
actuators

Article

Effect of Optimal Placement of Permanent Magnets
on the Electromagnetic Force in the
Horizontal Direction

Yasuaki Ito 1, Yoshiho Oda 1, Takayoshi Narita 2,* ID and Hideaki Kato 2

1 Course of Mechanical Engineering, Tokai University, Kitakaname 4-4-1, Hiratsuka-shi, Kanagawa 259-1292,
Japan; 8bemm008@mail.u-tokai.ac.jp (Y.I.); 7bemm025@mail.u-tokai.ac.jp (Y.O.)

2 Department of Prime Mover Engineering, Tokai University, Kitakaname 4-4-1, Hiratsuka-shi,
Kanagawa 259-1292, Japan; hkato@tokai-u.jp

* Correspondence: narita@tsc.u-tokai.ac.jp; Tel.: +81-463-58-1211

Received: 15 June 2018; Accepted: 24 August 2018; Published: 29 August 2018
����������
�������

Abstract: The surface quality of steel plates is deteriorated as they contact rollers while being
conveyed during manufacturing processes. To solve this problem, we previously proposed a hybrid
electromagnetic levitation system comprising electromagnets, permanent magnets, and a horizontal
positioning control system for steel plates. Moreover, to increase stability, we proposed integrating
these levitation systems. In this study, we aim to determine the optimal placement of permanent
magnets in the levitation system to suppress the deflection of a levitated steel plate for cases where
the magnetic field in the horizontal direction changes. Using a genetic algorithm, the optimal gap,
number, and placement of permanent magnets in the system are obtained.

Keywords: magnetic levitation; genetic algorithm; permanent magnet

1. Introduction

Permanent magnets can generate constant attractive force and are actively used in various
industrial fields. Several studies on electromagnetic levitation technology for ferromagnetic objects
have been performed focusing on this feature [1]. In the current steel plate production line,
transportation is achieved by contact conveyance by rollers. However, the surface of the steel plate
is damaged by this method, and the surface quality of the steel plate deteriorates. With non-contact
magnetic levitation transport using the electromagnet proposed by us, these problems can be prevented.
These studies consider using the attractive force generated by permanent magnets as a constant
suspension force for levitation [2,3]. Although this technology is expected to be applied in the
production of high-surface-quality steel plates, the thickness of the steel plate must be decreased to
reduce its weight. A steel plate with reduced flexural rigidity owing to its thinness is difficult to
levitate in a conventional magnetic levitation system because of exciting elastic vibration. To solve
this problem, we proposed a hybrid electromagnetic levitation system for thin steel plates where
permanent magnets are installed around electromagnets for levitation [4]. This system can suppress
the elastic vibration of levitated steel plates by generating an attractive force on the entire surface of the
steel plate using electromagnets and permanent magnets [5]. However, the number of arrangement
patterns of the permanent magnets is very enormous, and it is difficult to experimentally obtain a more
effective arrangement. Therefore, we focused on genetic algorithm (GA) which is one of optimization
algorithms effective for nonlinear objective function [6], which is used to obtain optimum shape of
electrical motor in several studies [7,8]. Furthermore, we confirmed that the GA we used to obtain
the optimal placement of permanent magnets, considering the interactions of the magnets with each
other, improved the levitation stability of the system [9,10]. In addition, we proposed adding another
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electromagnet in the horizontal direction and positioning controls to the electromagnetic levitation
system using vertical electromagnets for levitation [7]. This system generates tension on the edge of the
steel plate due to the electromagnetic field generated by the horizontal electromagnets. This tension
further suppresses the vibration of the steel plate and improves levitation. In this study, we propose
using a hybrid electromagnetic levitation system by applying horizontal positioning control and
determine the optimal placement of permanent magnets using a GA for a case where a horizontal
electromagnetic field is acting on the steel plate. Furthermore, we performed a levitation experiment
and considered the levitation stability of the optimal placement.

