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Abstract: In this paper, analytical closed-form expressions to accurately estimate the pull-in
characteristics of an electrostatically-actuated doubly-clamped nanobeam are derived and examined.
In this regard, a coupled electro-mechanical problem for the nano-actuator is first presented assuming
a single mode approximation while taking into account all the possible structural, electrical and
nanoscale effects: the fringing of the electrical actuating force, the geometric mid-plane stretching and
intermolecular (van der Walls and Casimir) forces. The complicated nonlinear resultant equations
are numerically approximated in order to derive the closed-form expressions for the important
nano-actuator pull-in characteristics: i.e., the detachment length, the minimum reachable gap size
before the collapse and the respective pull-in voltage. The resulting closed-form expressions are
first quantitatively validated with other previously published results, and comparisons showed
an acceptable agreement. Unlike the reported expressions in the literature, the proposed closed-form
expressions in this work are proper approximations, fairly accurate and, more importantly, provide
a quick estimate of the critical design pull-in parameters of the nano-actuator. In addition, the analysis
of these expressions demonstrated that the consideration of the intermolecular forces together
with the fringe effect tends to significantly reduce the threshold pull-in voltage, whereas the
mid-plane stretching parameter tends to the contrary to increase the voltage at the pull-in collapse.
The derived expressions of these analytical/approximate solutions could hopefully be appropriately
used by NEMS engineers as simple/quick procedures for successful design and fabrication of
electrostatically-actuated nano-devices.

Keywords: NEMS; actuator; analytical solution; pull-in characteristics; mid-plane stretching;
van der Waals force; Casimir force

1. Introduction

Recently, the field of Nanoelectromechanical Systems (NEMS) has become one of the most emerging
fundamental and applied research areas. It is essentially considered as a multi-disciplinary research
branch involving many engineering applications such as: nano-switches, nano-tweezers, nano-grippers,
nano-resonators, nano-actuators, etc. [1]. Estimating accurately the pull-in characteristics of
NEMS-based devices has been the center of research attention over the past few years, mostly because
predicting these parameters forms the basis of utilizing these tiny structures as sensors and actuators
of distinguishing properties. In addition, these characteristics could represent, for the majority of the
designers in this area, an effective way to extract the mechanical properties of such nano-structures.

One of the most assumed configurations in designing NEMS devices is the clamped-clamped
nanobeam arrangement. Clamped-clamped NEMS-based nanobeams have been under extensive
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research in the NEMS community, and they find potential in many applications such as random
access memory, resonating devices for high-frequency operation, fast switching in communication
networking applications [2], energy harvesters [3], etc.

Among the different actuation mechanisms for such nano-structures, the electrostatic actuation
technique is the most commonly used because of its numerous advantages such as: the large
force generation, the easy Complementary Metal-Oxide-Semiconductor (CMOS) integration,
the compatibility with all the micro-/nano-manufacturing processes, etc. However, it is worth noting
that the efficiency of this technique is restricted by the well-known structural instability named the
“pull-in” collapse [4]. This structural instability was first discovered for micro-actuators and revealed
to be a function of the actuating electric force [4]. However, going down further in the nano scale,
this structural instability was shown to be dependent on other forces, mainly the intermolecular
forces, for nanobeam-based actuators. It should be pointed out that the nano-actuator where the initial
gaps are below 100 nm, the intermolecular forces (Casimir and van der Waals forces essentially) are
considered prominent and strong and become comparable to the electrostatic actuating forces and even
overriding other attractive intermolecular forces. During the pull-in instability scenario, the nanobeam
restoring force (i.e., its overall stiffness) is no longer capable of balancing the electric actuating force,
resulting in the collapse of the nano-structure. Furthermore, other than the nano-structure restoring and
actuating forces, other highly nonlinear intermolecular forces such as the van der Waals and the Casimir
forces may even significantly distress the pull-in characteristics of the nano-actuator. Occasionally,
these intermolecular forces may lead to the nano-structure restoring elastic forces depending on the
initial gap size and therefore may lead to collapse even without the need to consider any electric
actuating voltage [5,6].

An extra and important non-linear effect in doubly-clamped nanobeam designs is the
geometric mid-plane stretching effect. This effect frequently results in a significant increase in beam
stiffness (i.e., its resulting restoring elastic force) and consequently may drastically alter its pull-in
characteristics. Considering the combined effects of the intermolecular forces and the mid-plane
stretching effect is extremely important for the successful design, analysis and fabrication of
NEMS-based electrostatically-actuated nanobeams. Though several extensive investigations on the
pull-in characteristics of NEMS devices, mainly assuming semi-analytical, analytical and closed-form
approximations for different nano-cantilever configurations [5–9], are available in recent literature, only
a few attempts [10–15] performed a similar analysis on the doubly-clamped nanobeam while taking
into consideration the combined effects of the intermolecular forces and the nonlinear mid-plane
stretching effect. Most of the cited literature investigated the doubly-clamped nanobeam pull-in
characteristics assuming a lumped system modeling and/or numerical simulation approaches [10,11].
Others included in their modeling the nonlocal elasticity theory [12], the modified strain gradient
theory [13], the modified Adomian method [14], the hybrid nonlocal beam model [15], etc.
Only recently, Shokravi [16] investigated the dynamic pull-in and pull-out problems of nanoplate-based
NEMS switches under electrostatic and Casimir forces assuming Eringen's nonlocal theory [16].

