	
Evaluate positions with the evaluation function.



	
Update the particle’s and global best solution.



	
Update the particle’s velocity and position.






The particle’s velocity and position are updated by the following equations,


[image: there is no content]



(23)






[image: there is no content]



(24)




where [image: there is no content][image: there is no content]n; t is the step; [image: there is no content] are the particle’s position and velocity; [image: there is no content] are the particle’s and group’s (swarm’s) best value; ω is the inertial weight coefficient; [image: there is no content] are the acceleration constants; [image: there is no content] are positive random numbers whose range is [0,1].



The inertial weight w controls the effect of the previous velocity to the current velocity. A larger w searches a solution with a wider area, and a smaller w searches a narrower area. To balance the effect of ω, the following equation is used in this paper.


[image: there is no content]



(25)









4. Modeling and Nonlinear Control System


In this section, the modeling and designing of a nonlinear control system [9] for a micro-hand are shown.



4.1. Modeling


Modeling of the actuator [4] is done in this section. It is supposed that the actuator curves in an arc. Bending angle [image: there is no content] is defined in Figure 4. The tip of the actuator in the initial state is regarded as the origin of the coordinates. The horizontal direction is the x-axis, and the vertical direction is the y-axis. The [image: there is no content] is the coordinate of the tip of the actuator at the time of deformation. The parameters in Figure 4 are given in Table 1. The following formulas are derived from Figure 4.


[image: there is no content]



(26)






[image: there is no content]



(27)






[image: there is no content]



(28)






Figure 4. Simplified diagram of the actuator.
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Table 1. Parameters of the actuator analysis model.







	
Part of the Actuator

	
Parameter

	
Unit






	
Natural length of the actuator

	
[image: there is no content]

	
(m)




	
Length of the changeless part

	
[image: there is no content]

	
(m)




	
Length of the bellows side

	
L

	
(m)




	
Radius of the approximate circle

	
R

	
(m)




	
Bending angle

	
θ

	
(rad)










From Equations (27) and (28), R and θ are obtained by


[image: there is no content]



(29)






[image: there is no content]



(30)







A cross-section drawing of the actuator is shown in Figure 5. The cross-section radius of the actuator is a (m). The thickness of the actuator is b (m). The center of the flat side is defined as the origin of polar coordinate system. The radius vector is r (m), and the argument is ϕ (rad). Then, it is supposed that the cross-section shape and the length of the flat side are changeless in order to analyze the theoretical properties of the actuator. The effect by the shape of the bellows part is considered as the uncertainty. The mathematical model is derived from the balance between the moment generated by pneumatic pressure and the one generated by spring force.


Figure 5. Cross-section drawing of the actuator.
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The force [image: there is no content] (N) generated by pneumatic pressure p (Pa) in a small area of the end section of the actuator is shown as:


f1=prdϕdr.



(31)







Then, the moment of the force generated by pneumatic pressure [image: there is no content] (N·m) is shown as:


[image: there is no content]



(32)







The force [image: there is no content] (N) generated by the spring in a small area of the bellows side is shown as:


f2=−Eθ(rasinϕ+b)L0bradϕ,



(33)




where [image: there is no content] is the length from the origin of polar coordinate to the center of rubber shown as:


[image: there is no content]



(34)




and E (Pa) is the Young modulus. It is supposed that the Young modulus changes according to the extension of rubber equivalently. [image: there is no content] is shown as


[image: there is no content]



(35)




where [image: there is no content] (Pa) is the initial Young modulus. Then, the moment of the force generated by spring force [image: there is no content] (N·m) is shown as


M2=−∫0πf2(rasinϕ+b)=−rabE0θ∫0π(rasinϕ+b)2L0+θ(rasinϕ+b)dϕ.



(36)







From the balance between the moment generated by pneumatic pressure and the one generated by spring force in the end section of the actuator,


[image: there is no content]



(37)







Then, the relationship between input p and output θ is obtained from Equations (32), (36) and (37),


[image: there is no content]



(38)







Equation (38) is approximated as follows.


[image: there is no content]



(39)




where


[image: there is no content]



(40)








4.2. Design for the Operator-Based Robust Nonlinear Control System


The robust nonlinear control system based on robust right coprime factorization for the actuator is designed in this section [8,9,10,11,12]. Consider the nonlinear feedback system in Figure 6.


Figure 6. Nonlinear feedback control system.



[image: Actuators 06 00006 g006]






Nominal plant P is shown as


[image: there is no content]



(41)




where input [image: there is no content], output [image: there is no content] and γ is Equation (40). The plant P is factorized into N and [image: there is no content]:


N(ω)(t)=−L0b1+2(2ra+bπ)ω(t)−2(2ra+bπ)and



(42)






[image: there is no content]



(43)




where N is stable and D is stable and invertible. According to the Bezout identity:


[image: there is no content]



(44)




where M is the unimodular matrix. We have


A(y)(t)=(1−K)−2L0(2ra+bπ)by(t)+L0+2(2ra+bπ)and



(45)






[image: there is no content]



(46)




where K is the designed controller parameter, A is stable and B is stable and invertible.



