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Abstract: Estimations of magnetic flux linkages, either between the stationary windings of the
stator for the direct torque control (DTC), or between the stationary windings and the rotor for
the sensorless field-oriented control (FOC), are based on integration of corresponding voltages.
Integration of voltages with offsets that come from improperly calibrated measurements as well as
from transient states generally produces unwanted drifts in the resulting magnetic flux linkages,
which when used within any type of control of sensorless electrical drives results in instability.
This paper addresses that problem and proposes a simple self-contained solution based on orthogonal
properties of waveforms of input voltages and resulting magnetic flux linkages in the frame of
reference fixed to the geometry of the stator. The proposed solution requires only two periodic
orthogonal input waveforms with a distinct common fundamental harmonic, which as such is
independent of the type and parameters of the used machine. The idea of the proposed solution is
presented analytically, its stability is proven by means of the quadratic Lyapunov theory, and its
functionality is demonstrated by standalone simulations and experiments within the sensorless FOC
of a permanent magnet synchronous machine (PMSM).

Keywords: sensorless; electrical drives; permanent magnet synchronous machine; orthogonal;
magnetic flux linkages; integration; drift

1. Introduction

Variable frequency electrical drives (VFED) are typically operated either by the direct torque
control (DTC) or the field-oriented control (FOC), where the FOC requires the angular position of the
rotor for its operation. The angular position of the rotor is obtained via a position sensor that requires
an additional space and wiring that, besides an additional cost, might not be applicable in certain
environments. Thus, the demand for more robust and affordable electrical drives has spurred the
sensorless FOC that can be found in household and industrial applications. As it is described in [1],
the DTC is inherently a sensorless control that for its operation requires the total magnetic flux linkage
of the stationary windings of the stator (often referred to as stator flux linkage), while some versions of
the sensorless FOC, as those described in [2,3], are based on estimations of the magnetic flux linkage
between the stationary windings and the rotor (often referred to as rotor flux linkage).

Estimations of magnetic flux linkages are generally based on integration of corresponding voltages
that typically have offsets caused by improperly calibrated measurements as well as transient states
because of which the resulting waveforms of those magnetic flux linkages over time horizontally
drift away. A great majority of solutions to that problem is addressed in the frame of reference fixed
to the geometry of the stator ([αβ]), most of which are in applications with squirrel cage induction
machines (SCIMs). The simplest solution presented in [4] is based on the subtraction of the accumulated
average value of the resulting waveforms of the magnetic flux linkages from themselves cyclically every
period. While this solution works in steady states and for small transients, its dynamics are severely
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limited because the drift for larger transients can become too large within one period to be successfully
compensated. The standard solution to the problem of the drift is the replacement of the integrators by
low-pass filters (LPFs), where the idea is to asymptotically match the magnitude characteristic of the
integrators above 1 rad·s−1 in the frequency domain so that the gain for the frequencies below 1 rad·s−1

is one, or equivalently 0 dB. The same effect can be achieved with a high-pass filter (HPF) in a cascade
with each of the integrators. Such solutions with the fixed cut-off frequencies of the filters affect both
the magnitude and the phase of the output waveforms of the magnetic flux linkages, as it can be seen
from the results presented in [5–11]. The influence of the cut-off frequency on the magnitude for the
frequencies more than two octaves above it is practically negligible, while the influence on the phase
can be considered negligible for the frequencies more than two decades above the cut-off frequency.
Since the dynamics of the filters is proportional to their cut-off frequency, cascaded LPFs presented
in [12,13] vary their cut-off frequency to achieve better dynamics, while the influence on the magnitude
and the phase of the resulting magnetic flux linkages is compensated according to the frequency of
the input voltages. Similar solutions based on programmable LPFs with variable cut-off frequencies
are presented in [14–17], where the dynamics are defined by the ratio of the cut-off frequencies to the
frequency of the input voltages, while the magnitude and the phase of the resulting waveforms are
constant and as such are easily compensable. Solutions based on orthogonality between the input
voltages and the resulting magnetic flux linkages with an adaptive compensation of the magnitude of
the resulting waveforms are presented in [18,19]. Since these methods contain the sums of squared
values under square roots in the Cartesian to polar conversions, they require 32-bit implementation
that makes them unsuitable for inexpensive applications. Solutions with integrators are proposed
in [20–23], where the solution proposed in [20] exhibits limited dynamics that can be seen from the
settling time in the presented measurements. The solutions in [21,22] are fundamentally identical and
have good dynamics, but the downside is the requirement of the reference value of the magnitude of
the resulting magnetic flux linkage. A solution based on orthogonal properties of the waveforms of
input voltages and resulting magnetic flux linkages in the frame of reference fixed to the geometry of
the stator is presented in [23], where from the presented results of simulations and experiments it can
be seen that the settling times, and therefore the dynamics, are exceptionally good.

According to the results of the comparative simulations presented in [23] of the solution proposed
in [23] with the solutions from [5–11,21,22], the solution proposed in [23] appears to be the most
promising for further investigations. Hence, this paper proposes a simple self-contained solution that
is based on the idea introduced in [23] and introduces improvements in the performance regarding
fixed-point implementations on digital signal processors (DSPs) and filtering capabilities. The proposed
solution, therefore, offers the dynamics of the solution proposed in [23] with the filtering properties
of LPFs. The idea of the proposed solution is presented analytically, its stability is proven by means of
the quadratic Lyapunov theory, and its functionality is demonstrated by standalone simulations and
experiments within the sensorless FOC of a permanent magnet synchronous machine (PMSM).

