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Abstract: This paper proposes an enhancement of the Bouc–Wen hysteresis model to capture the
frequency-dependent hysteretic behavior of a thin bimorph-type piezoelectric actuator which also
exhibits odd harmonic oscillation (OHO) at specific input frequencies. The odd harmonic repetitive
controller has recently been proposed to compensate for the hysteresis, and attenuates the OHO of the
piezoelectric actuator for which the hysteresis nonlinearity is regarded as a disturbance. This paper
proposes an alternate treatment of the hysteresis compensation with the attenuation of the OHO
observed at some input frequencies. It will be shown that the proposed compensator fully utilizes the
mathematical structure of the enhanced Bouc–Wen model proposed in this paper to compensate the
hysteresis and to attenuate the OHO. The results of the hysteresis compensation experiment illustrate
the excellent performance of the proposed control system, especially at the frequencies where OHO
is conspicuous.

Keywords: Bouc–Wen model; hysteresis modeling; odd harmonic oscillation; hysteresis compensation;
piezoelectric actuator

1. Introduction

Piezoelectric actuators are widely used both in industries and in consumer appliances because
of their advantages in size, fine positioning capability, and quick response characteristics. Examples
of their application include the nanopositioning stage of the atomic force microscope (AFM) [1],
HDD head positioning [2], and the actuation of a micro-robot [3]. However, it is well-known
to the researchers and practitioners in the field that hysteresis is observed in the response of the
piezoelectric actuator to its inputs, and the positioning accuracy is severely deteriorated if no
appropriate compensation is given. Great efforts have hence been devoted to the modeling and
compensation of hysteresis.

Many mathematical models have been developed to capture the behavior of the hysteresis
nonlinearity. Most of the models are phenomenological in the sense that the structure of the models
are not necessarily physically motivated, but determined to numerically represent the behavior as
precisely as possible. The phenomenological hysteresis models proposed to-date include the Preisach
model and its extensions [4,5], the Prandtl–Ishlinskii model [6], and the Bouc–Wen model [7].

Among the models stated in the previous paragraph, the Bouc–Wen model has attracted great
attention from researchers because of its mathematical simplicity, and the model has been used extensively
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in both the modeling and compensation of various hysteresis-related phenomena. Rakotondrabe [8]
proposed a control system to compensate hysteresis nonlinearity using the Bouc–Wen model. His work
can be classified as feedforward control in the control engineering context. His excellent contribution owes
its theoretical basis to the structure of the Bouc–Wen model, and there is no need to synthesize the inverse
hysteresis model to cancel the hysteresis. The authors of the current paper recently proposed an extension
of the Bouc–Wen model [9] to capture the behavior of a thin bimorph-type piezoelectric actuator which
exhibits frequency-dependent hysteresis, and synthesized a compensator based on the idea proposed by
Rakotondrabe. Hadineza et al. [10] formulated the multi-variable generalized Bouc–Wen model and used
it in the control of their experimental plant, in which multiple piezoelectric actuators are installed.

Recently, Li et al. [11] reported the existence of a special form of frequency-dependent hysteresis
nonlinearity in their piezo-driven nanopositioning stage which is referred to as the odd harmonic
oscillation (OHO). We have also observed the odd harmonic oscillation with our bimorph piezoelectric
actuator (e.g., the response to a 23 Hz pure sinusoidal input shown in Figure 18 [9]). Li clearly stated
that the odd harmonic oscillation is caused by the hysteresis nonlinearity of the piezoelectric actuator,
but they treated it as a disturbance and synthesized an odd harmonic repetitive controller to attenuate
the odd harmonic oscillation. We are highly motivated by the work of Li et al., as we believe that
attenuation of the odd harmonic oscillation can be treated in the course of model-based hysteresis
compensation. The present paper accordingly addresses the results of our effort on modeling the
frequency-dependent hysteresis of a thin bimorph piezoelectric actuator which also exhibits OHO.
We will hereafter refer to the model proposed in this paper as the enhanced Bouc–Wen model.

We will also propose a controller design based on the enhanced Bouc–Wen model which
compensates the hysteresis nonlinearity and attenuates the adherent OHO. The proposed controller
has a combined feedforward (FF) and feedback (FB) architecture. Many foregoing works can be
found in the literature which employ the FF + FB architecture to control the piezoelectric actuator.
This architecture is classified as a two degrees of freedom (2 d.o.f.) control system in the control
engineering context. Many preceding works which use the 2 d.o.f. controller assign the role of
hysteresis compensation to the feedforward controller and the accompanied feedback controller is
synthesized to compensate the inaccuracy, uncertainties, or to provide performance enhancement [12].
Examples of this type include the works by Xu and Li [13] and Li et al. [14].