Another major effect at the nano-scale that may alter nanobeam-based actuators is their surface
effects. Few previous experiments [17] demonstrated that the surface layer plays an important
role in the structural behavior of nanoscale-based structures. In the classical continuum mechanics,
the effect of the surface layer is typically ignored. However, for nanoscale devices, because of high
surface-to-volume ratios, the influence of the surface layer on the overall dynamic behavior of the
nanostructure could no longer be neglected [18,19]. Therefore, in one of our previous investigations [20],
we studied the instability characteristics of free-standing nanowires based on the consideration of
Casimir attractive forces in addition to the surface effects.

The accessibility to simple analytical expressions/generalized closed-form solutions for estimating
the pull-in characteristics of doubly-clamped NEMS-based nanobeams is still not properly investigated
in the literature. Although few groups [12,13] attempted to formulate analytical solutions for the pull-in
instability of nano-devices, their methods mostly suffer from complexity (complicated mathematical
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operations) and numerical integration techniques. Another limitation is that the final closed-form
expression involves and also is dependent on the ‘pull-in deflection’ factor [12,13], which itself requires
further computation.

Therefore, the present work aims at deriving simple generalized closed-form expressions for
estimating the critical pull-in design characteristics of the fixed-fixed nanobeam that hopefully
will serve as fast, simple and accurate design guidelines for NEMS engineers. The plan is first to
formulate the doubly-clamped nanobeam problem assuming a Euler–Bernoulli beam model, while
considering the mid-plane stretching effect, the van der Waals and Casimir forces and the nonlinear
quadratic electrostatic forces while accounting for the fringing effects. Then, a Galerkin-based modal
decomposition technique will be carried out. Its resulting integrals and higher-order polynomials
will be solved numerically to acquire the doubly-clamped nanobeam pull-in parameters (the critical
dimension limits, the maximum detachment length and the minimum gap size to pull-in). Afterward,
a curve fitting process will be used to provide simple and readymade analytical expressions for the
pull-in voltage function of the mid-plane stretching, the fringing electric field and the intermolecular
force parameters.

The main advantage of the above planned approach is that the derived analytical expressions are
independent of the nanobeam deflection unlike the expressions previously reported in the literature.
In addition, the expressions will not include complicated integrations, nor even difficult mathematical
operations, hence reducing the resulting computation cost. All these derived expressions will then be
compared and validated quantitatively with the results from available literature. The incorporation of
the mid-plane stretching effect, the intermolecular forces and fringing effect of the electric actuating
field can significantly affect the overall pull-in characteristic of such a nano-actuator. Accordingly,
the paper is organized as follows: Section 2 discusses the detailed analytical/numerical modeling
of the electrically-actuated nanobeam taking into account the nonlinear mid-plane stretching effect,
the intermolecular effects and the fringing field effect of the actuating electric force. Then, the numerical
results and discussions of the proposed analytical expressions and their respective validation with
reported literature are summarized in Section 3. Finally, the main contributions and conclusions are
provided in Section 4.

2. Analytical Modeling

We consider here an isotropic clamped-clamped nanobeam of length L, a uniform rectangular
cross-section area of A = bh where b is the beam width, h its respective thickness, an effective Young’s
modulus E, an area moment of inertia I = (bh3)/12 and with an initial gap size between the flexible
beam and its respective grounded actuating electrode of d, as shown in Figure 1. The governing
differential static equation of motion of the nanobeam resulting bending deflection w(x) under the
influence of the electrostatic, as well as the intermolecular force can be written as follows [10]:

EI
d4w
dx4 = Felectrical(w) + Fstretching(w) + FIntermolecular(w); (1)

where Felectrical symbolizes the actuating electrostatic force per unit length including the first order
fringing fields effect, Fstretching represents the mid-plane stretching effect and the FIntermolecular term
denotes the intermolecular forces. All these forces can be written respectively as follows [10,12]:

Felectrical(w) =
ε b V2

DC
2(d−w)2

(
1 + 0.65 (d−w)

b

)
; Fstretching(w) = EA

2L

[
l∫

0

(
dw
dx

)2
dx

]
d2w
dx2 ;

FIntermolecular(w) =
H b

6 π (d− w)3︸ ︷︷ ︸
=FvdW (w)

+
π2hcb

240 (d− w)4︸ ︷︷ ︸
=FCasimir(w)

; (2)
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where ε = 8.854 × 10−12 F/m is the air permittivity, VDC is the applied actuating DC voltage across the
nanobeam and its stationary substrate, H is the Hamaker constant defined for a van der Waals (vdW)
body-body interaction with values in the range of 10−19 J [21], c = 3 × 108 m/s is the speed of light
and h̄ = 1.055 × 10−34 J−s is Planck’s constant.
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Figure 1. Schematic of an electrostatically-actuated fixed-fixed nanobeam. 
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In the below, we will consider two cases: one with only the van der Waals force; and the second
case will treat the nanobeam under the Casmir force.