2. An Electromagnetic Model of a PMSM

Three-phase SCIMs and PMSMs are the two most commonly utilized types of electrical machines.
Since a PMSM compared to a SCIM has a fixed position of the magnetic flux of the rotor and fewer
parameters required for its detection without a position sensor, its electromagnetic model is used
for demonstrations in this paper. For that purpose, under the assumption of Y-connected stationary
windings of the stator, an electromagnetic model of a permanent magnet synchronous machine can be
represented by its voltage equation in terms of the spatial phasor of the voltages across the stationary
windings (vs), the spatial phasor of the electrical currents in the stationary windings (is), the spatial
phasor of the total magnetic flux linkage of the stationary windings (λs), and the electrical resistance of
each stationary winding (Rs). This assumption does not limit the following model from being applied
to ∆-connected stationary windings, it only requires the ∆ to Y transformation of the equivalent
electromagnetic network. The general form of a spatial phasor of electrical or magnetic quantities of the
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stationary windings ( fs) based on scalar functions of electrical or magnetic quantities of the stationary
windings ( fsa, fsb, fsc) can be expressed via the base of natural logarithms (e) and the imaginary unit (j)
in terms of the electrical angular position of the rotor (θe), which is observed as a function of time (t),
and an arbitrary electrical angular position (ρe) as

fs(t, ρe) =
2
3
(

fsa(t) + fsb(t) ej2π/3 + fsc(t) ej4π/3)ej(ρe − θe(t)). (1)

The quantities of the voltage equation expressed in [αβ] are obtained from Equation (1) for ρe = θe,
whereby vs can be expressed via Rs, is, and λs. Thus, the projection of is onto [αβ] (is[αβ]) is defined in
terms of the magnitude of the fundamental harmonic of each electrical current in each of the stationary
windings (is,1), θe, and the electrical angular displacement of a direct axis of the synchronous magnetic
flux of the stator from the subsequent direct axis of the magnetic flux of the rotor (δe) as

is[αβ](t) = is,1(t) ej(θe(t) + δe(t)), (2)

where in the motoring mode δe is commonly referred to as the torque angle, while in the generating
mode it is referred to as the load angle. To account for the magnetic saliency of the machine by assuming
the cross-sectional symmetry of the stationary windings, the projection of λs onto [αβ] (λs[αβ]) can
be defined in terms of the stray inductance of each stationary winding (Lsσ), the magnitude of the
zeroth harmonic with respect to θe of the salient inductance of each stationary winding (Ls,0), and the
magnitude of the second harmonic with respect to θe of the salient inductance of each stationary
winding (Ls,2) including is[αβ], the complex conjugate of is[αβ] (īs[αβ]), and the magnetic flux linkage
between the stationary windings and the permanent magnets of the rotor (λm) as

λs[αβ](t) =
(

Lsσ +
3
2

Ls,0

)
is[αβ](t)−

3
2

Ls,2 īs[αβ](t) ej2θe(t) + λmejθe(t), (3)

where λm is commonly referred to as the rotor flux constant. The derivations of Lsσ, Ls,0, and Ls,2 are
available in [24]. Based on Rs and the definitions of is[αβ] and λs[αβ], provided by Equations (2) and (3),
respectively, the voltage equation in [αβ] as well as the projection of vs onto [αβ] (vs[αβ]) are defined as

vs[αβ](t) = Rsis[αβ](t) +
d
dt

λs[αβ](t). (4)

2.1. The Angular Position and Speed of the Rotor

Since θe points to the direct axis of the magnetic flux of the rotor that coincides with the angular
position of the last term in Equation (3), this term needs to be expressed preferably together with
any other coincident phasorial components. For that purpose, the inductive terms next to is[αβ] in
Equation (3) can be denoted by the total amount of Ls,0 with Lsσ in [αβ] (Ls[αβ],0) defined as

Ls[αβ],0 = Lsσ +
3
2

Ls,0, (5)

while the notation of the inductive terms next to īs[αβ] in Equation (3) can similarly be denoted by
introducing the amount of Ls,2 in [αβ] (Ls[αβ],2) defined as

Ls[αβ],2 =
3
2

Ls,2. (6)

Furthermore, the relationship between [αβ] and the frame of reference fixed to the magnetic flux
of the rotor ([dq]) in terms of is[αβ] and the projection of is onto [dq] (is[dq]) is defined as
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is[αβ](t) = is[dq](t) ejθe(t). (7)

Since the conjugate of the product of two complex numbers is equal to the product of the
conjugates of those two complex numbers, īs[αβ] in Equation (3) can be expressed in terms of the
complex conjugate of is[dq] (īs[dq]) as

īs[αβ](t) = īs[dq](t) e−jθe(t). (8)

By substituting Equations (5), (6) and (8) into Equation (3), λs[αβ] can be expressed as

λs[αβ](t) = Ls[αβ],0is[αβ](t)− Ls[αβ],2 īs[dq](t) ejθe(t) + λmejθe(t). (9)

The real parts of Equation (9) define the direct component of λs[αβ] (λs[α]) in terms of the direct
component of is[αβ] (is[α]), the direct component of is[dq] (is[d]), and the quadrature component of is[dq]
(is[q]) as

λs[α](t) = Ls[αβ],0is[α](t)− Ls[αβ],2
(
is[d](t) cos(θe(t)) + is[q](t) sin(θe(t))

)
+ λm cos(θe(t)), (10)

while the imaginary parts define the quadrature component of λs[αβ] (λs[β]) in terms of the quadrature
component of is[αβ] (is[β]), is[d], and is[q] as

λs[β](t) = Ls[αβ],0is[β](t)− Ls[αβ],2
(
is[d](t) sin(θe(t))− is[q](t) cos(θe(t))

)
+ λm sin(θe(t)). (11)

According to the relationship defined by Equation (7), is[q] can be expressed in terms of is[α] and
is[d] as

is[q](t) sin(θe(t)) = is[d](t) cos(θe(t))− is[α](t) (12)

as well as in terms of is[β] and is[d] as

is[q](t) cos(θe(t)) = is[β](t)− is[d](t) sin(θe(t)). (13)

By substituting Equation (12) into Equation (10) and Equation (13) into Equation (11), λs[αβ] can
be expressed as

λs[αβ](t) =
(

Ls[αβ],0 + Ls[αβ],2
)
is[αβ](t) +

(
λm − 2Ls[αβ],2is[d](t)

