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Abstract: A force generator module (FGM) based on magnetorheological fluid (MRF) was developed
to provide force-feedback information for applications in tele-robotic bone biopsy procedures. The
FGM is capable of rapidly re-producing a wide range of forces that are common in bone biopsy
applications. As a result of the nonlinear nature of MRF, developing robust controllers for these
mechanisms can be challenging. In this paper, we present a case study motivated by robotic bone
biopsy. We use a non-linear Hammerstein-Wiener (H-W) estimator to address this challenge. The case
is presented through three studies. First, an experiment to develop design constraints is presented
and describes biopsy force measurements for various animal tissues. Required output forces were
found to range between <1 N and <50 N. A second study outlines the design of the FGM and presents
the experimental characterization of the hysteretic behavior of the MRF. This data is then used as
estimators and validators to develop the nonlinear Hammerstein-Wiener (H-W) model of the MRF.
Validation experiments found that the H-W model is capable of predicting the behavior of the MRF
device with 95% accuracy and can eliminate hysteresis in a closed-loop control system. The third
study demonstrates the FGM used in a 1-DOF haptic controller in a simulated robotic bone-biopsy.
The H-W control tracked the input signal while compensating for magnetic hysteresis to achieve
optimal performance. In conclusion, the MRF-based device can be used in surgical robotic operations
that require a high range of force measurements.

Keywords: magnetorheological fluid based; nonlinear Hammerstein-Wiener model; hysteresis;
control technique; force-feedback; bone biopsy

1. Introduction

Telerobotic surgery is being increasingly applied to a variety of medical procedures. Such
systems provide haptic feedback to the operator to realistically transmit tissue interactions for safe and
appropriate manipulation. However, current haptic interfaces have several shortcomings that limit
their use in medical applications such as a bone biopsy. For example, many existing medical haptic
devices currently used are intended for soft tissue manipulation. In applications such as bone biopsies,
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surgeons must penetrate both soft tissue and hard tissue and, therefore, require haptic technologies
capable of rapidly shifting between the sensation of small and large forces that would be associated
with such tissues. There is no commercially available device that reliably provides such performance.
Consequently, robot-assisted bone biopsy surgeries are currently performed in two steps. First, robot
guidance is used to approach the biopsy site through soft tissue and then the robot is stopped and
the second phase of performing the cortical bone biopsy is continued manually [1]. This two-step
approach is inefficient and can introduce errors, which may present risks to patients.

Frequently, surgeons report the lack of effective haptic feedback as a major limitation in current
robotic surgeries [2]. The inability to detect applied force often leads to increased forces applied
through the device, which results in tissue trauma and potential complications. Wager and Howe [3]
reported that force sensation reduces tissue damage risk, which is indexed by the level of applied force.

Many of the current tele-robotic systems available rely on graphical visual display rather than
direct haptic force-feedback to convey information to the surgeon. Although substantial information
about environmental properties and forces can be acquired through visual observations of the surgical
instrument, it would be preferable to depend less on visual cues and more on force sensation. This is
particularly true for “blind” operations such as biopsy where the visual distortions of the tissue may
be less apparent and, therefore, less helpful for inferring applied tissue forces.

To overcome these limitations for robotic bone biopsy, it is necessary to develop a haptic device
that can render a high dynamic range of forces while maintaining high accuracy. This paper presents
the development of a prototype force generator module (FGM (FGM refers to the force-generating
module that we have designed and built based on the MRF. This is a naming convention used solely
for this study. FGM consists of a 1 DOF mechanism.)) based on magnetorheological fluid (MRF
(MRFs refers to a magnetorheological fluid in general.)) that can be used in constructing future haptic
force-feedback devices for tele-operated surgical robots.

An MRF is a suspension of micron-sized ferromagnetic particles in a nonmagnetic carrier fluid
whose rheological characteristics change continuously and reversibly within a few milliseconds in
response to external magnetic fields [4,5]. Some examples of haptic interfaces and rehabilitation
devices based on MRFs have been utilized in medical applications outlined in References [6–9].
Magnetorheological fluids offer the following advantages: First, they rapidly respond to magnetic
field changes within 10–30 ms [10] and they are capable of reversibly shifting from free-flowing liquids
to semisolids. These features make MRFs suitable for mimicking the tissue interactions that need to
be transmitted by surgical haptic devices [4]. Moreover, MRF devices are controlled intrinsically by
adjusting the magnetic field intensity applied to them [11] and the electromagnets, which generate the
magnetic field around the MRF, can be controlled with a low-voltage power supply (2–24 V, 1–2 A) and
power amplitudes between 2 W and 50 W [4,12]. These features can simplify the mechanism design
while offering a wide range of output forces. In general, MRFs operate with magnetic fields in the
range of 0.1–0.4 T.