There are also works which utilize the feedforward controller for an objective other than hysteresis
compensation. A prime example can be found in the works by Rakotondrabe et al. [15,16], in which
ZV input shaping [17] is adopted to synthesize feedforward control input for vibration suppression of
their 2-d.o.f. piezocantilever. The ZV input shaping technique generates a command signal sequence
which includes several impulse inputs. However, as it is a feedforward control method, it requires
parameter identification prior to the command signal calculation, and the control performance will be
deteriorated when only inaccurate system parameters are available. This paper proposes a controller
to attenuate the unwanted odd harmonic oscillation. It can be said that the proposed control method
for the attenuation of odd harmonic oscillation is an enhancement of ZV input shaping using feedback.

This paper is organized as follows. Section 2 states the derivation of the enhanced Bouc–Wen
model and details the development to introduce the inherent odd harmonic oscillation of a piezoelectric
actuator into the model. The procedure for the identification of the proposed enhanced Bouc–Wen
model is also addressed in the section. Section 3 dictates the identification experiment and its results.
Section 4 describes the details of the hysteresis compensator design which simultaneously attenuates
the odd harmonic oscillation. Section 5 illustrates the results of the hysteresis compensation experiment,
and conclusions are drawn in Section 6.
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2. Modeling the Behavior of Piezoelectric Actuator with the Bouc–Wen model

2.1. Extended Bouc–Wen Model for Bimorph Piezoelectric Actuator Showing Asymmetric Hysteresis Loop

The Bouc–Wen model is one form of phenomenological hysteresis model which was originally
proposed by Bouc and later generalized by Wen [18]. The Bouc–Wen model can be applied to many
mechanical systems. The original Bouc–Wen model employs a mechanical excitation as its input.
A Bouc–Wen model for a cantilevered piezoelectric actuator has been proposed in the literature [19]
which is described by a set of equations:

ḣ = Au̇− γ|h|u̇− β|u̇|h,

y = A1u− h,
(1)

where u denotes the input driving voltage applied to the actuator, h represents the state of the model,
and y amounts to the output displacement of the actuator [8,20]. The parameters A, γ, β, and A1

determine the geometric properties of the hysteresis loop obtained with the model (1): A governs the
amplitude, γ and β define the shape, and A1 is a gain constant between the input and the output. We
will elaborate on the extension of this model in the discrete time domain in this article. The discrete
version of (1) is given by

h[k] = h[k− 1] + A(u[k]− u[k− 1])− γ|h[k− 1]|(u[k]− u[k− 1])

− β|u[k]− u[k− 1]|h[k− 1]

y[k] = A1u[k]− h[k].

(2)

We applied the forward difference calculation to the time derivative terms for the discretization
of Equation (1). This would yield the appearance of the term u[k + 1] in the right hand side of the first
equation, which prevents its online calculation. We accordingly replace the discrete time step symbol k
with k− 1 to have the expression shown in the first equation of (2).

However, it is known that real-world piezoelectric actuators sometimes exhibit asymmetric
hysteresis loops whose centers are off the origin of the input/output plane. Figure 1 shows a photo of
the bimorph piezoelectric actuator (PZBA-00030, FDK, Tokyo, Japan) used in this study. This actuator
exhibits large bending displacement with a low-voltage driving signal. It has a low mechanical
resonance frequency, as shown in Table 1, which summarizes the physical specifications of the actuator.
We have been working on the controller design of this thin bimorph actuator because this actuator
shows rate-dependent hysteresis, phase lag to high-frequency inputs, and some other interesting
properties as a target of academic research. Figure 2 shows an example of the response of this
piezoelectric actuator. We can observe an asymmetric hysteresis loop whose center is off the origin of
the input/output plane.

Table 1. Specification of FDK PZBA-00030.

Physical Parameter Value

Full length 65 mm
Width 20 mm

Thickness 0.5 mm
Displacement driving at 70 V 0.6 mm

Resonance Frequency 103 Hz
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Figure 1. The bimorph type piezoelectric actuator PZBA-00030 by FDK used in this study.