)
ejθe(t). (14)

Moreover, Ls[αβ],0 and Ls[αβ],2 can be expressed in terms of the direct synchronous inductance of
the stationary windings (Ls[d]) and the quadrature synchronous inductance of the stationary windings
(Ls[q]), which are typically used because they are easily measurable. Thus, Ls[αβ],0 can be expressed as

Ls[αβ],0 =
Ls[d] + Ls[q]

2
(15)

and Ls[αβ],2 as

Ls[αβ],2 =
Ls[q] − Ls[d]

2
. (16)

Based on Equations (15) and (16), Equation (14) can be rewritten as

λs[αβ](t) = Ls[q]is[αβ](t) +
[
λm −

(
Ls[q] − Ls[d]

)
is[d](t)

]
ejθe(t), (17)
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where the projection of the component of λs whose argument equals θe onto [αβ] (λsθ[αβ]) can be
denoted as

λsθ[αβ](t) =
[
λm −

(
Ls[q] − Ls[d]

)
is[d](t)

]
ejθe(t). (18)

Based on the direct component of λsθ[αβ] (λsθ[α]) and the quadrature component of λs[αβ] (λsθ[β]),
θe can be obtained via the four-quadrant inverse tangent function as

θe(t) = atan2(λsθ[β](t), λsθ[α](t)) =





atan
(

λsθ[β](t)
λsθ[α](t)

)
, λsθ[α] > 0;

atan
(

λsθ[β](t)
λsθ[α](t)

)
+ π, λsθ[α] < 0, λsθ[β] ≥ 0;

atan
(

λsθ[β](t)
λsθ[α](t)

)
− π, λsθ[α] < 0, λsθ[β] < 0;

π

2
, λsθ[α] = 0, λsθ[β] > 0;

−π

2
, λsθ[α] = 0, λsθ[β] < 0;

undefined, λsθ[α] = 0, λsθ[β] = 0,

(19)

and the electrical angular speed of the rotor (ωe) as

ωe(t) =
d
dt

θe(t). (20)

According to Equations (17) and (18), λs[αβ] can be expressed as

λs[αβ](t) = Ls[q]is[αβ](t) + λsθ[αβ](t), (21)

from where can λsθ[αβ] based on Equation (4) be expressed as

λsθ[αβ](t) =
∫ (

vs[αβ](t)− Rsis[αβ](t)
)

dt− Ls[q]is[αβ](t). (22)

This way of expressing θe and ωe eliminates the need for Ls[d], which simplifies the observer that
can be constructed based on Equations (19), (20) and (22) as it is shown by the diagram in Figure 1.

Ls[q]
is[αβ] Rs

vs[αβ]
+ − vsλ[αβ] ∫

(·)dt
λs[αβ] + − λsθ[αβ]

atan2(·) θe

d
dt (·) LPF ωe

Figure 1. A diagram of the observer proposed for experiments, where ωe is additionally filtered by
an LPF.

The simplicity and filtering properties of integration make this observer highly desirable and
frequently used in selsorless applications of PMSMs whose examples can be found in [25–28], however,
the drift caused by the integration represents the major obstacle in its practical implementations.
In the case of significant changes in Rs that might be caused by extreme changes in temperature
as well as in Ls[q] that, depending on the design of the machine, might saturate by high currents,
actual values of Rs and Ls[q] can be estimated using the method described in [29]. The overall diagram
of the sensorless FOC for PMSMs with a voltage source inverter (VSI) controlled by means of the
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space-vector modulation (SVM) that is regulated by proportional-integral controllers (PIs) is shown in
Figure 2.

is[d]-ref
+

−
PI

nref
Rate

Limiter
+

−
PI

is[q]-ref
1

s1
2

+

−
PI

ejθe SVM

vDC

VSI
vs[αβ]

Observer

θe

ωe60
2πpp

n

2⇐ 3e−jθe

is[αβ]is[d]

is[q]

PMSM

2πpp
60

∫
(·)dt

2
s2

1

Figure 2. A simplified diagram of the sensorless FOC for PMSMs.

To initialize the sensorless FOC by the maximum of the electromagnetic torque (Tem) for the
reference of is[q] (is[q]-ref), δe should optimally be 90◦. Since θe and the mechanical speed of the rotor (n)
are initially unknown, the initialization of the control is performed by setting the switches s1 and s2 in
the position 1 and the reference of is[d] (is[d]-ref) to the nominal value of the machine, while keeping
is[q]-ref and the reference of n (nref) at zero, until the direct axis of the rotor aligns with the magnetic
axes of the stationary winding a. After the alignment of the rotor, nref is set to a desired value, based on
which a forced value of θe is generated. Simultaneously with nref, is[q]-ref is set to the nominal value of
the machine and is[d]-ref to zero. The rate limiter in Figure 2 ensures a controlled rise in nref until the
value when the observer begins to generate values of ωe and θe. At that moment, the switches s1 and
s2 are simultaneously set to the position 2 when the sensorless FOC is operational.

3. The Problem of the Drift

The drift can be defined as the accumulated offset caused by integration of an offset in the voltage
represented by the integrand in Equation (22). Such an offset is primarily caused by initial conditions
at transient states and additionally often by improperly calibrated shunts whose influence should be
and typically is negligible. To present the problem in [αβ], it is sufficient to consider vs[αβ] and is[αβ] in a
steady state. Therefore, vs[αβ] with an offset can be defined in a steady state according to Equation (20)
in terms of the magnitude of the zeroth harmonic of vs[αβ] (vs[αβ],0), which represents an offset in vs[αβ],
the magnitude of the fundamental harmonic of each voltage across each of the stationary windings
(vs,1), ωe, δe, and the angular shift in the phase of is with respect to vs (φi) as

vs[αβ](t) = vs[αβ],0 + vs,1ej(ωet+ δe − φi). (23)