In this work, we present a series of three studies that progressively build to outline
the development of a force generating module (FGM) for use in constructing haptic feedback
master-manipulators for bone-biopsy procedures. The first study focuses on the collection of design
constraints through the characterization of the tissue forces experienced in robotic bone-biopsy.
Although many studies present tissue force data, there exists no dedicated experimental investigation
of maximum penetration force in a bone biopsy procedure. Furthermore, continuous force-signals are
required for the development of non-linear controllers to predict the behavior of MRF. As a result, we
describe an experiment that is used to obtain this data. These results are compared to previous work
as a reference. For example, Ong and Bouazza-Marouf (2000) [13] reported bone biopsy forces ranging
from 2 N to 50 N in porcine femurs. Alam et al. reported bovine femoral shaft force measurements of
25 N to 85 N [14] and Lee et al. [15] reported an abrupt decrease in force beyond the depth of a pilot
hole while drilling into bone.
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The second study outlines the development of the FGM including its physical construction,
a description of the modelling techniques used to predict the behavior of the non-linear MRF, and
validation experiments. MRF-based devices have been extensively integrated in a variety of mechanical
devices especially with robotics applications [16–18]. Furthermore, rehabilitation devices and haptic
interfaces based on MRFs have been utilized in many medical applications. In Reference [19],
Ahmadkhanlou et al. developed an MRF-based damper in a steer-by-wire vehicle that provides
haptic feedback to the driver. The study in Reference [7] describes a 2-DOF MRF-based joystick for
virtual reality applications. Additionally, a semi-active high-performance 2-DOF MRF-based display
was developed by Yamaguchi [8]. Through these studies, various methods have been proposed to
model the non-linear behavior of MRF by using both parametric and nonparametric techniques.

Parametric models are favored because they are easy to implement [20]. The most common
parametric models include the Bingham model, the Bouc-Wen model, and phenomenological
models [21–23]. However, parametric models based on physical elements can be divergent if initial
assumptions are incorrect or if appropriate parameter constraints are not applied [24]. Furthermore,
for MRF devices, it can be difficult to account for nonlinear and hysteretic behaviors using these
parametric techniques and this approach often requires substantial computational time, which yields
lower accuracy solutions in practice.

Alternatively, nonparametric modeling approaches such as interpolation techniques [25] and
neural-based methods [26] employ analytical expressions to describe the characteristics of a modeled
device. Nonparametric models are robust to linear, nonlinear, and hysteretic systems and, therefore,
they are better able to predict the dynamic responses of MRF-based devices. However, their modelling
architecture and training methods are complex. Thus, in this study, we propose the use of a nonlinear
black-box model to overcome the disadvantages of these conventional approaches.

Block-oriented models are established based on limited knowledge of the underlying physics or
dynamics of the system [27], which simplifies their modelling architecture and training methods.
Therefore, block-oriented models have a low cost of identification, are appropriate for control
design [28], and are preferred for nonlinear systems because they provide flexible parameterization for
nonlinear systems [29]. One such approach is the nonlinear Hammerstein-Wiener (H-W) model.

The third study presented in this work describes the development of a feedback control strategy.
Previous studies used the force feedback sensor and magnetic induction measurement imbedded in
their system to eliminate and reduce off-state force of the MRF-based device [30]. In this study, we are
using the H-W model as an estimator. This study investigates the utility of incorporating the FGM into
a master-slave configuration for tele-robotic bone biopsy.

The primary contributions of this work include the following: First, experiments that characterize
the tissue-forces expected for bone-biopsy, which provide important design constraints for developing
similar haptic devices. Second, the detailed design of an MRF based device is an improvement to prior
work [31]. Third, a detailed description of the H-W black-box modeling strategy is used to predict the
behavior of the MRF as well as experimental characterization of the model’s performance when it is
applied to the FGM. Fourth, a feedback control strategy is proposed and its performance when the
FGM is applied in a telerobotic setup for biopsying ex vivo tissue samples is assessed.

2. Materials and Methods

2.1. Study One: Biopsy Tissue-Force Characterization

This section describes experiments used to characterize the forces required in the bone biopsy. The
forces required for soft tissue and bone manipulation were previously characterized in Reference [32].
However, to develop the FGM, a continuous set of data that closely replicates the surgical conditions is
required. This section describes the experimental methods used to collect this information.
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2.1.1. Robotic Testing Platform

The experimental setup consists of a platform for gripping different tissue specimens and a
needle attached to the tip of the slave robot for penetrating the tissues. The slave console (Figure 1)
included a DENSO VP series six-axis articulated robot, a control module (DENSO Robotics, Aichi,
Japan), and a Gamma multi-axis ATI force/torque sensor (ATI Industrial Automation, NC, USA)
equipped with a 16-bit data acquisition board (National Instruments, Austin, TX, USA). The robot
used an open-architecture interface with the QUARC 2.2 DENSO robot block set, Simulink®, and
MATLAB® (MATHWORKS, Natick, MA, USA). This six-degrees-of-freedom manipulator can perform
orientation, insertion, and rotation of the needle. A 15–24-cm long surgical needle with a standard
bevel tip with an external diameter of 1.27 mm was fixed to the force sensor by using a 3D printed
handle coupler. The robot was programmed to penetrate through the tissue at a 90◦ angle without
spinning. These parameters follow the expected motion of the robotic biopsy procedure for which the
FGM was developed.
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Figure 1. Slave console comprising a DENSO robot, force sensor, surgical needle, animal tissue, and
gripping platform.

The force sensor was installed at the distal end of the robotic arm of the slave robot. Force was
measured while applying tension to various types of tissues through a driving needle. The force
sensor was located between the DENSO Robot’s end-effector and needle holder and its maximum
force capacity was 32 N in the x and y (orthogonal) directions and 100 N in the z (axial) direction with
a 0.025-N resolution. The Simulink model recorded only voltage data for the insertion force from the
force sensor. The data was recorded in the axial direction via a 16-bit A/D converter.