2.1. First Case: van der Waals Force Only (FvdW 6= 0 and FCasimir = 0)

In this case, we assume that the intermolecular forces are the van der Waals force only. Therefore,
Equation (1) can be written as [22,23]:

EI
d4w
dx4 =

εbV2
DC

2(d− w)2 +
0.65εV2

DC
2(d− w)

+
EA
2L

 L∫
0

(
dw
dx

)2
dx

d2w
dx2 +

Ab

6π(d− w)3 (3)

Next and for convenience, we introduce the following non-dimensional parameters (ŵ = w/d and
x̂ = x/L) to normalize the above equation of motion. Hence, and after dropping the hats, Equation (3)
can be expressed in a nondimensionalized form as follows [22,23]:

d4w
dx4 = αeV2

DC

[
1

(1− w)2 +
0.65α f f

(1− w)

]
+ αst

 1∫
0

(
dw
dx

)2
dx

d2w
dx2 +

αvdW

(1− w)3 (4)

where the above introduced nondimensional coefficients are given as follows:

αe =
εbL4

2EId3 ; α f f =
d
b

; αst = 6
(

d
h

)2
; αvdW =

2HL4

πEh3d4 ; (5)

Next, Equation (4) can be rewritten as [23]:

(1− w)3 d4w
dx4 = αeV2

DC

[
(1− w) + 0.65α f f (1− w)2

]
+ αst(1− w)3

 L∫
0

(
dw
dx

)2
dx

d2w
dx2 + αvdW (6)

Numerous methods can be used to numerically solve the above nonlinear equation: such as
the finite-element method [24], the finite-difference method [25], the shooting method [26,27],
the differential-quadrature method [27], etc., which are all considered to be computationally expensive
and in some cases unstable since some rely on initial guesses. In this investigation, we propose to use
Galerkin-based reduced-order modeling that transforms the above nonlinear governing differential
equation into a nonlinear algebraic equation system (considering only static DC load). Assuming now
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the Galerkin-based modal discretization technique [28,29], the nanobeam deflection solution of the
above Equation (6) can be written as follows:

w(x) =
N

∑
i=1

kiΨi(x) (7)

where N is the assumed number of modes in the discretization method, ki are unknown constant
coefficients and Ψi(x) denote the beam modal functions satisfying the doubly-clamped boundary
conditions at x = 0 and x = 1. Substituting Equation (7) into Equation (6), we get the following
discretized equation:

n

∑
i=1

(
1−

n

∑
i=1

kiΨi(x)

)3

kiΨ
′′′′
i (x) = αeV2

DC

(1−
n

∑
i=1

kiΨi(x)

)
+ 0.65α f f

(
1−

n

∑
i=1

kiΨi(x)

)2
+

+αst

(
1−

n

∑
i=1

kiΨi(x)

)3
 1∫

0

(
n

∑
i=1

kiΨ′i(x)

)2

dx

 n

∑
i=1

kiΨ
′′
i (x) + αvdW ;

(8)

Subsequently, multiplying both sides of Equation (8) with a modal function Ψ1≤j≤n(x) and
integrating with respect to x in 0–1, we obtain:

L∫
0

Ψj

 N

∑
i=1

(
1−

N

∑
i=1

kiΨi

)3

kiΨ
′′′′
i

dx = αeV2
DC

 L∫
0

Ψj

(1−
N

∑
i=1

kiΨi

)
+ 0.65α f f

(
1−

N

∑
i=1

kiΨi

)2
dx

+

+αst

 1∫
0

(
N

∑
i=1

kiΨ′i

)2

dx

 L∫
0

Ψj

(1−
N

∑
i=1

kiΨi

)3 N

∑
i=1

kiΨ
′′
i

dx + αvdW

L∫
0

Ψjdx;

(9)

Based on the below normality conditions [30] of the modal functions Ψ1≤j≤n(x),

1∫
0

Ψi(x)Ψj(x)dx =

{
0 if i 6= j
1 if i = j

; and Ψ′′′′i (x) = ω2
i Ψi(x) (10)

Equation (9) can be re-written as:

N

∑
i=1

1∫
0

Ψjω
2
i kiΨi

(
1−

N

∑
i=1

kiΨi

)3

dx = αeV2
DC

 1∫
0

Ψj

(
1−

N

∑
i=1

kiΨi

)
dx + 0.65α f f

1∫
0

Ψj

(
1−

N

∑
i=1

kiΨi

)2

dx

+
+αst

 1∫
0

(
N

∑
i=1

kiΨ′i

)2

dx

 1∫
0

Ψj

(1−
N

∑
i=1

kiΨi

)3 N

∑
i=1

kiΨ
′′
i

dx + αvdW

1∫
0

Ψjdx;

(11)

Next and assuming only one mode approximation (N = 1), Equation (11) can be simplified to the
following form:

ω2
1k1

1∫
0

Ψ2
1(1− k1Ψ1)

3dx = αeV2
DC

 1∫
0

Ψ1(1− k1Ψ1)dx + 0.65α f f

1∫
0

Ψ1(1− k1Ψ1)
2dx

+
+αst

1∫
0

Ψ1(1− k1Ψ1)
3

 1∫
0

(
k1Ψ′1

)2dx

k1Ψ′′1 dx + αvdW

1∫
0

Ψ1dx;

(12)

The normalized first modal frequency and its corresponding normalized mode shape function
considering a doubly-clamped beam configuration are given respectively as [30]:
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{
ω1 ≈ 22.3733
Ψ1(x) ≈ cosh(

√
ω1x)− cos(

√
ω1x)− 0.9825sinh(

√
ω1x) + 0.9825sin(

√
ω1x)

; (13)

Computing numerically all the integrations in Equation (12), we get the following nonlinear
algebraic equation function of the unknown constant coefficient k1:

511.43 αstk6
1 − 1041.26 αstk5

1 + (1327.05 + 706.417αst)k4
1 − (2781 + 151.35αst)k3

1+

+
(

1996.32 + 2.0452α f f αeV2
DC

)
k2

1 −
(

500.56 + αeV2
DC + 1.35α f f αeV2

DC

)
k1+

+0.83087
(

αeV2
DC + 0.65α f f αeV2

DC + αvdW

)
= 0;

(14)

2.2. Second Case: Casimir Force Only (FvdW = 0 and FCasimir 6= 0)

In this sub-section, we only consider the intermolecular effect of the Casimir force; therefore,
Equations (1) and (2) can be written in normalized form as follows:

d4w
dx4 = αeV2

DC

[
1

(1− w)2 +
0.65α f f

(1− w)

]
+ αst

 1∫
0

(
dw
dx

)2
dx

d2w
dx2 +

αcas

(1− w)4 ; (15)

where, the nondimensional coefficient αcas is equal to π2hcL4

20Eh3d5 .
Next, and following the same steps (Equations (6) to (13)) as in the first case, assuming only one

mode in Galerkin’s discretization technique and integrating numerically all the integrals, we get the
following nonlinear algebraic equation function of the unknown constant coefficient k1:

758.49αstk7
1 − 2045αstk6

1 + (1934 + 2082.52αst)k5
1 − (5308.19 + 941.89αst)k4

1

+
(

5561.97 + 151.35αst + 1.2038α f f αeV2
DC

)
k3

1 −
(

2664.77 + 1.3294 αeV2
DC + 2.5923α f f αeV2

DC

)
k2

1+

+
(

500.56 + 2αeV2
DC + 4.615α f f αeV2

DC

)
k1 − 0.83087

(
αeV2

DC + 0.65α f f αeV2
DC + αcas

)
= 0;

(16)
The derived two algebraic equations for the case of van der Waals attraction as the only

intermolecular force, Equation (14), and for the case of Casimir force, Equation (16), are both nonlinear
functions of the unknown coefficient k1. In addition both equations are related to the electric force
coefficient (αe), the fringing fields effect (α f f ), the mid-plane stretching parameter (αst) and the
intermolecular forces (αvdW for the first case and αcas for the second case). Therefore, these equations
will be subsequently used in the following section to compute the nanobeam pull-in design parameters,
as well as to derive general closed-form expressions for the pull-in parameters under the influence
of the considered intermolecular forces. Finally, it is worth mentioning that because the above
expressions, Equations (14) and (16), are respectively the sixth and seventh order polynomial function
of P1, only one solution in both cases has been found to be real and, hence, as the unique physical
solution of the equilibrium deflection of the nanobeam.

3. Results and Discussion

In this section, the effects of each individual intermolecular force (i.e., the van der Waals and
Casimir attraction forces, respectively) on the nanobeam deflection and pull-in instability are examined,
and then general closed-form expressions for the maximum nanobeam detaching length and its
respective minimum gap spacing are derived assuming zero DC load. Then, the effects of the
intermolecular forces and mid-plane stretching parameters on the critical pull-in parameters are
considered, and the corresponding closed-form pull-in expressions are presented. Finally, all the
derived closed-form expressions are to be compared and validated with the other published results
from the recent literature.
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3.1. Closed-Form Solutions for the Detachment Length and Its Respective Minimum Gap Size for an
Un-Actuated Nanobeam

As mentioned earlier in the introductory part of this work, in the case of the nanobeam with
a small gap size, the intermolecular forces become significantly dominant over the elastic restoring
forces of the nano-actuator, resulting in an earlier stiction (collapse) even without assuming any
electrical actuating potential yet. Hence, it is imperative for NEMS designers to be aware of these
critical dimensions as a function of the assumed maximum designed nanobeam length and minimum
actuator gap size of the freestanding nanobeam-based NEMS device.