Similarly, is[αβ] with an offset can be defined in a steady state based on Equation (2) by adding the
magnitude of the zeroth harmonic of is[αβ] (is[αβ],0), which represents an offset in is[αβ], and replacing
θe according to Equation (20) by ωet as

is[αβ](t) = is[αβ],0 + is,1ej(ωet+ δe). (24)

Based on Equations (23) and (24), the derivative of λs[αβ] with respect to t in Equation (4) can be
expressed as
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d
dt

λs[αβ](t) = vs[αβ],0 + vs,1ej(ωet+ δe − φi) − Rs
(
is[αβ],0 + is,1ej(ωet+ δe)

)
, (25)

whose integration from t = 0 to t = ∞ results in

λs[αβ](t) = −j
1

ωe

(
vs,1ej(ωet+ δe − φi) − Rsis,1ej(ωet+ δe)

)
+
(
vs[αβ],0 + Rsis[αβ],0

)
t + λs[αβ](0). (26)

From Equation (26) it can be seen that vs[αβ],0 and is[αβ],0 over time cause a linear increase in λs[αβ]

and together with the initial condition λs[αβ](0) constitute the drift in λs[αβ].

3.1. A Solution to the Problem

By expressing the direct component of vs[αβ],0 (vs[α],0) and the direct component of is[αβ],0 (is[α],0)
in Equation (25), λs[α] is defined as

d
dt

λs[α](t) = vs[α],0 + vs,1 cos(ωet + δe − φi)− Rs
(
is[α],0 + is,1 cos(ωet + δe)

)
, (27)

while based on the quadrature component of vs[αβ],0 (vs[β],0) and the quadrature component of is[αβ],0
(is[β],0) in Equation (25), λs[β] is defined as

d
dt

λs[β](t) = vs[β],0 + vs,1 sin(ωet + δe − φi)− Rs
(
is[β],0 + is,1 sin(ωet + δe)

)
. (28)

According to Equation (26), λs[α] is defined as

λs[α](t) =
1

ωe

(
vs,1 sin(ωet + δe − φi)− Rsis,1 sin(ωet + δe)

)
+
(
vs[α],0 − Rsis[α],0

)
t + λs[α](0), (29)

while λs[β] is defined as

λs[β](t) =
1

ωe

(
Rsis,1 cos(ωet + δe)− vs,1 cos(ωet + δe − φi)

)
+
(
vs[β],0 − Rsis[β],0

)
t + λs[β](0), (30)

where λs[α](0) and λs[β](0) are initial conditions. Since the trigonometric terms in Equations (28)
and (29) differ only by the factor of ωe, the components causing the drift in the voltage equivalent
to the uncompensated derivative of λs[α] with respect to t (vsλ[α]) can be extracted and compensated
by introducing the correction of the drift in λs[α] expressed at the level of vsλ[α] (vsλ[α]-corr), which is
adjustable by the gain of the compensation loop (k), in the form

vsλ[α]-corr(t) =
(

ωe(t) λs[α](t)−
d
dt

λs[β](t)
)

k sgn(ωe(t)). (31)

Similarly, the trigonometric terms in Equations (27) and (30) differ in their signs and by the factor
of ωe, thus, the components causing the drift in the voltage equivalent to the uncompensated derivative
of λs[β] with respect to t (vsλ[β]) can be extracted and compensated by introducing the correction of the
drift in λs[β] expressed at the level of vsλ[β] (vsλ[β]-corr), also adjustable by k, in the form

vsλ[β]-corr(t) =
(

ωe(t) λs[β](t) +
d
dt

λs[α](t)
)

k sgn(ωe(t)). (32)
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Hence, the compensated derivative of λs[α] with respect to t is then obtained as

d
dt

λs[α](t) = vsλ[α](t)− vsλ[α]-corr(t), (33)

while the compensated derivative of λs[β] with respect to t is

d
dt

λs[β](t) = vsλ[β](t)− vsλ[β]-corr(t). (34)

Due to causality, ωe needed for the proposed compensation cannot be obtained by Equation (20),
instead, it needs to be calculated prior to the compensation. Thus, ωe is calculated based on vsλ[α] and
vsλ[β] as

ωe(t) =
d
dt

atan2(vsλ[β](t), vsλ[α](t)) (35)

and as such is used instead of Equation (20) for the sensorless FOC. Since differentiation amplifies
noise, it is practically always implemented in a cascade with an LPF. Thus, by expressing Equation (35)
in the form of a transfer function in the Laplace domain in terms of the cut-off frequency of the low-pass
filter for the filtering of ωe (ωc) as

ωe(s) = s
ωc

s + ωc
L{atan2(vsλ[β](t), vsλ[α](t))}, (36)

which can be rearranged to the form

ωe(s) =
ωc

1 +
ωc

s

L{atan2(vsλ[β](t), vsλ[α](t))} (37)

and observed as a closed-loop system, the observer of ωe can be constructed as it is shown in Figure 3.
Moreover, based on the diagram in Figure 3, the observer of ωe can be expressed in the time domain as

ωe(t) = ωc

[
The error.︷ ︸︸ ︷

atan2(vsλ[β](t), vsλ[α](t))−
∫

ωe(t)dt

− 2π

⌊
1

2π

(
atan2(vsλ[β](t), vsλ[α](t))−

∫
ωe(t)dt

)⌉

︸ ︷︷ ︸
The wrapping of the error between −π and π.

]
, (38)

where the resulting error needs to be wrapped between −π and π to match the range of the
four-quadrant inverse tangent function. The proposed compensation of the drift, presented by
Equations (31)–(34) including Equation (38), represents a multiple input–multiple output (MIMO)
phase-locked loop (PLL), which for an easier understanding is graphically presented by the diagram
in Figure 4.

vsλ[αβ] atan2(·) +

−
+ −

ωc ωe

∫
(·)dt

1
2π b·e 2π

Figure 3. A diagram of the proposed observer of ωe.
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vsλ[α]
+ −

d
dt λs[α] ∫

(·)dt λs[α]
× × +

−
×
×

vsλ[α]-corr

sgn(·) k

×
×

+ + × ×

vsλ[β]-corr

vsλ[β]
+

− d
dt λs[β]

∫
(·)dt λs[β]

atan2(·) +

−
+ −

ωc
∫
(·)dt

1
2π b·e 2π

Figure 4. A diagram of the proposed compensation of the drift.