2.1.2. Soft-Tissue Testing Procedure

Experiments with ex vivo animal tissues were performed at the Hospital for Sick Children
(Toronto, ON, Canada). Experimental data was collected for porcine liver and heart, bovine liver
and heart, and chicken breast. Porcine and bovine models have been documented [33,34] as feasible
animal models to study human heart and liver physiology and mechanics. However, the preliminary
tests performed on these soft animal tissues were solely to verify the operation of the device in a low
tissue-force specimen and they were used as an approximation. A mounting fixture was designed and
3D-printed to hold the tissues. The needle was cyclically driven through the tissues at a constant rate
of 30 Hz. Force vectors were produced and a MATLAB® program was developed to extract the data.
The extracted data were transferred to statistical software (SPSS 20.0.0, IBM, New York, NY, USA). The
median, interquartile range, and maximum forces exerted on each specimen were calculated in SPSS.
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2.1.3. Bone Tissue Testing Procedure

A similar experimental procedure to Section 2.1.2 was implemented to collect input data for high
tissue-forces. This data is based on drilling into the following bone specimens: bovine femur, porcine
femur, and chicken femur. These bone specimens were selected to imitate the characteristics of adult
and pediatric bones. The bone of interest in this study is the femur and animal femurs are reasonably
similar to the human femur in terms of geometry and material properties [35]. The femur was selected
because, first, it is a common site of injury in orthopedic trauma that requires drilling [36] and, second,
it is the longest, strongest, and heaviest bone in the body. Lastly, it can provide a wide range of drilling
forces due to its heterogeneity.

The femur was rigidly clamped to the fixture so that the long axis of the femur shaft was
perpendicular to the drilling direction. A small pilot hole was drilled into the outer layer of the bone
cortex to guide the surgical drill bit (2 mm diameter) during drilling, which proceeded until the bit
penetrated the opposite side of the cortex. No cooling mechanism was employed in this experiment,
which imitates clinical practice. Noise in the force signal was corrected to enable identification of the
maximum, median, and interquartile ranges by smoothing all raw data with the running average
function in MATLAB®. All force data for each femur type were combined into one matrix and inputted
into SPSS for post hoc analysis and extraction of significant information (p < 0.05).

2.2. Study Two: Development of the Force Generating Module (FGM)

This section describes the development of the force generating module (FGM). The development
of the FGM is broken into two phases: the physical design and prototyping of the FGM and the
modeling and control strategy used to predict the behavior of the MRF.

2.2.1. FGM Device Fabrication

The primary steps in the design process were the selection of a magnetorheological fluid (MRF),
the selection of structural materials, and the selection of magnetic circuitry design. After establishing
a preliminary design, a model of that design was validated through magnetostatic analysis with
Finite Element Method Magnetics (FEMM) [37] software, which enabled the magnetic flux distribution
inside the device to be visualized (Figure 2). FEMM was used to simulate an accurate magnetic field
distribution across the fluid, which enables the design of the dimensions of the actuator, the selection
of component materials, and the number of coil turns. A counter plot of the magnetic flux path and
flux density is shown in Figure 2c. The flux path is shown in counter lines that loops through the fluid
and the structure. The relationship between the dynamic yield stress of the MR fluid and applied
magnetic field is provided in Lord technical data [38]. The yield stress of the fluid increases almost
linearly with respect to the magnetic flux density before it begins to saturate around 0.7 T. Qin et al.
explains the relationship between the yield stress and magnetic field in detail [39]. From Figure 2, the
saturation point of the fluid is around 0.6 T in ‘h’ (marked in Figure 2a). Note that the flux density is
uniformly distributed in the fluid.

The MRF FGM prototype consists of a dash-pot design that includes a base that fully encapsulates
the MRF and coil, which is shown in Figure 2. The core of the coil and the body of the base device are
made of 1010 steel, which is a magnetically conductive material, to reduce the loss of magnetic field
energy in the ferromagnetic material, improve magnetic energy utilization, and reduce device volume.
The B-H curve of 1010 steel indicates a magnetic induction saturation of approximately 1.6 T for steel
parts [40], which is considerably larger than that generated in the device. Therefore, in designing the
device, magnetic induction did not exceed a maximum flux density of 1.6 T. A 24-AWG magnetic wire
with 1100 turns was fabricated to fit a coil bobbin and provide a large value of ampere-turns with
minimal current supply [41,42]. The magnetic coil was built into the articulating rod of the dashpot.
The rod was designed to articulate into and out of the base of the FGM by moving the coil through the
fluid. A linear actuator (100 mm, 150:1, 12 V with potentiometer feedback, Actuonix Motion Devices
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Inc., Victoria, BC, Canada) was externally attached to the rod for experimental assessment. The linear
actuator was used to experimentally control the distance travelled and the frequency of movement of
the FGM during the characterization experiments described in the following sections. This also ensured
that the coil did not collide with the top and bottom of the case during experimental characterization.

The MRF fills the chamber. To seal the top of the dashpot and the container, we used O-rings
(PTFE (generic Teflon) a 1.5” steel (3/8 OD, 11/32 ID)) to prevent the fluid from leaking. To enhance
the seal life, anti-wear, and lubricity, in this study, the fluid in the actuator was replaced after two uses.

When current is supplied to the coil, the iron particles inside the MRF align themselves in the
direction of the applied field and this behavior can be used to vary the resistance force supplied by the
MRF onto the translation rod, which is shown in Figure 2.

Actuators 2018, 6, x FOR PEER REVIEW  6 of 21 

 

The MRF fills the chamber. To seal the top of the dashpot and the container, we used O-rings 
(PTFE (generic Teflon) a 1.5” steel (3/8 OD, 11/32 ID)) to prevent the fluid from leaking. To enhance 
the seal life, anti-wear, and lubricity, in this study, the fluid in the actuator was replaced after two 
uses. 