Figure 2. An example of the off-center asymmetric hysteresis loop of the piezoelectric actuator used in
this study.

Additional difficulty arises in the modeling of the bimorph piezoelectric actuator as the frequency
of the driving input signal increases. This difficulty is the phase lag between the input and the output.
It will appear simultaneously with the hysteresis of the actuator. Figure 3 shows the input/output
plane trajectory of the actuator response to a 35 Hz pure sinusoidal input. This is a hysteresis loop of the
actuator. However, the zoomed part of the figure clearly shows that the output response of the actuator
exhibits phase lag to the driving input signal. This behavior cannot be seen in Figure 2. The source
of actuator displacement is physically an inverse piezoelectric effect which exhibits hysteresis. It is
natural to infer that the model we develop should have mathematical structures to account for both
the hysteresis and the phase lag originating from the cantilever structure of the actuator. We have
accordingly proposed the extended Bouc–Wen model to capture this behavior [9]. The extended
Bouc–Wen model is formulated by

h[k] = h[k− 1] + A(u[k]− u[k− 1]) + A0|u[k]− u[k− 1]|
− γ|h[k− 1]|(u[k]− u[k− 1])− β|u[k]− u[k− 1]|h[k− 1],

y[k] = y[k− 1] + c1y[k− 2] + c2y[k− 3] + A1u[k]− h[k],

(3)

where y[k] is the model output, u[k] is the input, and h[k] represents the hysteresis component, all
at time sample k. This model can be obtained by replacing the symbol A in (2) with the expression
A + A0 sgn(u[k]− u[k− 1]), intending to introduce the velocity sign sensitivity to the behavior of the
model which would lead to the asymmetric off-center hysteresis loop formation. It is fair to say that this
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idea is a simplified version of the generalized Bouc-Wen model proposed in [21]. The IIR filter structure
that can be found in the second equation is a mathematical representation of the structural dynamics
of the thin bimorph actuator. The symbols A, A0, γ, β, A1, c1, and c2 form the set of parameters of the
extended Bouc–Wen model. Figure 4 illustrates the capability of the extended Bouc–Wen model (3).
This response was calculated using the model (3) with fictitious parameter values. Phase lag can be
observed clearly in Figure 4.

Figure 3. Input/output map of the response of the actuator to 35 Hz pure sinusoidal input. The zoomed
part of the figure clearly shows that the output displacement takes its maximum value when the input
already starts decreasing.

(a) (b)

Figure 4. An example of the response of the extended Bouc–Wen model (3) with fictitious parameter
values. (a) Input/output plane; (b) Time domain.

2.2. Proposed Enhancement of the Bouc–Wen Model for Frequency-Dependent Hysteresis with Odd
Harmonic Oscillation

There is one more peculiarity observed in the behavior of the bimorph piezoelectric actuator.
Figure 5 shows the responses of our piezoelectric actuator to sinusoidal inputs whose frequencies are
(a) 14 Hz and (b) 23 Hz, respectively. Figures 2 and 5a,b clearly show that the shape of the hysteresis
loops may differ greatly as the frequency of the sinusoidal input signal varies. We performed a fast
Fourier transform (FFT) analysis on the responses of the piezoelectric actuator to 1, 14, 15, and 23 Hz
sinusoidal inputs. The results are summarized in Figure 6. It is clear that the response to the 14 Hz
input contains a 70 Hz element and the response to the 23 Hz input includes a 69 Hz component.
These two are the prime examples showing that the piezoelectric actuator occasionally exhibits odd
harmonic oscillation.

The bandwidth of the bimorph piezoelectric actuator we use in this study is comparably lower
than other piezoelectric actuators. Figure 7 shows the frequency characteristics of the output
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displacement of this piezoelectric actuator. The actuator seems to have a mechanical resonance
around 70 Hz, and external excitation higher than 80 Hz will be rolled off. Although we measured
the displacement of the actuator at a 1 kHz sampling rate and performed the frequency analysis,
we could not find spectrum corresponding to higher (more than fifth or seventh) odd harmonics.
Because we intend to synthesize a controller for pure sinusoidal reference whose frequency is up to
50 Hz in this study, and we can only observe the third or fifth harmonic in this input range, we will
concentrate on modeling the third and fifth harmonic components of the odd harmonics in the rest of
the development.

(a) (b)

Figure 5. Actuator responses to (a) 14 Hz and (b) 23 Hz sinusoidal inputs plotted in the
input/output plane.