3.2. The Stability of the Proposed Compensation of the Drift

From Equations (31)–(34) it is obvious that the proposed compensation of the drift represents a
nonlinear time-varying system that can be described by a pair of differential equations, namely

d
dt

λs[α](t) =
1

k2 + 1
(
vsλ[α](t)− k|ωe(t)|λs[α](t) + k sgn(ωe(t)) vsλ[β](t)− k2ωe(t) λs[β](t)

)
, (39)

and

d
dt

λs[β](t) =
1

k2 + 1
(
vsλ[β](t)− k|ωe(t)|λs[β](t)− k sgn(ωe(t)) vsλ[α](t) + k2ωe(t) λs[α](t)

)
, (40)

where the nonlinearity defined by Equation (38) is represented by ωe, which varies with t. Due to their
specific structure, Equations (39) and (40) can be observed in a state-space as a linear parameter-varying
system. Thus, by defining the state vector (x) as

x(t) =

[
λs[α](t)

λs[β](t)

]
(41)

and the input vector (u) as

u(t) =

[
vsλ[α](t)

vsλ[β](t)

]
(42)

as well as the state matrix (A) as

A(ωe(t)) =



− k|ωe(t)|

k2 + 1
− k2ωe(t)

k2 + 1
k2ωe(t)
k2 + 1

− k|ωe(t)|
k2 + 1


 (43)

and the input matrix (B) as

B(ωe(t)) =




1
k2 + 1

k sgn(ωe(t))
k2 + 1

− k sgn(ωe(t))
k2 + 1

1
k2 + 1


, (44)
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the observed system can be presented in the state-space form

d
dt

x(t) = A(ωe(t)) x(t) + B(ωe(t)) u(t). (45)

According to [30], the quadratic stability of the observed system for all uncertainties in ωe,
where ωe is bounded, can be proven in terms of a square matrix (P) by constructing a quadratic
Lyapunov function candidate (V) in the form

V(x(t)) = xT(t) Px(t) (46)

so that a quadratic Lyapunov equation (Q) fulfills the condition

−Q(ωe(t)) = AT(ωe(t)) P + PA(ωe(t)) < 0, (47)

where

P = PT > 0, (48)

which is only true if all leading principal minors of P are positive. Accordingly, P can be selected in
the diagonal form, in which case the element in the first row and the first column of P (P1,1) and the
element in the second row and the second column of P (P2,2) must be positive definite, thus

P =

[
P1,1 0

0 P2,2

]
. (49)

By substituting Equations (43) and (49) into Equation (47), the following inequality is obtained



−2k|ωe(t)|

k2 + 1
P1,1

k2ωe(t)
k2 + 1

(
P2,2 − P1,1

)

k2ωe(t)
k2 + 1

(
P2,2 − P1,1

)
−2k|ωe(t)|

k2 + 1
P2,2


< 0, (50)

which is fulfilled if

det(−Q1,1(ωe(t))) = −
2k|ωe(t)|

k2 + 1
P1,1 < 0 (51)

and

det(−Q(ωe(t))) =
(

2k|ωe(t)|
k2 + 1

)2

P1,1P2,2 −
[

k2ωe(t)
k2 + 1

(
P2,2 − P1,1

)]2
> 0. (52)

The first condition defined by Equation (51) is fulfilled if k > 0 and ωe 6= 0, while the second
condition defined by Equation (52) is always fulfilled if k 6= 0, ωe 6= 0, and P1,1 = P2,2. Therefore,
by choosing P1,1 = P2,2, the system is quadratically stable for arbitrarily fast time-varying uncertainties
in ωe if k > 0 and ωe 6= 0. The validity of these conditions can be checked by Equations (31) and (32),
where if ωe = 0, then vsλ[α]-corr = 0 and vsλ[α]-corr = 0 because sgn(0) = 0, which according to
Equations (33) and (34) cancels the proposed compensation. Hence, the condition ωe 6= 0 ensures the
existence of vsλ[α]-corr and vsλ[α]-corr, while sgn(ωe) ensures the negative feedback in Equations (33)
and (34). Similarly, k = 0 cancels the proposed compensation, while k < 0 turns the negative feedback
into a positive feedback and therefore makes the system unstable. Thus, only k > 0 preserves the
negative feedback and the stability.
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4. Results of Simulations of the Proposed Compensation

To demonstrate the standalone functionality of the proposed compensation of the drift, without the
sensorless FOC and considerations of possible states of the drive, several simulations were made in
Matlab/Simulink (R2016a, MathWorks Inc., Natick, MA, USA) using the diagram shown in Figure 5.

Figure 5. The Simulink diagram of the proposed compensation used for simulations.

As test signals, the waveforms of vsλ[α] and vsλ[β] were set to demonstrate the performance of the
proposed compensation for changes in their magnitude and frequency. Thus, the initial magnitude
from 0 to 0.5 s was set to 0 V, from 0.5 to 3 s was set to 1 V, and from 3 s onward was set to 2 V,
while the frequency from 0 to 6 s was set to 10 rad·s−1 and from 6 s onward was set to 20 rad·s−1, as it
is shown in Figure 6. The goal of the first simulation was to show the influence of k on the performance
of the proposed compensation. The resulting waveforms of λs[α] and λs[β] obtained for the constant
value of ωc of 1000 rad·s−1 and different values of k are shown in Figure 7. From Figure 7, it can be
seen that values of k smaller than 1 result in overshoots in transient states whose settling time is longer
for smaller values of k. Values of k greater than 1 produce undershoots whose settling time is longer
for greater values of k. Hence, the value of k equal to 1 evidently provides the fastest response, that is,
the shortest transient states. Based on that notion, the influence of variations in ωc is presented by the
resulting waveforms of λs[α] and λs[β] in Figure 8, where the value of k was set to 1 and ωc varied.
From Figure 8, it can be noticed that variations in ωc, or equivalently, changes in the bandwidth of the
LPF for the filtering of ωe have a small influence on λs[α] and λs[β] in transient states.