When current is supplied to the coil, the iron particles inside the MRF align themselves in the 
direction of the applied field and this behavior can be used to vary the resistance force supplied by 
the MRF onto the translation rod, which is shown in Figure 2. 

 
Figure 2. (a) The cross sectional view of MRF FGM, the MRF close to the coil, and within the base. The 
dimensions are as follows: l = 0.06 m, L = 0.01 m, t = 0.01 m, h = 0.005 m, R = 0.015 m, and r = 0.005 m. 
The coil is between the fluid and the base of the FGM. (b) Photograph of the MRF FGM. (c) Magnetic 
field distribution inside the MRF FGM that shows the magnitude of the flux density (T) within the 
MRF gap obtained with FEMM. The flux path is marked by contour lines, which form a loop through 
the structure. 

2.2.2. Nonlinear Black-Box Model of Magnetorheological Fluid 

To effectively use the FGM, a model capable of reliably predicting the behavior of the MRF is 
required. This section describes a modeling structure using a nonlinear black-box model to address 
this objective. These models represent a series of connections between static nonlinear elements and 
a dynamic linear model [43]. This technique uses observed input and output measurement data from 
the system to develop a block-oriented model that approximates the true behavior of the system. 
Implementing a nonlinear black-box model follows a four-step procedure: (1) Empirical 
measurement data collection, (2) selection of a modeling technique, (3) selection of the criterion used 
to fit the observed data, and (4) model validation. This section will describe the development of the 
model and the following section will describe the procedure used to collect the experimental data 
needed for implementation. 

In general, a nonlinear black-box model can be considered as a concatenation mapping from 
previously observed data to a regressor space, which is followed by a nonlinear function expansion-
type mapping to the space of the system’s output [44]. Therefore, only the measured input and output 
and their previous values are required to implement this approach. The system identification 
approach used for a black-box model is formulated below. = [ (1), (2), … , ( )]	 (1) = [ (1), (2), … , ( )] (2) 

Figure 2. (a) The cross sectional view of MRF FGM, the MRF close to the coil, and within the base. The
dimensions are as follows: l = 0.06 m, L = 0.01 m, t = 0.01 m, h = 0.005 m, R = 0.015 m, and r = 0.005 m.
The coil is between the fluid and the base of the FGM. (b) Photograph of the MRF FGM. (c) Magnetic
field distribution inside the MRF FGM that shows the magnitude of the flux density (T) within the
MRF gap obtained with FEMM. The flux path is marked by contour lines, which form a loop through
the structure.

2.2.2. Nonlinear Black-Box Model of Magnetorheological Fluid

To effectively use the FGM, a model capable of reliably predicting the behavior of the MRF is
required. This section describes a modeling structure using a nonlinear black-box model to address
this objective. These models represent a series of connections between static nonlinear elements and a
dynamic linear model [43]. This technique uses observed input and output measurement data from
the system to develop a block-oriented model that approximates the true behavior of the system.
Implementing a nonlinear black-box model follows a four-step procedure: (1) Empirical measurement
data collection, (2) selection of a modeling technique, (3) selection of the criterion used to fit the
observed data, and (4) model validation. This section will describe the development of the model
and the following section will describe the procedure used to collect the experimental data needed
for implementation.

In general, a nonlinear black-box model can be considered as a concatenation mapping
from previously observed data to a regressor space, which is followed by a nonlinear function
expansion-type mapping to the space of the system’s output [44]. Therefore, only the measured
input and output and their previous values are required to implement this approach. The system
identification approach used for a black-box model is formulated below.

ut = [u(1), u(2), . . . , u(t)] (1)
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yt = [y(1), y(2), . . . , y(t)] (2)

where the observed inputs are denoted by u(t), the outputs are denoted by y(t), and t is the time of
measurements in seconds. Given a set of input and output data, a model describing the relationship
between past observations, which are denoted as the vector of input and output values,

[
ut−1, yt−1],

and the current output, y(t), is represented below.

y(t) = g
(

ut−1, yt−1, θ
)
+ v(t) (3)

Equation (3) is a general dynamic model with a noise signal, v(t), added to the output. The noise
signal represents the prediction error in cases where the output, y(t), is not an exact function of past
data. This term accounts for the measurement error. For ideal models, the values of v(t) approach
zero such that g

(
ut−1, yt−1) is a good predictor of y(t). The objective is to approximate the function

given below.
g
(

ut−1, yt−1, θ
)
= g(φ(t), θ) (4)

Function g(φ(t), θ) includes two mappings. First, past observations are mapped onto a vector, φ(t),
with a fixed dimension and, second, φ(t) is mapped to the output space. Vector φ(t) ≡ φ

(
ut−1, yt−1)

is referred to as the regression vector and its components are referred to as regressors. Therefore, a
regressor is a variable containing previous inputs and/or system outputs and the selected regressor is
referred to as the regression vector. Generally, for dynamic systems, developing a nonlinear model is
decomposed into the following sub-problems: (1) Selecting the regression vectors, φ(t), from past input
and output data and (2) determining the nonlinear mapping, g (φ, θ), from the regression space onto
the output space. Here, θ =

[
θ1 θ2 . . . θp

]
is the parameter vector with (p) parameters to be estimated

in the identification problem.
For MRF haptic device applications, there are several nonlinear models that can be used, which

are mentioned below. For nonlinear models, regressors are combined with a nonlinear function rather
than a weighted sum, which is employed by linear models. Nonlinear models are represented by the
equation below.