(a) (b)

(c) (d)

Figure 6. The results of the fast Fourier transform (FFT) analysis of the responses of our piezoelectric
actuator to (a) 1, (b) 14, (c) 15, and (d) 23 Hz sinusoidal inputs.
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Figure 7. Frequency response characteristics of the bimorph piezoelectric actuator used in this study.
It was measured experimentally using a pure sinusoidal input whose frequency was altered from 1 Hz
to 100 Hz. It can be seen that this actuator has mechanical resonance at approximately 70 Hz.

In order to incorporate the third or the fifth harmonic response into the Bouc–Wen model, it is
necessary to augment the structure of the extended Bouc–Wen model to include the odd harmonic
oscillation. One elementary attempt is to use the exogenous input

u31[k] = sin(2π · 3 f · (k− 1)Ts)

u32[k] = cos(2π · 3 f · (k− 1)Ts)
(4)

to excite the third-order harmonic, and use when necessary

u51[k] = sin(2π · 5 f · (k− 1)Ts)

u52[k] = cos(2π · 5 f · (k− 1)Ts)
(5)

to excite the fifth-order harmonic, where f is the base frequency of excitation and Ts represents the
sampling interval. Li et al. [11] stated that the odd harmonic oscillation is caused by the hysteresis
nonlinearity. It is a natural consequence to infer that the structural dynamics will affect the odd
harmonic oscillation of the actuator used in this study. We thus propose the sets of equations

h[k] = h[k− 1] + A(u[k]− u[k− 1]) + A0|u[k]− u[k− 1]|,
−γ|h[k− 1]|(u[k]− u[k− 1])− β|u[k]− u[k− 1]|h[k− 1],

y1[k] = y[k− 1] + c1y[k− 2] + c2y[k− 3] + A1u[k]− h[k],

y3[k] = y3[k− 1] + c3y3[k− 2] + c4y3[k− 3] + α1u31[k] + α2u32[k],

y[k] = y1[k] + y3[k]

(6)

to capture the frequency-dependent hysteresis of the thin bimorph piezoelectric actuators exhibiting
the third-order harmonic, and

h[k] = h[k− 1] + A(u[k]− u[k− 1]) + A0|u[k]− u[k− 1]|,
−γ|h[k− 1]|(u[k]− u[k− 1])− β|u[k]− u[k− 1]|h[k− 1],

y1[k] = y[k− 1] + c1y[k− 2] + c2y[k− 3] + A1u[k]− h[k],

y5[k] = y5[k− 1] + c5y5[k− 2] + c6y5[k− 3] + α3u51[k] + α4u52[k],

y[k] = y1[k] + y5[k]

(7)

for frequency-dependent hysteresis with the fifth-order harmonic, where y1 represents the response
to the input of fundamental excitation frequency and y3 (y5) represents the third (fifth) harmonic
response. The term α1u31[k] + α2u32[k] in (6) or α3u51[k] + α4u52[k] in (7) should be regarded as the
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model of the hysteresis nonlinearity which causes the odd harmonic response. We still use the IIR
structure in the third equation of (6) and (7), as the output displacement of the actuator can only be
observed through the structural oscillation of the actuator. Figure 8 shows an example of the response
of the frequency-dependent hysteresis model (6) with the third-order harmonic oscillation to 23 Hz
sinusoidal input. The twisted shape of the hysteresis loop as observed in Figure 8a is caused by the
69 Hz component of the response which is included in the model (6).

(a) (b)

Figure 8. An example of the numerical response of the third-order harmonic hysteresis model (6) to 23 Hz
sinusoidal input. (a) Hysteresis loop in the input/output plane; (b) Its time domain representation.

2.3. Preparation for the Parameter Identification

We used the recursive least square (RLS) algorithm to identify the model parameters included
in (6) or (7). Both of these equations can be written in the form

y[k] = θTx, (8)

with the appropriate choices of the parameter vector θ and the regressor x. For the proposed enhanced
Bouc–Wen model (6) which captures the third-order harmonic oscillation, we have

θ = [ a1 , a2 , A1, A, A0, β, γ,

a3, a4, α1, α2]
T ; (9)

x =
[
y[k− 1], y[k− 2], u[k],

−
k

∑
i=1

(u[i]− u[i− 1]), −
k

∑
i=1
|u[i]− u[i− 1]|,

k

∑
i=1
|u[i]− u[i− 1]|h[i− 1],

k

∑
i=1
|h[i− 1]|(u[i]− u[i− 1]),

y3[k− 2], y3[k− 3], u31[k], u32[k]
]T

,

(10)

and similarly
θ = [ a1 , a2 , A1, A, A0, β, γ,

a5, a6, α3, α4]
T (11)