Let us first consider the effect of van der Waals forces only and with zero DC load (i.e., αeV2
DC = 0

and αst = 0 in Equation (14)). The resulting polynomial expression is numerically solved for various
values of the van der Waal parameter αvdW . The parameter αvdW is assumed to vary from 0–50, and the
corresponding real root (physical solution) of the polynomial expression is computed while iterating
the αvdW parameter. The iteration process is carried out until a critical value of αvdW , denoted by αcr

vdW ,
starting from which the physical deflection of the nanobeam becomes an imaginary root, is achieved
(as αcr

vdW ≈ 48.6). The corresponding critical maximum nanobeam deflection is calculated to be equal to

≈0.309. Therefore, αcr
vdW =

2HLcr
4

πEh3dcr4 ≈ 48.6, from which we can derive the expression of the maximum

possible nanobeam detachment length and its respective minimum gap size respectively as follows:
Lcr =

4

√
48.6πEh3d4

2H

dcr =
4

√
2HL4

αcr
vdWπEh3

; (17)

Next and similarly as was done above for the case of the van der Waals attractive force, let us now
consider the effect of the Casimir force only while neglecting both the electrostatic DC and the nonlinear
mid-plane stretching effect (i.e., αeV2

DC = 0 and αst = 0 in Equation (16)). The resulting polynomial
expression is then mathematically solved assuming various values of the Casimir force parameter αcas.
This normalized parameter is iteratively varied from 0–50, and the unique real root (the physical
solution) of the nonlinear equation is calculated. Accordingly, a critical value αcr

cas from which the
calculated physical solution becomes imaginary was found to be equal to ≈37.86. Its corresponding
nanobeam critical maximum deflection is obtained to be equal to ≈0.249. Then, we can compute from

Equation (15) that αcr
cas =

π2hcLcr
4

20Eh3dcr5 ≈ 37.86, from which we can derive analytical expressions of both

the maximum possible nanobeam detachment length and its respective minimum gap size respectively
as follows: 

Lcr =
4

√
757Eh3d5

π2hc

dcr =
5

√
π2hcl4

757Eh3

; (18)

The above computed analytical expressions, Equations (17) and (18), can be used to properly
design appropriate guidelines for the corresponding maximum length for a given gap size and
correspondingly a suitable minimum gap size for a given length for a doubly-clamped nanobeam-based
NEMS device.

3.2. Comparison with the Literature Assuming an Un-Actuated Nanobeam

In the below, the above computed analytical expressions will be compared with other previously
published results for validation purposes. Tables 1 and 2 summarize the comparison of the calculated
critical values for the normalized van der Waals parameter (αcr

vdW) and Casimir parameter (αcr
cas),

respectively, and their corresponding maximum reachable nanobeam deflections with other available
results in the literature [11,12,14]. Table 1 clearly shows that the critical value of the αvdW parameter
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obtained using the present work does not agree well with the results of [11,12]. Nonetheless, Table 2
indicates that the critical value of the αcas parameter agrees with the cited reference [14], but with
a minor discrepancy that can be attributed to the single mode approximation assumed in the above
analysis. However, the proposed methodology is purely analytical and provides simpler expressions
in predicting properly and quickly the threshold limits for the cited basic design parameters and
therefore better and successful design with no possibility of damage/collapse of these nanobeams
during their fabrication process.

Table 1. Comparison of the critical van der Waal parameter using Equation (14) and its corresponding
maximum nanobeam deflection with the results of [11,12].

Parameter Equation (14) Results of [11] Results of [12]

αcr
vdW 0.3095 - 0.250

wmax @ αcr
vdW (in nm) 48.625 40.4 57.857

Table 2. Comparison of the critical Casimir parameter using Equation (16) and its corresponding
maximum nanobeam deflection with the results of [14].

Parameter Equation (16) Results of [14]

αcr
cas 0.249 0.230

wmax @ αcr
cas (in nm) 37.865 39.310

Afterward, an additional comparison is carried out in Table 3. In the table is the comparison of the
outcomes of both Equations (17) and (18) in calculating both the maximum possible nanobeam
detachment length and its respective minimum gap size respectively with the reported results
of [15]. A doubly-clamped nanobeam with modulus of elasticity E = 176 GPa, cross-sectional area
A = 2.96 × 10−19 nm2, thickness h = 3.5 nm and width b = 18 nm is assumed.