y(t) = g(y(t− 1), y(t− 2), . . . , u(t), u(t− 1), u(t− 2), . . .) (5)

In this case, g(.) is a function of a nonlinear model that represents system nonlinearities [45]. The
function g(.) can be represented by using wavelet functions, sigmoid functions, or multilayered
neural networks. For nonlinear estimators, the model order is defined as the number of past
outputs, past inputs, and input delays used for predicting the output at a given time. Typically,
the model orders are chosen by trial and error [45]. However, we utilized the Akaike information
criterion (AIC) because it provides a preliminary order set [46,47]. Based on the AIC method, our
model order was determined by minimizing the sum of the squared distance between an assumed
model, ŷ(t), and the true model, y(t) [43]. The AIC was used to select the model order, which
corroborated our assumption that output force should be predicted by six regressors (i.e., y(t− 1),
y(t− 2), u(t− 1), u(t− 2), u(t− 3), and u(t− 4)); u(t), and y(t) were represented physically by the
input current to the plant and the output force measured by the MRF-based device, respectively).

2.2.3. Hammerstein-Wiener (H-W) Model

Black-box models such as the Hammerstein model, Wiener model, and Hammerstein-Wiener
(H-W) model are unrelated to physiological models and, therefore, are more flexible and better able
to adapt to data, which results in a superior fitting when compared to alternative techniques [48].
In a black-box model, the objective is to parameterize g (φ, θ) in a flexible manner, so that it can
approximate any feasible true functions, g (φ), with accuracy. The Hammerstein model consists of
cascade connections of static nonlinearity, f , which is followed by a linear dynamic block. The Wiener
model is obtained by reversing the order in which static nonlinearity and the linear dynamic model
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occur in the Hammerstein model. The H-W model is implemented if a cascade of two static nonlinear
blocks and one linear block are used. Only the linear block contains dynamic elements. The H-W
model is among the most widely used nonlinear black-box models [49]. The block diagram in Figure 3
represents the structure of the H-W model.
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where:

• w(t) = f (u(t)) is a nonlinear function that transforms input data, u(t). The dimensions of w(t)
and u(t) are the same.

• x(t) = B/Fw(t) is a linear TF. The dimensions of x(t) and y(t) are the same. B and F are

polynomials described for ny outputs and nu inputs and they contain the following terms:
Bj,i(q)
Fj,i(q)

,

where j = 1, 2, . . . , ny and i = 1, 2, . . . , nu.
• y(t) = h(x(t)) is a nonlinear function that maps the output of the linear block to the system output.

The actions of f and h on the input and output ports of the linear block are referred to as input and
output nonlinearity, respectively. The input and output nonlinearity functions are static (memoryless)
where output values at a given time, t, depend only on the input values at that time. These functions
can be configured as sigmoid networks, wavelet networks, piecewise linear functions, or polynomials.
The final step is to validate the model after estimating it. The model is validated by using a dataset
that is different from those used for modeling.

2.2.4. Fabrication of FGM Force Measurement Experimental Rig

This section describes the modeling technique implemented for FGM. To complete the
development of the FGM, training and assessment datasets that exemplify the behavior of the
MRF under the intended operating conditions must be collected. This data is used to build the
Hammerstein-Wiener black-box model and then to characterize its performance. The following
sections describe the construction of an experimental measurement rig used to collect the datasets,
a description of the methods used to collect the data, and a discussion of the metrics used to assess the
performance of the H-W model used in the FGM.

An experimental setup was constructed (Figure 4) to perform a series of quasi-static tests to
investigate the behavior of the MRF device and to measure the force range produced by the FGM.
The experimental set-up included the MRF, an electromagnetic coil, a power supply, a force transducer,
a data acquisition unit, and a linear actuator.

In this system, a force transducer was attached to the coil by a rigid rod. The force transducer was
an SMT S-Type overload protected load cell (Interface Inc., Atlanta, GA, USA). At the other end, the
force sensor was attached to an L16 linear actuator (100 mm, 150:1, 12 V with potentiometer feedback,
Actuonix Motion Devices Inc., Victoria, BC, Canada) that drives the rod into and out of the body of the
FGM. The linear actuator was fixed to an external rigid mounting arm and was aligned with the MRF
device so that it articulated axially. The linear actuator was controlled by pulse width modulation
(PWM) using an Arduino UNO (Arduino, Italy) microcontroller [50]. For the purposes of this study,
the speed and vertical position of the rod were held fixed. The rod was lowered at a constant velocity
towards the base and the velocity was 10 mm/s. For the purposes of the initial FGM characterization,
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we felt that a single speed and rod configuration were sufficient. Both Goncalves [51] and Koo [52]
have studied the force, current, and velocity relationship for MRF in detail. The results from their
study show that, at a given current, the peak force generated from the proposed device is independent
of velocity. Their device was capable of generating a continuously variable force in the range of the
off-state to on-state damping force. Therefore, to focus more on characterizing the force capability of
the device, the FGM was studied at a constant velocity.
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Figure 4. Schematic architecture of the experimental setup.

The current in the coil was increased and decreased from 0.1 A to 1.5 A in 0.1-A steps. The
current supplied to the coil created a magnetic flux (B). This field caused the fluid to change its state
from liquid to semi-solid within 10 ms. The force sensor measured the force required for the rod to
move into and out of the fluid at a fixed current supplied to the coil. This procedure was repeated
five times for each 0.1-A step and the resultant force measurements were averaged. The standard
deviation of the measured forces was 0.2 N. The force produced by the MRF actuator depends on the
coil current-induced magnetic field. Force measurements were fed to a data acquisition system for
further processing in MATLAB®.