Actuators 2018, 7, 37 9 of 16

x =
[
y[k− 1], y[k− 2], u[k],

−
k

∑
i=1

(u[i]− u[i− 1]), −
k

∑
i=1
|u[i]− u[i− 1]|,

k

∑
i=1
|u[i]− u[i− 1]|h[i− 1],

k

∑
i=1
|h[i− 1]|(u[i]− u[i− 1]),

y5[k− 2], y5[k− 3], u51[k], u52[k]
]T

.

(12)

for the fifth-order harmonic model (7). In the experimental verification disclosed in Section 5 , we will
use our extended Bouc–Wen model in [9] for comparison. It is easy to see that the extended Bouc–Wen
model can also be written in the linear regression form (8) and the algebraic descriptions of θ and x for
the extended Bouc–Wen model are omitted accordingly.

3. Identification Experiment

A parameter identification experiment and a numerical validation of the identified model were
conducted to claim the high modeling accuracy of the proposed enhanced Bouc–Wen model (6) and (7).
Figure 9 shows the measurement setup. A pure sinusoidal input

u[k] = sin(2π · f · (k− 1)Ts) (13)

was calculated by the PC driven by the 3.2 GHz CPU (AMD, phenomX4 955, Santa Clara, CA, USA)
and fed to the piezoelectric actuator via D/A converter (Interface, LPC-361116, Hiroshima, Japan) and a
bipolar piezo driver (NF, As-904-150B, Yokohama, Japan) in Figure 9. The PC worked with the realtime
operating system ART-Linux with a sampling interval of 1 ms. A capacitance-type displacement sensor
(MESS-TEK, M-2218, Wako, Japan) together with a probe (MESS-TEK, TRA10251K-V3) were used to
measure the displacement of the actuator. This sensor probe had a measurement resolution of 10 nm.

Figure 9. Experimental apparatus for the parameter identification.

In the experiment, a single measurement corresponding to a single frequency f lasted for 100 s.
The RLS algorithm was used for parameter fitting as mentioned in the previous section. The initial
value of h[k] was set to 0 and the auto-correlation matrix was set to be the identity matrix I. Four of
the parameters A1, A, γ and β were given the initial values of 0.01, 0.005, 0.001, and 0.001, respectively.
The remaining parameters were set to 0. The experiment was repeated 50 times while altering the
input frequency from 1 to 50 Hz for every 1 Hz. We used the third harmonic model (6) for frequencies
from 18 to 28 Hz and the fifth harmonic model (7) for 14 Hz sinusoidal input in the frequency range
of interest, as we empirically know that the fifth-order harmonic oscillation is observed at f = 14 Hz
and the third-order harmonic oscillation appears around f = 23 Hz. It should be mentioned here that
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there was no difference between the extended Bouc–Wen model and the enhanced Bouc–Wen model
(6) or (7) at the remaining frequencies.

Figure 10 shows that the extended Bouc–Wen model produced a large modeling error at the
frequency where odd harmonic oscillation was observed, whereas the error was eliminated when the
proposed enhanced Bouc–Wen model was applied. Figure 11 shows the hysteresis loops calculated
with the extended Bouc–Wen model and the proposed enhanced Bouc–Wen model (6). The modeling
precision attained with the proposed enhanced Bouc–Wen model with the third harmonic component
was much better than that with the extended Bouc–Wen model.

Figure 10. The RMS modeling errors as a function of the input frequency.

(a) (b)

Figure 11. The model outputs and the measurement of the actuator displacement to the 23 Hz
sinusoidal input. The proposed enhanced Bouc–Wen model (6) shows good accuracy, whereas the
previous extended Bouc–Wen model fails to capture the twisted shape of the hysteresis loop. (a) Result
with the extended Bouc–Wen model in [9]; (b) Result with the enhanced Bouc–Wen model (6).