Table 3. Comparison of the threshold nanobeam detachment length Lcr and its respective minimum
gap size dcr obtained using Equation (17) and (18) for the case of van der Waals force and Casimir force,
respectively, with the results of [15].

Parameter
Van der Waals Force Case Casimir Force Case

Equation (17) Results of [15] Equation (18) Results of [15]

Lcr (in nm)
d = 16 nm d = 25 nm

298.85 312 324.77 340

dcr (in nm)
L = 200 nm

5.31 5.1 9.73 9.5

In the last part of this comparison sub-section, we propose to add the mid-plane stretching
effect and compare again the calculated critical values of the van der Waals αcr

vdW and Casimir αcr
cas

parameters for un-actuated doubly-clamped nanobeams, using Equations (14) and (16) correspondingly.
It is clearly demonstrated in Table 4 that as the mid-plane stretching parameter αst increases, the values
of both critical parameters αcr

vdW and αcr
cas also increase considerably. The reason behind this is that the

mid-plane stretching increases the overall stiffness of the nanobeam (i.e., its resulting restoring force)
that in turn makes the nanostructure harder (hardening behavior); hence, it can withstand higher
intermolecular forces before collapsing. The values obtained through the present analytical/numerical
approach are in acceptable agreement with the reported numerical, but non-closed-form solutions
of [10], as can be perceived in Table 4.
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Table 4. Effect of the mid-plane stretching parameter on the critical intermolecular force parameters as
compared with the results of [10].

αst
αcr

vdW αcr
cas

Equation (14) Results of [10] Equation (16) Results of [10]

6 51.5 53.5 39.3 40.89
12 54.5 57.7 41.1 42.29
18 57.7 62.57 42.3 44.62
24 61.1 67.73 43.9 47.29

3.3. Closed-Form Solutions for the Critical Pull-In Voltage for an Actuated Nanobeam

So far, we have considered only the case of an un-actuated nanobeam (zero DC electrostatic load),
and we subsequently investigated the nanobeam collapse problem governed by only the intermolecular
van der Waals and Casimir forces. In this sub-section, the effect of the applied DC load will be
investigated. Equations (14) and (16) are used to obtain the closed-form expressions for the pull-in
parameter αeV2

pull−in and its corresponding nanobeam deflection in the presence of the intermolecular
forces. The method of identifying the pull-in threshold value is to iterate on the forcing parameter
αeV2

DC with a reasonable step size and check its value at which the feasible and real solution of the
polynomial of k1 becomes imaginary and the system becomes unstable, hence undergoing the pull-in
structural instability.

First, the electric fringing field and intermolecular force effects are neglected (α f f = αvdW = αcas = 0)

in Equations (14) and (16), and the resulting pull-in parameter (αeV2
pull−in) values are compared

with the results of [30]. Both Equations (14) and (16) provide a pull-in parameter of ≈66.58. In [30],
this parameter value was numerically calculated to be equal to 70, and the comparison is satisfactory.

Next, we propose to investigate, as done before, two distinct cases for getting the closed-form
expressions of the pull-in parameter under the influence of the van der Waals and Casimir
forces, respectively.

3.3.1. First Case: Van der Waals Force Only (FvdW 6= 0 and FCasimir = 0)

√
Case with the fringing-field effect and without the mid-plane stretching effect:

First, the mid-plane stretching is neglected and the electric fringing field effect is incorporated in
the below closed-form analytical expression. The procedure can be summarized as follows: assuming
a different range of values of the van der Waals parameter (αvdW) ranging from 0–50 along with the
electric fringing field parameter (α f f ) ranging from 0–1, Equation (14) numerically and iteratively
solved the physical and real solution k1, which becomes imaginary. Then, and for each corresponding
αvdW and α f f value, the corresponding threshold pull-in parameter value of

(
αeV2

pull−in

)
is prescribed.

Accordingly, a 3D table is constructed correlating the values of the pull-in, van der Waals and
electric fringing field parameters all together. The table is first suitably curve fitted with a third
order polynomial using the MATLAB curve fitting toolbox as shown in Equation (19), with a calculated
RMS error of 0.03, and the outcome equation is then platted as shown in Figure 2.

αeV2
pull−in= 66.51− 28.95α f f − 1.45αvdW + 9.84α2

f f + 0.55α f f αvdW + 2.47× 10−3α2
vdW+

−1.464α3
f f − 0.145α2

f f αvdW + 3× 10−4α f f α2
vdW − 1.3× 10−5α3

vdW ;
(19)

As the pull-in parameter in Equation (23) is a function of both αvdW and α f f , the 3D plot shown in
Figure 2 is essentially a nonlinear plane. As expected, with the increase in both the gap to width ratio,
i.e., the electric fringing field parameter (α f f ) in addition to the van der Waals parameter, the pull-in
parameter reduces drastically.
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√
Case with the mid-plane stretching effect and without the fringing-field effect:

Next, the fringing-field effect is neglected, whereas the mid-plane stretching effect is varied in the
presence of the van der Waals effect. Similarly as was done in the previous sub-section, a 3D table is
constructed correlating the values of the pull-in, van der Waals and mid-plane stretching parameters all
together. The table is then curve fitted with a third order polynomial using the MATLAB curve fitting
toolbox as shown in Equation (20), with a calculated RMS error of 0.02, and the outcome equation is
then platted as shown in Figure 3.