2.2.5. H-W Model Validation

To validate the effectiveness of the H-W model, the measured input and output data was divided
into two subsets known as the identification and validation datasets. Following the model development
using the identification dataset, model quality was determined by comparing the validation output
with the measured output of the system under the test. Measured and simulated data can be compared
qualitatively, quantitatively, or based on statistical methods [53]. Qualitative approaches involve
visual inspections of the differences between the output and validation data plots. Quantitative
approaches are based on performance metrics such as mean squared error (MSE), final prediction error
(FPE), and goodness of fit. The MSE measures estimator quality by assessing the differences among
model-estimated values and empirical values. The FPE determines model quality by simulating a
situation where the model is tested on a different dataset. It describes the accuracy and complexity
of the model [54]. Moreover, FPE measures are used when comparing several different models and,
according to Akaike’s theory [46], the most accurate model has the smallest FPE. In this study,

FPE = v
1 + d

N

1− d
N

(6)
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where v is the loss function, d is the total number of parameters and N is the number of values in the
dataset. The loss function is defined as the sum of squared errors.

v =
N

∑
t=1

e2(t) (7)

where e(t) = y(t)− ŷ(t) and y and ŷ denote estimated data and the corresponding model output,
respectively. To evaluate how well the model fits with actual data, the goodness of fit (%) is calculated
by using the MSE as its cost function.

f it =
‖ŷ− y‖2

N
(8)

The most effective model has the minimum MSE, minimum FPE, and maximum goodness of
fit. After recording the system’s input and output, the measured data is divided into several datasets
for training, testing, and validating the model. For MRF haptic device applications, there are several
nonlinear models that can be used such as polynomials, sigmoid networks, piecewise functions, and
wavelet networks. For nonlinear models, regressors are combined with a nonlinear function rather
than a weighted sum such as in linear models.

2.3. Study Three: Implementation of Closed-Loop Control Strategy with Robotic Test-Platform

This section describes the implementation of the closed-loop control with a robotic test platform.
Following the design of the FGM prototype and the development of a model of the MRF, we developed
a closed-loop control strategy with the aim of incorporating the FGM into a master-slave configuration
with the robotic-tissue testing system. Two control strategies were implemented. The first system is
based on conventional closed-loop control with a force-sensor and the second system is a novel control
loop design based on the nonlinear H-W modeling technique. Both these strategies are discussed in
the following section.

2.3.1. Experimental Set-Up

To assess the performance of the FGM in a haptic feedback system for the bone biopsy, the device
was implemented in the experimental set-up outlined in Figure 5. The FGM was used as a master for
the teleoperation of the robotic testing platform.
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Figure 5. Experimental setup when connecting the FGM to the slave robot using a computer setting
with MATLAB.

In this experiment, the tissue force measurements from the slave-console (the robotic test platform)
were used as inputs into the FGM. To simulate a human user manipulating the FGM as a master-console,
a linear actuator and a load-cell were rigidly connected to the FGM. The linear actuator applied a
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specified displacement to the FGM and the output force generated by this device was recorded and
compared to the original tissue-forces recorded at the slave-console.

2.3.2. Closed-Loop Control with a Force Sensor

The first closed-loop control strategy involved a force sensor, which is shown in Figure 6. The
force signals such as various sine waves with different frequencies were inputted into the closed loop
as the target force profile. The load cell measured the force required to move the rod into and out of
the fluid. The force values measured by the force sensor were subtracted from the desired force to
generate the error signal sent to the PID controller.
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2.3.3. Model-Based Predictive Control

The H-W model that was implemented based on signals recorded from the master-slave setup
was used as the plant model in this closed-loop control scheme (depicted in Figure 7). The estimated
nonlinear model must be linearized to make it suitable for a control design [55]. In this study, a
linear approximation for a given input signal was used to linearize the nonlinear H-W model of our
MRF-based device. In this technique, the linear approximation was computed based on a mean square
error. This linear model was structurally similar to the original nonlinear model and provides the best
fit between a given input and the corresponding simulated response of the nonlinear model. For H-W
models, linear approximation estimates a linear output-error model using the same model order [56].
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Various input signals were first used to compare the output signals obtained from the model and
force sensor. The root-mean-square error (RMSE) was used to compare model estimates with force
measurements from the force sensor. The model was linearized after this comparison. Afterward, the
linearized estimated model was used in a feedback control loop to tune PID gains by subtracting the
error between the estimated and desired force. The controller used the estimated output force value
from the H-W model as its feedback signal. The PID controllers were tuned experimentally to obtain
optimal control results (i.e., fastest response and minimum overshoot).
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3. Results

3.1. Study One: Tissue Characterization

For each type of tissue, five sets of data were collected. The data for each tissue type and the
associated puncture forces are reported in Table 1. The puncture force for the bovine heart was
more than that for the other soft tissues. An example force profile for liver tissue, for which force
increased steadily, followed by a peak and then a sharp decrease, which is shown in Figure 8a. The
puncture times were diverse because of the differing tissue structures. The puncture times for porcine
heart, porcine liver, bovine heart, bovine liver, and chicken bone were 10.22 ± 1.44 s, 6.78 ± 0.44 s,
8.32 ± 0.93 s, 7.05 ± 1.22 s, and 25.9 ± 3.12 s, respectively.
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Figure 8. (a) Example of a soft tissue force measurement (bovine liver). (b) Example of the bone drilling
force profile (chicken femur).