0 2 4 6 8
−2

0

2

t/s

vsλ[α]/V

vsλ[β]/V

Figure 6. The reference waveforms of vsλ[α] and vsλ[β] used as test signals for simulations.
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λs[α]/Wb
∣∣
k = 0.1

λs[α]/Wb
∣∣
k = 1

λs[α]/Wb
∣∣
k = 10
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∣∣
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∣∣
k = 1

λs[β]/Wb
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Figure 7. The resulting waveforms of λs[α] and λs[β] obtained by the simulation for ωc = 1000 rad·s−1

and different values of k, including the uncompensated case equivalent to k = 0.

0 2 4 6 8
−0.2

0

0.2

t/s

λs[α]/Wb
∣∣
ωc = 10 rad·s−1

λs[α]/Wb
∣∣
ωc = 100 rad·s−1

λs[α]/Wb
∣∣
ωc = 1000 rad·s−1

0 2 4 6 8
−0.2

0

0.2

t/s

λs[β]/Wb
∣∣
ωc = 10 rad·s−1

λs[β]/Wb
∣∣
ωc = 100 rad·s−1

λs[β]/Wb
∣∣
ωc = 1000 rad·s−1

Figure 8. The resulting waveforms of λs[α] and λs[β] obtained by a simulation for k = 1 and different
values of ωc.

Results of Comparative Simulations of the Proposed Compensation and Referred Methods

For qualitative comparisons of the proposed compensation with the state of the art, the standard
solution with LPFs instead of the integrators presented in [5–11] was chosen as the first reference
method, while the previous compensation introduced in [23] and presented by the diagram in Figure 9
was chosen as the second reference method.

In the simulations, the cut-off frequencies of the LPFs in the first reference method were set to
1 rad·s−1 to asymptotically match the magnitude characteristic of an integrator above 1 rad·s−1 in
the frequency domain. For the most unbiased comparison with the second reference method, k in the
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proposed compensation was set to 1 and ωc in both models was set to be equal, since the calculation
of ωe in both models is the same. The resulting waveforms of λs[α] and λs[β] to the same reference
waveforms of vsλ[α] and vsλ[β] in Figure 6 are shown in Figure 10.

Figure 9. The Simulink diagram of the previous compensation presented in [23] and used for
comparative simulations.

0 2 4 6 8

−0.2

0

0.2

t/s

λs[α]/Wb
∣∣
LPFs

λs[α]/Wb
∣∣
previous

λs[α]/Wb
∣∣
proposed

0 2 4 6 8

−0.2

0

0.2

t/s

λs[β]/Wb
∣∣
LPFs

λs[β]/Wb
∣∣
previous

λs[β]/Wb
∣∣
proposed

Figure 10. The resulting waveforms of λs[α] and λs[β] obtained by a comparative simulation of the
standard solution with LPFs presented in [5–11], the previous compensation presented in [23], and the
proposed compensation.

The magnitude of λs (|λs|) obtained as

|λs|(t) =
√(

λs[α](t)
)

2 +
(
λs[β](t)

)
2 (53)

is shown in Figure 11, while the angular shift in the phase of λs with respect to the spatial phasor of
the voltage equivalent to the uncompensated derivative of λs with respect to t (φλ) is acquired as

φλ(t) = atan2(λs[β](t), λs[α](t))− atan2(vsλ[β](t), vsλ[α](t))

− 2π

⌊
1

2π

(
atan2(λs[β](t), λs[α](t))− atan2(vsλ[β](t), vsλ[α](t))

)⌉
(54)

and shown in Figure 12.



Actuators 2018, 7, 63 14 of 23

0 2 4 6 8
0

0.1

0.2

0.3

t/s

|λs|/Wb
∣∣
LPFs

|λs|/Wb
∣∣
previous

|λs|/Wb
∣∣
proposed

Figure 11. The results of |λs| obtained by a comparative simulation of the standard solution with LPFs
presented in [5–11], the previous compensation presented in [23], and the proposed compensation.

0 2 4 6 8
−150

−100

−50

0

t/s

φλ/◦∣∣
LPFs

φλ/◦∣∣
previous

φλ/◦∣∣
proposed

Figure 12. The results of φλ obtained by a comparative simulation of the standard solution with LPFs
presented in [5–11], the previous compensation presented in [23], and the proposed compensation.

From the results presented in Figures 10–12, it can be seen that the proposed compensation
and the previous compensation presented in [23] have very similar settling times that are inversely
proportional to ωe as well as significantly faster than the standard solution with LPFs. In Figure 12 it
can be noticed that φλ of both the proposed compensation and the previous compensation presented
in [23] in the steady states is −90◦, as it is expected for integration, while for the standard solution with
LPFs that is not the case. The proposed compensation has better filtering properties than the previous
compensation in [23] due to its feedback-based structure, no discontinuities, and no divisions, which in
fixed-point implementations on a DSP for small divisors can cause overflows and are generally more
expensive than multiplications. To demonstrate the filtering properties, a random noise with the
magnitude of 5% of the magnitude of vsλ[α] and vsλ[β] was added to them, which resulted in the noisy
test signals shown in Figure 13.

0 2 4 6 8
−2

0

2

t/s

vsλ[α]/V

vsλ[β]/V

Figure 13. The reference waveforms of vsλ[α] and vsλ[β] used as noisy test signals for a simulation
with disturbances.