2. Outline of the Electromagnetic Levitation System Integrating Permanent Magnets and the
Horizontal Positioning Control System

The hybrid electromagnetic levitation system integrating positioning control in the horizontal
direction is shown in Figure 1. The object of electromagnetic levitation is a rectangular, zinc-coated
steel plate (SS400) with length of 800 mm, width of 600 mm, and thickness of 0.24 mm. To accomplish
noncontact support of this plate, as if it were hoisted by strings, we use five pairs of electromagnets
(No. 1–5 in Figure 1). The displacement of the steel plate is measured using five eddy-current
gap sensors. Here, the electric circuits of paired electromagnets are connected in series, whereas
an eddy-current gap sensor is positioned between the two magnets of each pair. The detected
displacement is converted to velocity using digital differentiation. A regulated voltage from the
digital-to-analog converter is supplied to a current-supply amplifier to control the attractive force of
the five pairs of electromagnets to ensure that the steel plate is levitated by 5 mm below the surface
of the electromagnets. In this model, independent control is used, wherein information on detected
values of displacement, velocity, and coil current of the electromagnet under study are fed back only
to the same electromagnet.
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Figure 1. Hybrid electromagnetic levitation system integrating positioning control in the
horizontal direction.

The horizontal displacement of the plate is measured using four laser beam displacement sensors.
The four velocities of the plate are detected by differentiating the signals from the displacement sensors
using a computer. The current flowing the electromagnet is obtained by measuring the voltage of
the resistor connected in series to the electric circuit. The permanent magnets are installed around
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electromagnet unit for levitation as shown in Figure 2. The size of the permanent magnet for levitation
assistance is 30 mm × 30 mm × 15 mm and the material is ferrite. The surface magnetic flux density is
0.12 T. Permanent magnets are placed such that the deflection of the floating steel sheet is suppressed
while using the above system.Actuators 2018, 7, x FOR PEER REVIEW  3 of 10 
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3. Control Model

3.1. Electromagnetic Levitation Control System

A mathematical control model is formulated to construct the hybrid electromagnetic levitation
control system. In this study, each electromagnet unit is controlled by considering the displacement
from the gap sensor installed within and the velocity and current of the electromagnet unit. Therefore,
the control model for levitation is established in each unit. Figure 3 shows the model of levitation
control for one electromagnet unit using the lumped parameter system. From previous study, it is
confirmed that by placing permanent magnets, the deflection of the steel plate is suppressed, and the
levitation stability improves [9–11]. From this result, the steel plate was assumed to be a rigid body.
The steel plate is virtually divided into five hypothetical masses. In an equilibrium levitation state,
a constant attractive force equal to the weight of the virtually divided steel plate needs to be generated
by the electromagnet, and the change of the attractive force from the equilibrium state causes the
motion of the virtually divided steel plate. The vertical motion of the steel plate is expressed as follows.
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We defined on the assumption that the inductance of one coil is expressed by the sum of the
effective inductance inversely proportional to the gap and the leakage inductance [12]. Since the two
electromagnets are not magnetically connected, mutual inductance is not considered.
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Using the state vector, Equations (1)–(4) are written as the following state equations.

.
z = Azz + Bzvz

z =
[

z
.
z iz

]T

Az =


0 1 0

2Fz ,
mzZ0

0 2Fz
mz Iz

0 − Le f f
Lz
· Iz

Z2
0
− Rz

2Lz

,

Bz =
[

0 0 1
2Lz

]T

(5)

Furthermore, vz is calculated by the state feedback control of Equation (6).

vz = −kzzkz =
[

pdz pvz piz

]
(6)

The value of each parameter and the feedback gain of the levitation control system are shown in
Tables 1 and 2.

Table 1. The value of each parameter.

Parameters Values

m 0.864 kg
E 206 GPa
ν 0.3

Z0 5 × 10−3 m
Rn 21.0 Ω
Leff 2.55 × 10−4 Hm
Llea 0.090 H
Ts 0.001 s

Table 2. The feedback gain of the levitation control system.