4. Compensation of Hysteresis Nonlinearity and Attenuation of Odd Harmonic Oscillation with
the Enhanced Bouc–Wen model

We employed a two-stage thinking strategy to synthesize a controller which not only compensates
hysteresis but also attenuates the odd harmonic. The final form of the proposed controller should
be classified as a FF + FB architecture as mentioned in the introduction, but the usage of feedback is
indirect. We first derive a hysteresis compensation control input u f [k] based on the direct inverse using
the first two equations of the enhanced Bouc–Wen model (6) and (7). We then synthesize an additional
control input u3 f [k] or u5 f [k] which amounts to the source of odd harmonic oscillation and subtract it
from u f [k], intending to cancel the source of odd harmonic oscillation. The details are given below.

We start from the derivation of the hysteresis compensation input u f [k]. It is based on the idea
referred to as the direct inverse multiplication proposed by Rakotondrabe [8] which is schematically
described by a block diagram in Figure 12.
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Figure 12. The direct inverse multiplication proposed by Rakotondrabe [8].

If the output of the model is identically equal to the desired output d, a simple algebraic
manipulation of (1) leads to the control law

ḣ(u) = Au̇− γ|h(u)|u̇− β|u̇|h(u)

u =
d + h(u)

A1
.

(14)

Following the same line, we replace the output terms y[k], y[k− 1], y[k− 2], y[k− 3] with their
desired values d[k], d[k− 1], d[k− 2], and d[k− 3] in the second equation of (3) to have

u f [k] =
d[k]− d[k− 1]− c1d[k− 2]− c2d[k− 3] + h[k]

A1
, (15)

where u f [k] denotes the synthesized control input at the k-th sampling interval. However, the control
law (15) is not feasible in its current form, as it includes h[k], and the calculation of h[k] in the first
equation of (3) requires u f [k]. We thus need further algebraic manipulation of the equation. Introducing
the first equation of (3) to (15) while carefully handling the absolute-valued terms included in the
equation, we have

q1[k] = d[k]− d[k− 1]− c1d[k− 2]− c2d[k− 3]

+ h[k− 1]− Au f [k− 1]− A0u f [k− 1] + γ|h[k− 1]|u f [k− 1] + βu f [k− 1]h[k− 1]

u f [k] = q1[k](A1 − A− A0 + γ|h[k− 1]|+ βh[k− 1])−1

(16)

as the control law when u f [k]− u f [k− 1] ≥ 0, or

q1[k] = d[k]− d[k− 1]− c1d[k− 2]− c2d[k− 3]

+ h[k− 1]− Au f [k− 1] + A0u f [k− 1] + γ|h[k− 1]|u f [k− 1]− βu f [k− 1]h[k− 1]

u f [k] = q1[k](A1 − A + A0 + γ|h[k− 1]| − βh[k− 1])−1

(17)

as the control law when u f [k]− u f [k− 1] < 0. These two formulas of the control law can be calculated
with the identified model parameters without having causality-related issues.

The control input u f [k] does not take odd harmonics into account. The tracking error between
the desired response d[k] and the actuator output y[k] with this control input u f [k] might be governed
by the odd harmonics. Figure 13 shows the result of FFT analysis of the tracking error signal when
the 23 Hz sinusoidal reference signal is given. The actuator is controlled by the inputs calculated
by (16) and (17). It can be seen from the figure that the error is governed by the third harmonic of the
input. Thus, it is natural to infer that the actuator motion in this kind of situation can be explained
numerically by the third equation defining y3[k] or y5[k] of the proposed enhanced Bouc–Wen model (6)
or (7). However, since we conducted the parameter identification experiment using a pure sinusoidal
input signal, the identified α1, α2 or α3, α4 cannot be used to attenuate the harmonic since the phase
and the amplitude of the third/fifth harmonic oscillation of the actuator under the control by u f [k]
would be different from the values observed with pure sinusoidal inputs.



Actuators 2018, 7, 37 12 of 16

In principle, the control law synthesized here to attenuate the odd harmonic oscillation is close to
the technique known as ZV input shaping [17], as the proposed input excites 180◦ out-of-phase odd
harmonic oscillation with the tracking error signal to cancel it out. Let α̂1, α̂2 (α̂3, α̂4 for fifth harmonic)
denote the values of αi (i = 1, 2, 3, 4), which explain the behavior of the tracking error—the difference
between d[k] and y[k]—governed by the third/fifth harmonic. These α̂is can be determined by the RLS
algorithm using the third equation of (6) or (7).