The resulting waveforms of λs[α] and λs[β] to the reference waveforms of vsλ[α] and vsλ[β] in
Figure 13 are shown in Figure 14, from which it can be noticed that the proposed compensation
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preserves the dynamic of the previous compensation in [23] while having the filtering properties
of LPFs, but without any undesirable influence on |λs| and φλ in steady states.

0 2 4 6 8
−0.5

0

t/s

λs[α]/Wb
∣∣
LPFs

λs[α]/Wb
∣∣
previous

λs[α]/Wb
∣∣
proposed

0 2 4 6 8

−0.2

0

0.2

0.4

t/s

λs[β]/Wb
∣∣
LPFs

λs[β]/Wb
∣∣
previous

λs[β]/Wb
∣∣
proposed

Figure 14. The resulting waveforms of λs[α] and λs[β] obtained by the simulation of the standard
solution with LPFs presented in [5–11], the previous compensation presented in [23], and the proposed
compensation, all with the noisy test signals.

5. Results of Experiments of the Proposed Compensation within the Sensorless FOC of a PMSM

The practical functionality and the robustness of the proposed compensation was tested in the
fixed-point 16-bit Q15 implementation within the Sensorless FOC of a PMSM on a MOSFET-based
power electronics converter controlled by the Texas Instruments (Dallas, TX, USA) TM4C123BE
microcontroller at the switching frequency of 10 kHz. Parameters of the PMSM used in the experiments
are listed in Table 1.

Table 1. Parameters of the PMSM used in the experiments.

Parameter Symbol Value Unit

DC-Link Voltage vDC 24.00 V
Nominal Mechanical Speed nn 4000.00 min−1

Nominal Torque Tn 0.36 N·m
Number of Pole Pairs pp 2.00
Stator Resistance Rs 0.15 Ω
Direct Synchronous Inductance Ls[d] 0.39 mH
Quadrature Synchronous Inductance Ls[q] 0.59 mH
Rotor Flux Constant λm 14.78 mWb

To test the speed of the convergence of the proposed compensation, a step in n from 0 to
4000 min−1 for k = 0.5 and ωc matching the nominal electrical angular speed of the machine (ωn) was
performed after the alignment of the rotor without any load and the initialization described at the end
of Section 2.1. The results of that experiment are shown in Figure 15. Since each settling time in |λs|
is equal to the corresponding one in φλ, as it is demonstrated in Figures 11 and 12, φλ can be taken
as the measure of the speed of the convergence of the proposed compensation. Thus, from the plot
of φλ in Figure 15, it can be seen that the proposed compensation converges under 20 ms, while the
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longer settling time of the magnitude of λsθ[α] and λsθ[β], which corresponds to λm in Table 1 since
is[d]-ref was kept zero, is imposed by the rest of the control system. It should also be noticed that |λs| is
proportional to the quotient of the magnitude of vsλ[α] and vsλ[β] (|vsλ|) and ωe, where the relationship
between ωe and n is defined in terms of the number of pole pairs (pp) as

ωe(t) =
2πpp

60
n(t). (55)

Although a startup from a standstill is possible, it is advisable to perform the initialization
described at the end of Section 2.1 to avoid initial uncertainties and ensure a smooth start.
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−100
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t/s

φ
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◦

Figure 15. Results of an experiment of a step in n from 0 to 4000 min−1 for k = 0.5 and ωc = ωn.

To demonstrate the influence of variations in ωc on the robustness of the proposed compensation
and its influence on the sensorless FOC, three comparative experiments of a step in n from 1000 to
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4000 min−1 for k = 0.5 and varying ωc were performed. The results of those experiments are shown
in Figure 16, where the error in θe (θe-err) is expressed in terms of θe and the actual electrical angular
position of the rotor (θe-act) obtained by a position sensor as

θe-err(t) = θe(t)− θe-act(t). (56)

From the results presented in Figure 16 it can be noticed that lower values of ωc result in higher
overshoots and longer settling times for the same requirements of the sensorless FOC regarding the
dynamics. However, overshoots can be reduced by reducing the dynamics of the sensorless FOC,
which can be achieved by proportionally reducing the gains of the PIs in Figure 2.
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Figure 16. Results of comparative experiments of a step in n from 1000 to 4000 min−1 for k = 0.5 and
variations in ωc.

For the demonstration of the influence of variations in k on the robustness of the proposed
compensation and its influence on the sensorless FOC, three additional comparative measurements of
a step in n from 1000 to 4000 min−1 for ωc = ωn and varying k were done. From the results of those
experiments presented in Figure 17, it can be noticed that k mostly influences the amount of oscillations
in the system. Those oscillations become more noticeable for smaller values of k when vsλ[α]-corr and
vsλ[β]-corr are not sufficiently high enough to adequately compensate the drift. In addition, from the
results of φλ for k = 0.2 in Figure 17, it can be noticed that at lower values of ωe, or equivalently
n, the magnitude of oscillations is greater because there is more time per an electric period for the
accumulation of an offset that causes the drift and, consequently, oscillations.
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Figure 17. Results of comparative experiments of a step in n from 1000 to 4000 min−1 for ωc = ωn and
variations in k.

The robustness of the proposed compensation as well as its influence on the sensorless FOC during
loading of the machine was tested by loading the machine with a hysteresis brake. Four comparative
experiments for k = 0.5 and ωc = 0.2ωn were carried out in the range of n from 1000 to 4000 min−1

in steps of 1000 min−1. From the resulting measurements shown in Figure 18, it can be seen that the
machine was overloaded to about 125% of the nominal torque (Tn) listed in Table 1, whereby the peaks
of the error in φλ as well as in θe-err are more prominent at lower values of n because, as previously
mentioned, there is more time per an electric period for the accumulation of an offset that causes the
drift. Based on the presented results, it can be concluded that the error in φλ and θe-err can be reduced
by increasing k.

It is important to mention that the measured values of θe-act were used only as reference values
for the evaluation of the performance of the proposed compensation within the sensorless FOC.
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Figure 18. Results of loading of the machine at 1000, 2000, 3000, and 4000 min−1 obtained by
comparative experiments for k = 0.5 and ωc = 0.2ωn.