αeV2
pull−in= 66.67 + 0.893αst − 1.45α2

vdW − 3.4× 10−3α2
st − 5× 10−3αstαvdW + 1.9× 10−3α2

vdW+

−4.43× 10−5α3
st − 7.01× 10−5α2

stαvdW − 2.44× 10−5αstα
2
vdW − 3× 10−6α3

vdW ;
(20)

As the pull-in parameter in Equation (23) is a function of both αvdW and αst, the 3D plot shown in
Figure 3 is basically a nonlinear plane. It can also be seen from the figure that an increase in the van
der Waals parameter decreases the pull-in values; however, an increase in the mid-plane stretching
parameter increases the pull-in values considerably.
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3.3.2. Second Case: Casimir Force Only (FvdW = 0 and FCasimir 6= 0)

Here, the pull-in parameter analytical expressions are derived considering the effect of Casimir
forces only.
√

Case with the fringing-field effect and without the mid-plane stretching effect:

Next, the fringing-field effect is varied from 0–1, whereas the mid-plane stretching effect is
neglected in the presence of the Casimir force effect. Similarly as was done in the previous sub-sections
on the van der Waal force case, a 3D table is constructed correlating values of the pull-in, Casimir
and the fringing electric field parameters all together. The table is then curve fitted with a third order
polynomial using the MATLAB curve fitting toolbox as shown in Equation (21), with a calculated RMS
error of 0.039, and the outcome equation is then platted as shown in Figure 4.

αeV2
pull−in= 64.76− 28.88α f f − 2.03αcas + 9.97α2

f f + 0.742α f f αcas + 0.0126α2
cas+

−1.52α3
f f − 0.189α2

f f αcas + 4× 10−4α f f α2
cas − 1× 10−4α3

cas;
(21)

As seen from Figure 4, and as expected, the increase in both the gap to width ratio (i.e., the fringing
field parameter), as well as the Casimir parameter both cause a significant decrease of the
pull-in parameter.
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√
Case with the mid-plane stretching effect and without the fringing-field effect:

Next, the electric fringing effect is neglected, and the mid-plane stretching effect is investigated
in the presence of Casimir effect. Similarly as was done in the previous sub-section, a 3D table is
constructed correlating the values of the pull-in, van der Waals and mid-plane stretching parameters all
together. The table is then curve fitted with a third order polynomial using the MATLAB curve fitting
toolbox as shown in Equation (22), with a calculated RMS error of 0.03, and the outcome equation is
then platted as shown in Figure 5.

αeV2
pull−in= 64.87 + 0.64αst − 2αcas − 1× 10−3α2

st − 5.2× 10−3αstαcas + 9.4× 10−3α2
cas+

− 1.9× 10−5α3
st + 8.3× 10−5α2

stαcas − 9.3× 10−5αstα
2
cas − 3.6× 10−6α3

cas;
(22)

It is apparent from Figure 5 that any assumed increase of the Casimir parameter decreases the
pull-in parameters, whereas any assumed increase in the mid-plane stretching effect increases the
pull-in values considerably.
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3.4. Comparison with the Literature of the Pull-In Parameter in Presence of Van der Waals and Casimir Forces

In this last sub-section of the results analysis, all the above computed analytical expressions
of the pull-in parameters will be compared with other previously published results for validation
purposes. Tables 5–8 summarize the comparison for both cases while assuming a non-zero van der
Waals parameter and also when assuming a non-zero Casimir parameter.

Table 5 displays a quantitative comparison of the calculated pull-in parameters using Equation (21)
respectively with the reported results of [14]. In the table, various Casimir parameters αcas are selected,
for two different fringing field parameters (i.e., α f f = 0 and 1), and neglecting mid-plane stretching
(αst = 0). The table shows that the pull-in parameter values obtained analytically are slightly lower than
the numerical value of [14]. This small discrepancy could be attributed to the numerical approximations
used in [14] and to the negligence of the higher-order modes in the present work.

Table 5. Variation of the pull-in parameter with the Casimir parameter as obtained using Equation (21)
and then as compared with the results of [14].