The actual plant has the uncertainty derived from the effect by the shape of the bellows and approximation in modeling. The plant with the uncertainty [image: there is no content] is shown as


[image: there is no content]



(47)







The right factorization of the nonlinear plant is shown as follows.


[image: there is no content]



(48)







Then, [image: there is no content] is factorized as follows.


[image: there is no content]



(49)






[image: there is no content]



(50)







When Equation (44) and


[image: there is no content]



(51)




are satisfied, the robust stability of the plant with uncertainty [image: there is no content] can be guaranteed.




4.3. Tracking Actuator’s Output for the Target Value


The feedback control system is designed in order to track output y to reference input [image: there is no content]. A nonlinear feedback control system with the tracking controller is shown in Figure 7.


Figure 7. Nonlinear feedback control system with the tracking controller.



[image: Actuators 06 00006 g007]






Tracking controller C is defined as follows.


[image: there is no content]



(52)




where [image: there is no content] and [image: there is no content] are the designed parameters.





5. Proposed Method


In this section, the proposed method is introduced. A pneumatic bending rubber actuator is difficult to control and make a model of due to its complicated construction. Moreover, there are no sensors to measure the output of the actuator. The research objective is to estimate the motion of the actuator and apply it for its control. SVM-based regression (SVR) is employed to estimate the motion of the actuator. SVR has high generalization ability with few training data and valid for nonlinear systems. SVR is one of the kernel methods. Thus, SVR uses a kernel function. This kernel function influences the estimation accuracy of SVR. Various kernel functions were developed so far. The most used kernel function is the Gaussian kernel in Equation (18). However, most distributions do not follow the Gaussian distribution. Therefore, the generalized Gaussian kernel (Equation (21)) is employed in this paper. SVR with the generalized Gaussian kernel has four parameters, which should be optimized. PSO is employed as a parameter optimizing method in this paper. PSO has the advantage that calculation cost of PSO is not increased with the increasing of the number of optimized parameters. Four parameters of SVR are optimized by PSO in this paper. The control system [9] is designed to verify the effectiveness of the proposed method. The control system with SVR estimation is shown as Figure 8; where y and [image: there is no content] are actuator and estimation output, respectively, and [image: there is no content] and C are in Equations (45), (46) and (52), respectively.


Figure 8. Control system with SVR estimation.



[image: Actuators 06 00006 g008]






The proposed method, a motion estimation method for a control system of a pneumatic bending rubber actuator using the PSO-SVR method with the generalized Gaussian kernel, is verified by using this system. In the proposed method, four parameters (C, ε, σ, α) should be optimized, where C, ε are the parameters of SVR and σ, α are the parameters of the generalized Gaussian kernel function. In order to optimize these parameters, grid search is often used. However, grid search needs a huge amount of calculating. Thus, PSO is utilized in this paper. If the optimized parameters are increased, the calculation cost is not increased.



The following is the summary of above.



	
Input training data for SVR with the generalized Gaussian kernel.



	
Do many tests and evaluations with various parameters.



	
Decide the best parameters.



	
Estimate the actuator’s output by SVR with the optimized parameters.







6. Experiment


6.1. Experimental System


The experimental system is explained in this section. Figure 9 shows the experimental system and actuator. Figure 10 shows the flowchart of the experimental system.


Figure 9. Experimental system and actuator.



[image: Actuators 06 00006 g009]





Figure 10. Flowchart of the experimental system.
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The pump and the electronic vacuum regulator and the vacuum regulator are not used because the actuator’s moving by only positive pressure is considered in this paper. The following explains how to move the actuator.



	
Compressed air is made by the air compressor.



	
Air pressure is regulated by the regulator to prevent the actuator from breaking.



	
Controlled air pressure is made to control the actuator by the electro-pneumatic regulator.



	
Air pressure is provided for the actuator, and it moves.






The electro-pneumatic regulator is the equipment that converts electric signals into air pressure. In this paper, ITV0010-0CS (SMC, Tokyo, Japan) is used as the electro-pneumatic regulator. It can convert 4 to 20 [image: there is no content] into 1 to 100 [image: there is no content]. The electrical signal is generated by the PC. In this paper, a camera is used to measure position of the actuator. The camera measures the position of the actuator; however, the measurement value from the camera is not used as the feedback signal in order to perform sensorless control. The measurement value is used only to record.




6.2. Experimental Result


The experimental result of the proposed method is shown. First, the selected parameters by PSO are shown in Table 2.