If we calculate the input signal by

û3 f [k] = α̂1u31[k] + α̂2u32[k] (18)

for the third harmonic behavior when the third harmonic is present, or

û5 f [k] = α̂3u51[k] + α̂4u52[k] (19)

for the fifth harmonic behavior when the fifth harmonic is present, the control law

u[k] = u f [k]− û3 f [k] (20)

for the reference frequency whose actuator response contains 3 f component, or

u[k] = u f [k]− û5 f [k] (21)

for the frequency whose actuator response contains 5 f component will compensate the hysteresis and
attenuate the third/fifth harmonic when it is present. The entire block diagram of the control system
proposed positioning tracking control system is given in Figure 14. The control input u f [k] compensates
both hysteresis and structural dynamics, and the additional input u3 f [k] or u5 f [k] attenuates the odd
harmonic oscillation.

Figure 13. The result of the FFT analysis of the tracking error for 23 Hz sinusoidal reference when
the actuator is controlled only by u f [k]. It is apparent that the error signal includes only the third
harmonic component.
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Figure 14. Proposed hysteresis compensator with the third/fifth harmonics attenuation. RLS: recursive
least square.

A short note should be given here about the implementation of the proposed control system.
We will do the RLS calculation on-line to determine α̂i in the control law using the measured tracking
error. However, because of the physical characteristics of the actuator used in this study (as shown in
Figure 15), we calculated the tracking error used in the RLS calculation by

e[k] = d[k]− y[k] (22)

for the reference frequencies between 18 and 22 Hz where third harmonic is present but is smaller than
or equal to 66 Hz, whereas we use the definition

e[k] = y[k]− d[k] (23)

for the reference frequencies of 14 and 23 to 26 Hz whose fifth or third harmonic exceeds 66 Hz.

(a) Response of the actuator to 66 Hz sinusoidal input (b) Response of the actuator to 69 Hz sinusoidal input.

Figure 15. Hysteresis loops of the actuator for (a) 66 Hz and (b) 69 Hz input sinusoids. Loop (a) is a
commonly observed loop whereas the polarity is inverted in loop (b).

5. Compensation Experiment

A hysteresis compensation experiment was conducted with the thin bimorph piezoelectric
actuator to show the validity of the proposed compensator. Results obtained with the controller
synthesized with the extended Bouc–Wen model hence discarding the odd harmonic oscillation are
also shown here for comparison.

Let the desired output be defined by

d[k] = α sin(2π · f · (k− 1)Ts) (k = 1, 2, · · · ), (24)

where α represents the amplitude of the desired trajectory and f is the driving frequency which was
altered from 1 Hz to 50 Hz with 1 Hz increment. The quantity α is determined by
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α =
∑m

i=1 yd[i]u[i]
∑m

i=1 u2[i]
(25)

for each f using the input sequence u[i] and the corresponding output measurement yd[i] both obtained
in the identification experiment, where m is the number of data points used for calculation. Root
mean squared compensation error was calculated for every frequency attempt using the data collected
after 20 s from the start of the control attempt to exclude the transient response from compensation
performance calculation.

Figure 16 shows the root mean squared error (RMSE) values of the tracking control. The proposed
hysteresis compensation with the third/fifth harmonic attenuation clearly outperformed the controller
based on the extended Bouc–Wen model, which does not consider the third/fifth harmonics. Figure 17
shows the result of the tracking control to the 23 Hz reference in time domain. High precision tracking
was achieved with the proposed controller shown in Figure 17b, whereas moderate tracking error
remains in Figure 17a.

Figure 16. The root mean squared error (RMSE) of compensation as a function of the input frequency.

(a) (b)

Figure 17. Time domain comparison of the output displacement of the piezoelectric actuator and the
reference trajectory. (a) Result of compensation for 23 Hz input: control input is synthesized with
only (16) and (17); (b) Result of compensation for 23 Hz input: control input is synthesized with the
proposed control law (20).

6. Conclusions

An enhanced Bouc–Wen model to capture the odd harmonic oscillation caused by the hysteresis
nonlinearity of a bimorph-type piezoelectric actuator is proposed in this paper. The model provides
high modeling accuracy for frequency-dependent hysteresis nonlinearity which also exhibits the
third/fifth harmonic oscillation. We also propose a hysteresis compensator based on the proposed
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enhanced Bouc–Wen model which also attenuates the third/fifth harmonic oscillation. The results of
the tracking control experiment with a pure sinusoidal reference whose frequency ranged between 1
and 50 Hz proved the excellent performance of the proposed control system.
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