An example of the penetration force required during bone drilling is shown in Figure 8b. Note
that the force increased and then reached a peak value as the drill bit became fully engaged with the
bone cortex. Subsequently, the force decreased as the surgical drill bit exited the cortex. Even though
the shapes of the force profiles for different bone types differed slightly, abrupt variations are always
observed at layer transitions. This phenomena is of particular interest and in-part has motivated this
work to focus on MRF for use in haptic devices. The maximum and median force values for each
specimen are reported in Table 1.

Table 1. Puncture force associated with different tissue types.

Tissue Maximum Force [N] Median Force [N]

Porcine heart 2.57 ± 0.29 1.16 ± 0.10
Porcine liver 1.78 ± 0.30 0.94 ± 0.36
Bovine heart 5.70 ± 0.29 2.76 ± 0.47
Bovine liver 2.34 ± 0.8286 0.66 ± 0.56

Chicken breast 0.61 ± 0.1 0.44 ± 0.08
Chicken leg 9.50 ± 0.31 5.20 ± 0.10

Bovine femora 50.0 ± 2.26 24.00 ± 1.25
Porcine femora 49.20 ± 1.90 22.10 ± 2.10

From Table 1, the range of expected force output for haptic feedback falls between values >0.1 N
and <60 N. The results also indicate that the drilling and soft-tissue dissection forces rapidly shift in
200 ms and, therefore, the FGM should be designed to meet these requirements.
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3.2. Study Two: Design of MRF FGM

A decision matrix was used to select the most suitable fluid for this application. The suitability
for this application is related to minimizing zero-field viscosity (when there is no magnetic field) and
density. MRF-122EG was selected as the best candidate MRF owing predominantly to its low no-field
viscosity. The characteristic of the MRF FGM is summarized in Table 2.

Table 2. Summary of FGM design and performance parameters.

Parameter Value

Height 10 cm
Outer diameter 6 cm

Weight 1.5 Kg
Materials 1010 steel, MRF122-EG

Core radius 2 cm
Core outer radius 3 cm

Core length 6 cm
Wire gauge 24 AWG

Number of turns
Off-state force
Working range

1100
0.4 N

0.4–47 N
Linear actuator

Power consumption
L16 linear actuator (100 mm, 150:1, 12 V w/potentiometer feedback)

12 W

When the current in the coil was increased from 0.1 A to 1.5 A, the magnetic flux around the fluid
was measured to be in the range of 0.06 to 0.3 T. The force sensor measured a force of 0 N to 47 N as
the current was increased from 0 A to 1.5 A. The off-state force was around 0.4 N for the maximum
current applied. The designed MRF device is 1.5 Kg and requires only currents of up to 1.5 A to create
such an output force. The standard deviation of the measured force was 0.2 ± 0.01 N. Figure 9 depicts
the force and input-current relationship.
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Figure 9. Applied current-force diagram. The two curves represent the two force values present
in the system at each current level due to hysteresis. The observed hysteresis can be attributed to
magnetization of steel components in the device.

Figure 9 demonstrates that force correlates directly with input current. However, the path
when increasing the current is not the same as when reducing the current back to zero due to the
ferromagnetic nature of the materials, which create the flux path. Residual magnetism remains within
the fluid after the external magnetic field is removed. This residual magnetism results in the hysteresis
behavior shown in the figure. This hysteresis is caused primarily by magnetization of the steel elements
in the MRF containment device when the supply current in the coil is varied. The current-force curve
is nonlinear because the relationship between MRF-122EG and the applied magnetic field is not linear.
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3.3. H-W Black-Box Model

The dataset used for estimating the H-W model was from soft animal tissue and bone, which
is explained in Sections 2.1.2 and 2.1.3. The dataset was divided into estimation and validation data
points (Figure 10). Nonlinear black-box models were developed to increase the model fitness and
then the models were performed and tested on both the soft tissue and bone datasets. The first step in
estimating the black-box models was to select a model order for the linear block of the H-W model.
The linear block of the H-W model was a TF with the model order defined as the numbers of poles,
zeros, and input delays, which were determined through trial and error. The model order obtained for
this TF was two zeros, three poles, and one input delay. The model order of the linear block in this
case remained the same while various nonlinear estimators were examined.
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Figure 10. The dataset was divided into estimation (used for estimating the model) and validation
(used for validating the results) data. (a) Input to the device based on the actual force measurements for
a bovine heart tissue. (b) Output measured from the force sensor. The first 8 seconds of the input-output
measurements was used estimation data. The next 8 seconds of data was used as validation data.

Model quality was determined after model estimation by comparing the validation output with
the actual system output. Qualitative and quantitative comparisons of the measured and simulated
datasets were performed.

The H-W model provided flexible parameterization for nonlinear models. We selected a range of
input and output functions for the nonlinear blocks of the H-W model to determine the best model
for estimating the system and describing the nonlinearities of the MRF device. The MSE, FPE, and
goodness of fit were calculated to assess model quality. The estimators and their model properties are
reported in Table 3. From Table 3, Nlhw3 was selected as the best model. The nonlinear input and
output channels of this model constituted a sigmoid network. Moreover, the Nlhw3 model had the
smallest MSE and FPE together with the best goodness of fit. Nlhw3 simulation for the validation data
are presented in Figure 11. The same validation dataset was used to verify model accuracy in H-W
modeling. This model’s goodness of fit was close to 95%.
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Table 3. Nonlinear input and output channel estimators assessed in H-W modeling.