Parameters Values (No. 1–4 in Figure 1) Values (No. 5 in Figure 1)

pdz 1.41 × 104 1.52 × 104

pvz 1.37 × 102 1.55 × 102

piz 0.444 × 102 0.443 × 102
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3.2. Horizontal Positioning Control System

The horizontal motion of the steel plate was modeled to have a single degree of freedom, as shown
in Figure 4. Therefore, the same attractive forces were generated from the two electromagnets placed
at one side of the steel plate. The equation for small horizontal motion around the equilibrium state of
the steel plate subjected to the same static magnetic forces from the electromagnets at two edges is
expressed as follows.

m
..
x = f1 − f2 = fx (7)

fx =
4Fx

X0
x +

4Fx

Ix
ix (8)

d
dt

ix = −
Lxe f f

Lx
· Ix

X02
.
x− Rx

2Lx
ix +

1
2Lx

vx (9)

Lx =
Lxe f f

X0
+ Lxlea (10)

Using the state vector, Equations (7)–(10) can be written as the following state equations.

.
x = Ax x + Bxvx

x =
[

x
.
x ix

]T

Ax =


0 1 0

4Fx
mxX0

0 4Fx
mx Ix

0 − Lxe f f
Lx
· Ix

X2
0
− Rx

2Lx


Bx =

[
0 0 1

2Lx

]T

(11)

Here, the control signal is expressed as follows.

vx = −kxx (12)
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4. Determination of Optimal Placement

In the proposed system, by applying the attractive force of the permanent magnet to the area
where the attractive force of the electromagnet is lacking, the deflection of the levitating thin steel
plate is suppressed and the levitation stability of the system is improved, which is the aim of this
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study. However, experimentally searching for the optimal placement of the permanent magnets is
practically impossible because of the large number of combinations of the search patterns. Searching
is performed in the range where the steel plate is divided into 1

4 , and the position of the PM can
be arranged at intervals of 10 mm, considering the size of PM and the range of EM. Furthermore,
the maximum number of PMs is set to 15, and the search is performed within the range of 40 mm to
80 mm for Gap [9,10]. In addition, optimal placement is sought by considering interaction of PM by
past research [11]. The magnetic field applied by the horizontal electromagnet was analyzed by JMAG,
as shown in Figure 5.
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Figure 5. Analysis result of magnetic field (horizontal electromagnet).

We calculated the deflection of the thin steel plate by solving Equation (13), which express the
bending of the plate when the lateral load and the force in the central plane coexist [13], using the
finite differential method. Moreover, we used Equation (13), considering permanent magnets and
horizontal electromagnets, to obtain the optimal placement of the permanent magnets by GA during
levitation when the attractive force of the permanent magnets is applied. Owing to the large number
of combinations of the search patterns, the evaluation function J is defined as Equation (14) to evaluate
average deflection of the steel plate and local deflection.

D∇4z = fz + fx
∂2

∂2x
z + fPM − ρhg (13)

J = Jz
Jz0

wz +
JD
JD0

wD

Jz =

N
∑

i=1
|zi |

N
JD = |zmax|

wz = wD = 0.5

(14)

The evaluation value J becomes 1 when the permanent magnets are not installed. It is shown
that the shape of the thin steel plate is improved when the evaluation value J is small. The shape of
the thin steel plate that reduces the evaluation value J is determined from the deflection of the plate.
Figure 6a,b show the relation between the gap, defined as the distance from the permanent magnets
to the steel plate, and the evaluation value J in the search result. The left sides show the obtained
optimal placement of permanent magnets. Figure 7a,b show the results when the steady currents of
the horizontal electromagnet Ix are 0.3 A and 0.4 A, respectively. The results of this analysis show
that the optimal number of permanent magnets at 0.4 A is larger than that at 0.3 A. It is reasonable to
assume that the optimal gap at 0.4 A is larger than that at 0.3 A because of the increase of the attractive
force from the horizontal electromagnets. Therefore, as the attractive force of each permanent magnet
decreases, the placement with the optimal gap requires more permanent magnets.
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Figure 6. Evaluation value vs. gap in consideration of changed horizontal steady current.
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Figure 7. Optimal placement of permanent magnets considering the horizontal attractive force and
distribution of the attractive force acting on the steel plate.