αcas
αff = αst = 0 αff = 1; αst = 0

Equation (21) Results of [14] Equation (21) Results of [14]

10 48.57 49.43 32.63 33.81
20 30.38 31.08 19.78 20.77
30 13.37 14.07 8.18 8.91

Next, the same pull-in parameters will be computed while the mid-plane stretching is assumed
to be non-zero, neglecting the fringing field effect, and considering both the influences of the van
der Waals and of the Casimir forces effects. The results are then compared with the outcomes [10]
and summarized in Tables 6 and 7, respectively. It can again be noticed from both tables that the
present analytical approach slightly underestimates the pull-in voltage parameters as compared to the
published values in [11], which can be over attributed to the one-mode approximation we assumed in
out analytical/numerical approach.

Finally, Table 8 delivers a quantitative comparison of pull-in voltage (in Volts) with and without
including the mid-plane stretching effect and then compared to the results of [12]. The comparison was
performed assuming a doubly-clamped nanobeam with an initial gap size of d = 20 nm, a thickness
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h = 3.5 nm, a width of b = 18 nm, a Young’s modulus of elasticity of E = 166 GPa and three assumed
beam lengths of L = 130 nm, L = 150 nm and L = 180 nm. Table 8 first shows that the comparison
with the results of [12] has an acceptable agreement. Second, it is noticed from the same comparison
table that neglecting the mid-plane stretching effect will lead to a significant difference in the pull-in
voltage estimation. It is also evident from the same table that the pull-in voltages obtained through
our proposed approach while incorporating both effects of the electric fringing field and the mid-plane
stretching agree well in both the van der Waals and Casimir force cases. For the case of Casimir force
only, the comparison is even more in agreement as compared with the outcomes when considering
only van der Waals force. This implies that for given beam dimensions and a 20-nm initial gap size,
the intermolecular effects can be properly modeled by considering the Casimir attraction force rather
than the van der Waals force. Therefore, this last assumption can yet serve as quick design guidelines
in the NEMS community.

Table 6. Variation of the pull-in parameter with the van der Waals parameter as obtained using
Equation (20) and then as compared with the results of [11].

αvdW
αst = 6

Equation (20) Results of [11]

10 62.57 63.21
20 46.18 47.9
30 29.1 33.2

Table 7. Variation of the pull-in parameter with the Casimir parameter as obtained using Equation (22)
and then as compared with the results of [11].

αcas
αst = 6

Equation (22) Results of [11]

10 54.24 55.8
20 34.31 35.77
30 14.68 18.2

Table 8. Variation of the pull-in voltage (in Volts) with both the van der Waals and Casimir parameters
as obtained using Equations (20) and (22), respectively, and then as compared with the results of [12].

L (nm)
Van der Waals Force Case Casimir Force Case

Equation (20)
αst = 0

Equation (20)
αst 6= 0

Results of [12]
αst 6= 0

Equation (22)
αst = 0

Equation (22)
αst 6= 0

Results of [12]
αst 6= 0

130 12.91 15.76 14.41 12.64 14.45 14.37
150 9.69 11.83 10.82 9.47 10.91 10.77
180 6.72 8.28 7.51 6.53 7.54 7.43

4. Conclusions

The present work proposes simple and yet generalized analytical expressions for determining
doubly-clamped electrically-actuated nanobeam-based NEMS actuator design limits for various critical
design parameters along with the appropriate static pull-in parameters under the influence of the
mid-plane stretching, the electric fringing field, the van der Waals and the Casimir forces. Firstly,
the coupled electromechanical problem of the nano-actuator is proposed and discretized using the
so-called Galerkin modal discretization technique. In the subsequent steps, the resulting integrals
and the higher order polynomials are solved numerically to get closed-form expressions for the
maximum nanobeam detachment length, its respective minimum gap size and the pull-in parameter
expressions when considering only the first mode of the nanobeam deflection. It has been further
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observed through extensive examinations that the incorporation of the intermolecular forces and the
electric fringing field effect result in a significant decrease in the pull-in voltage estimation, whereas the
presence of the mid-plane stretching parameter shows contrary effects. Finally, the derived expressions
and results were all compared and validated quantitatively with other reported literature showing
reasonable agreement.

The main advantage of the proposed approach in this work is that the derived closed-form
analytical expressions do not include any complicated terms or complex mathematical operations
unlike in the reported literature; hence, it can be willingly used by NEMS designers for quick and
closer estimation of critical design parameters to avoid any unprecedented structural damage during
fabrication or operation. The derived analytical expressions were presented to produce fair outcomes
for most common design parameters of nanobeam-based actuators. For nanobeams with a higher
stretching effect, it was found that these expressions yield less exact approximations due to the
limitations of the single-mode approximation. In such cases, a multi-mode-based numerical model is
to be implemented for more accurate results.

Finally, it is worth mentioning that this investigation treated both intermolecular forces
independently. Nonetheless, the obtained analytical expression can be further coupled to account
for the joint effect of both attractive forces. Consequently, the results could be further improved and
would be more comprehensive for scenarios where the two forces are of comparable strength.
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