6. Conclusions

This paper has presented a simple self-contained solution that stems from the idea previously
introduced in [23], which as such introduces improvements in the performance regarding fixed-point
implementations on DSPs as well as filtering capabilities. The results of simulations presented in
Section 4 have shown that the proposed compensation combines the dynamics of the previous solution
proposed in [23] with the filtering properties of the standard solution with LPFs presented in [5–11].
Additionally, the results of experiments presented in Section 5 have confirmed the robustness of the
proposed compensation and its functionality within the sensorless FOC.

In summary, the proposed compensation:

• is efficiently designed to be computationally suitable for inexpensive applications;
• for its operation requires only two periodic orthogonal input waveforms with a distinct common

fundamental harmonic;
• is completely independent of the type and parameters of the used machine;
• provides correct values of |λs| and φλ in steady states;
• has dynamics adjustable by ωc and k, which provide a fine-tuning without affecting |λs| and φλ

in steady states;
• can be used within the DTC and the sensorless FOC, or any other system that satisfies the

requirement of orthogonality stated in the second point.
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Abbreviations

[αβ] the frame of reference fixed to the geometry of the stator
[dq] the frame of reference fixed to the magnetic flux of the rotor
DSP digital signal processor
DTC direct torque control
FOC field-oriented control
HPF high-pass filter
LPF low-pass filter
MIMO multiple input–multiple output
MOSFET metal-oxide-semiconductor field-effect transistor
PI proportional-integral controller
PLL phase-locked loop
PMSM permanent magnet synchronous machine
SCIM squirrel cage induction machine
SVM space-vector modulation
VFED variable frequency electrical drives
VSI voltage source inverter

Nomenclature

A the state matrix
B the input matrix
δe the electrical angular displacement of a direct axis of the synchronous magnetic flux of the

stator from the subsequent direct axis of the magnetic flux of the rotor
e the base of natural logarithms
fs a spatial phasor of electrical or magnetic quantities of the stationary windings
fsa a scalar function of an electrical or magnetic quantity of the stationary winding a
fsb a scalar function of an electrical or magnetic quantity of the stationary winding b
fsc a scalar function of an electrical or magnetic quantity of the stationary winding c
is the spatial phasor of the electrical currents in the stationary windings
is[αβ] the projection of is onto [αβ]
īs[αβ] the complex conjugate of is[αβ]

is[αβ],0 the magnitude of the zeroth harmonic of is[αβ]

is[dq] the projection of is onto [dq]
īs[dq] the complex conjugate of is[dq]
is[α] the direct component of is[αβ]

is[α],0 the direct component of is[αβ],0
is[β] the quadrature component of is[αβ]

is[β],0 the quadrature component of is[αβ],0
is[d] the direct component of is[dq]
is[d]-ref the reference of is[d]
is[q] the quadrature component of is[dq]
is[q]-ref the reference of is[q]
is,1 the magnitude of the fundamental harmonic of each electrical current in each of the

stationary windings
j the imaginary unit
k the gain of the compensation loop
Lsσ the stray inductance of each stationary winding
Ls,0 the magnitude of the zeroth harmonic with respect to θe of the salient inductance of each

stationary winding
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Ls,2 the magnitude of the second harmonic with respect to θe of the salient inductance of each
stationary winding

Ls[αβ],0 the total amount of Ls,0 with Lsσ in [αβ]
Ls[αβ],2 the amount of Ls,2 in [αβ]
Ls[d] the direct synchronous inductance of the stationary windings
Ls[q] the quadrature synchronous inductance of the stationary windings
λs the spatial phasor of the total magnetic flux linkage of the stationary windings
λs[αβ] the projection of λs onto [αβ]
λsθ[αβ] the projection of the component of λs whose argument equals θe onto [αβ]
λm the magnetic flux linkage between the stationary windings and the permanent magnets of

the rotor
λs[α] the direct component of λs[αβ]

λs[β] the quadrature component of λs[αβ]

λsθ[α] the direct component of λsθ[αβ]

λsθ[β] the quadrature component of λs[αβ]

|λs| the magnitude of λs
n the mechanical speed of the rotor
nref the reference of n
ωe the electrical angular speed of the rotor
ωc the cut-off frequency of the low-pass filter for the filtering of ωe
ωn the nominal electrical angular speed of the machine
P a square matrix
P1,1 the element in the first row and the first column of P
P2,2 the element in the second row and the second column of P
pp the number of pole pairs
φi the angular shift in the phase of is with respect to vs
φλ the angular shift in the phase of λs with respect to the spatial phasor of the voltage

equivalent to the uncompensated derivative of λs with respect to t
Q a quadratic Lyapunov equation
Rs the electrical resistance of each stationary winding
ρe an arbitrary electrical angular position
t time
Tem the electromagnetic torque
Tn the nominal torque
θe the electrical angular position of the rotor
θe-act the actual electrical angular position of the rotor
θe-err the error in θe
u the input vector
V a quadratic Lyapunov function candidate
vs the spatial phasor of the voltages across the stationary windings
vs[αβ] the projection of vs onto [αβ]
vs[αβ],0 the magnitude of the zeroth harmonic of vs[αβ]

vs[α],0 the direct component of vs[αβ],0
vs[β],0 the quadrature component of vs[αβ],0
vs,1 the magnitude of the fundamental harmonic of each voltage across each of the stationary

windings
vsλ[α] the voltage equivalent to the uncompensated derivative of λs[α] with respect to t
vsλ[α]-corr the correction of the drift in λs[α] expressed at the level of vsλ[α]

vsλ[β] the voltage equivalent to the uncompensated derivative of λs[β] with respect to t
vsλ[β]-corr the correction of the drift in λs[β] expressed at the level of vsλ[β]

|vsλ| the magnitude of vsλ[α] and vsλ[β]

x the state vector
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