Table 2. Selected parameters.







	
Parameter

	
Value






	
Cost parameter

	
[image: there is no content]




	
Error accuracy parameter

	
[image: there is no content]




	
Variance

	
[image: there is no content]




	
Shape parameter

	
[image: there is no content]










Table 3 shows the experimental parameters.



Table 3. Experimental parameters.







	
Paramter

	
Value






	
Natural length of the actuator

	
[image: there is no content] m




	
Radius of the actuator

	
[image: there is no content] m




	
Thickness of the actuator

	
[image: there is no content] m




	
Rubber radius

	
[image: there is no content] m




	
Initial Young modulus

	
[image: there is no content] Pa




	
Control parameter

	
[image: there is no content]




	
Integral parameter

	
[image: there is no content]




	
Proportional parameter

	
[image: there is no content]










The output results of the proposed and previous method [4] are shown in Figure 11 and Figure 12, respectively. Plant input and robust stability analysis are shown in Figure 13 and Figure 14, respectively. In this experiment, the desired value is [image: there is no content][image: there is no content]. The comparison between the proposed and previous methods is shown in Table 4.


Figure 11. The result of the proposed method.



[image: Actuators 06 00006 g011]





Figure 12. The result of the previous method.



[image: Actuators 06 00006 g012]





Figure 13. Plant input.



[image: Actuators 06 00006 g013]





Figure 14. Robust stability analysis.
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Table 4. The comparison of some values.







	

	
Proposed Method

	
Previous Method






	
Number of dataset

	
1080

	
5472




	
Computing time

	
[image: there is no content] s

	
[image: there is no content] s




	
Fit ratio

	
[image: there is no content]

	
[image: there is no content]










“Number of dataset” means the number of the training dataset used in SVR. SVR estimates the actuator’s output value based on this dataset. “Computing time” means the sum of SVR training time and feedback time. Shorter computing time is better, if the “fit ratios” have the same value. The following equation is used as the evaluation function called the “fit ratio”:


[image: there is no content]



(53)




where [image: there is no content], [image: there is no content] and [image: there is no content] are “actual output or desired value”, “estimation or simulation output” and the average of “actual output or desired value”, respectively. “Fitness” is the ratio of fitting for the actual result. The output result could track the desired value of [image: there is no content]. The proposed method could estimate the actuator’s output more accurately than the previous one. Moreover, the number of the dataset and the computing time of the proposed method were fewer than the previous one. Therefore, the estimation ability of the proposed method was verified. If the system satisfied Equation (51), the system can be said to have robust stability. In Figure 14, [image: there is no content] is satisfied. Thus, the system is a robust stability system.



Other results are shown as follows. The output and estimation results of the proposed and previous method are shown in Figure 15 and Figure 16, respectively. Plant input and robust stability analysis are shown in Figure 17 and Figure 18, respectively. The comparison between the proposed and previous methods is shown in Table 5. The desired value [image: there is no content] is as follows.


[image: there is no content]



(54)






Figure 15. The result of the proposed method.



[image: Actuators 06 00006 g015]





Figure 16. The result of the previous method.



[image: Actuators 06 00006 g016]





Figure 17. Plant input.



[image: Actuators 06 00006 g017]





Figure 18. Robust stability analysis.



[image: Actuators 06 00006 g018]






Table 5. The comparison of some values.







	

	
Proposed Method

	
Previous Method






	
Number of dataset

	
1437

	
5414




	
Computing time

	
[image: there is no content] s

	
[image: there is no content] s




	
Fit ratio

	
[image: there is no content]

	
[image: there is no content]










The meanings of the “number of dataset”, “computing time” and “fit ratio” are the same as Table 4. The plant output tracked the desired value, so the effectiveness of the control system is verified. In Figure 16, the previous method cannot estimate the plant output accurately. In the previous method, SVR-based estimation depends on experimental time. Thus, estimation ability changes according to experimental time. On the other hand, the proposed method can estimate the plant output accurately in Figure 15. This is because the proposed SVR-based method is not related to time, but position and former position. Therefore, the estimation ability does not depend on the experimental time. Moreover, the generalized Gaussian kernel and the PSO-based parameter optimization are used in the proposed method. Therefore, the proposed estimation method can estimate the plant output accurately. The effectiveness of the estimation method has been verified. Figure 18 shows that the robust stability of the system is verified.





7. Conclusions


In this paper, a motion estimation method for a control system of a pneumatic bending rubber actuator using the PSO-SVR method with the generalized Gaussian kernel was proposed. The estimation ability of SVR was improved by using the generalized Gaussian kernel, selecting the parameters by PSO and considering the dataset of SVR. In conclusion, the effectiveness of the proposed method was proven by the experimental result.
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