5. Magnetic Levitation Experiment Using Optimal Placement

To evaluate the optimal placement obtained by a GA, levitation experiments were conducted
for cases where permanent magnets were installed and those wherein permanent magnets were not
installed in the levitation system. A distance of 5 mm was maintained between the surface of the steel
plate and the levitation electromagnets and between the edge of the steel plate and the horizontal
positioning control electromagnets. Based on analytical results, the steady current Ix was set to 0.3
and 0.4 A. Figure 8 shows the time histories of the measured displacement of the steel plate by the
eddy-current sensor installed in the central electromagnet unit and the experimental results with and
without permanent magnets. Figure 8a,b show the results when the steady current Ix is 0.3 A and
Figure 8c,d show the results when Ix is 0.4 A. For each steady current, when permanent magnets are
installed in the optimal placement, the vibration of the levitated steel plate can be suppressed. Figure 9
shows the comparison of the displacement standard deviations for each steady current. In this system,
the steel plate deflects where electromagnetic force does not reach the steel plate. It is considered
that this bending portion is the cause of the vibration of the steel plate. Furthermore, we consider
that bending was suppressed by attaching PM and vibration was suppressed. These results show the
validity of searching for the optimal placement of permanent magnets by a GA and the effectiveness
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of permanent magnets for vibration suppression when the magnetic field generated by the horizontal
electromagnets is changed.
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Figure 8. Time history of displacement at each steady current of the horizontal electromagnet.
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6. Conclusions

We determined the optimal number, gap, and placement of permanent magnets in the levitation
system to suppress the deflection of a levitated steel plate when the magnetic field acting on it is
generated from the horizontal direction. The levitation experiments were performed by applying the
obtained optimal placements of permanent magnets. The results show that the optimal placement of
permanent magnets can improve the levitation stability of the system even if the horizontal magnetic
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field changes. This supports the possibility of more stable transport methods for levitated steel plates
using optimal placements of permanent magnets.
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Nomenclature

The definitions of symbols used in this study are as follows:

E Young’s modulus of the thin steel plate (N/m2)
f vertical static magnetic force applied to the plate, which is generated by the permanent magnets (N/m2)
fz dynamic magnetic force (N)
Fx magnetic force of the coupled magnets in the equilibrium state (N)
Fz magnetic force of the coupled magnets in the equilibrium state (N)
g acceleration due to gravity (m/s2)
h plate thickness (m)
iz dynamic current of the coupled electromagnets (A)
ix dynamic current of the coupled magnets (A)
Ix current of the coupled magnets in the equilibrium state (A)
Iz current of the coupled electromagnets in the equilibrium state (A)
JD evaluation function of the maximum deflection (m)
Jz evaluation function of the average absolute deflection (m)
Llea leakage inductance of one magnet coil (H)
Lx inductance of one magnet coil in the equilibrium state (H)
Lxlea leakage inductance of one magnet coil (H)
Lxeff/X0 effective inductance of one magnet coil (H)
Lz inductance of one electromagnet coil in the equilibrium state (H)
mz virtually divided steel plate (kg)
N the total number of analysis points
Rx resistance of the coupled magnet coils (Ω)
Rz resistance of the coupled magnet coils (Ω)
Ts sampling time (s)
ν Poisson ratio
vx dynamic voltage of the coupled magnets (V)
vz dynamic voltage of the coupled magnets (V)
x coordinates in the width direction (m)
X0 gap between the steel plate and electromagnet in the equilibrium state (m)
y coordinates in the longitudinal direction (m)
z vertical displacement from the equilibrium state (m)
zi displacement at each analysis point on the thin steel plate (m)
zmax maximum deflection of the thin steel plate (m)
Z0 gap between the steel plate and electromagnet in the equilibrium state (m)
ρ plate density (kg/m3)
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