Model
Nonlinear Model Properties

Input Channel Output Channel Fit (%) MSE FPE

Nlhw1 Piecewise linear Piecewise linear 71.95 0.0540 0.0800
Nlhw2 Sigmoid network Piecewise linear 75.51 0.0660 0.0600
Nlhw3 Sigmoid network Sigmoid network 94.84 0.0002 0.0001
Nlhw4 Wavelet network Sigmoid network 79.00 0.0810 0.0500
Nlhw5 Wavelet network Wavelet network 69.88 0.1000 0.3000
Nlhw6 Polynomial Wavelet network 72.02 0.0004 0.0004
Nlhw7 Polynomial Polynomial 65.90 9.000 1.200
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3.4. Study Three: Control Strategy

The desired force profile was tracked with the force sensor output serving as the feedback signal.
The desired force profile tracked a 1-Hz sine wave (Figure 12). However, there was an initial force of
4 N due to a load upon force sensor produced primarily by the weight of the dashpot and attached
coil. This load can be considered an offset value and subtracted from the actual measured force via
an interface.
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To validate the control methods, current patterns of varying frequencies and amplitudes were
applied to the MRF-based device and a multistep force signal was applied to all control schemes. The
results, which are shown in Figure 13, confirm that the H-W model provides excellent tracking with no
off-state force while canceling the magnetic hysteresis within the MRF-based device.
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4. Discussion

In this study, we present the development of a new magnetorheological-fluid force generating
module that is intended for use in haptic feedback devices. In particular, this technology is targeted
for applications that require rapid force changes from soft to hard tissues, which is seen in bone biopsy
procedures. The work was divided into three parts. The first study outlined ex vivo tissue-force
measurements to constrain the FGM development. The second study described the development,
modeling, and characterization of the FGM as a proof of concept. The final study presented the FGM
implemented in a master-slave configuration to control a robotic biopsy procedure and outlines an
H-W feedback control strategy used to apply the FGM in a simulated surgical scenario [57].

The first study focused on collecting a continuous input data-set of biopsy forces using ex vivo
tissue samples. This data was needed for developing the FGM’s controller and could not be taken
from literature alone. The results of the tissue force characterization obtained in this study lie within
the ranges reported in the previous work [13–15]. However, making an inter-study evaluation is
challenging because the methods and tools used were very different. The differences include a wide
variety of experimental conditions such as drill bit diameter, feed rate, spindle speed, bone type, and
drill bit type. The results presented in this study are the first to measure forces at different locations
on various animal femurs under the same test conditions. Other designers developing bone biopsy
systems can use these results.

The experimental methods used in the tissue-forces study were based on ex vivo non-perfused
organs. Therefore, these methods have the following limitations: First, the measured forces obtained
may have higher values than true force measurements from living tissues because post-mortem tissues
stiffen with time [58]. Second, factors such as the geometric properties of the needles and insertion
angles may affect insertion forces [59]. However, for this study, a force approximation is sufficient since
the aim of this work focused on investigating the modeling of the proposed actuator. Consequently,
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only one type of a commonly used needle and one type of a commonly used drill bit were selected to
penetrate soft tissues and bone, respectively. This selection was made to maintain consistency between
experiments and to achieve the goal of assessing the FGM technology as a proof-of-concept. However,
future research will focus on applying the FGM to surgical simulations where these variables are
not fixed.

Following the tissue study, the FGM was fabricated and a model of the non-linear behavior of
the MRF was developed. To the best of the authors knowledge, this is the first study to apply the
nonlinear black-box H-W modeling approach to an MRF haptic device. Within the H-W modeling
technique, hysteresis and friction were approximated with a cascade of nonlinear functions. Friction
is an inevitable problem in the design of MRF-based devices. Even when the friction force caused
by the seal of the MRF is maintained at its minimum value, friction still exists in the system, which
is experienced by the operator. Therefore, static friction, which is a source of nonlinearity within
MRF-based devices, is intrinsic to this model because it is based on the input and output measurements
from the device.

From a physical performance perspective, the FGM exhibits a wide range of force output compared
to prior studies [60], which makes it suitable for applications in haptic interfaces. It is important to
mention that this is the first study that designed an FGM for the bone biopsy even though other MRF
based haptic interfaces have been used in other applications. For example, in Reference [61], Liu et
al. designed and modeled an MRF device in a disc shape for applications in virtual reality. In this
work, the authors claim that the torque range is between 0 to 700 N·cm. Furthermore, researchers at
the University of Tsukuba developed a string-based glove for haptic feedback, which provided up to
7 N of feedback force to the index finger and the thumb [62].

Considering the FMG modeling performance, quantitative statistical analyses and visual
inspection of the H-W model estimation demonstrated strong agreement between the H-W model
predictions and the measured data. The goodness of fit was close to 95% for the input and output
measurements obtained for animal tissues in the master-slave robotic setup. The model with the
sigmoid network outperformed the other models, which are in agreement with the properties and
shape of a sigmoid function [63]. A sigmoid network can model the system with more dynamics more
smoothly than other modeling methods. This is because of the global shape of a sigmoid function. The
shape of the sigmoid function consists of linear rise and a saturation field. The linear rise is related
to current-dependent hysteretic behavior in the pre-yield region (i.e., the stress applied to the fluid
is below a critical yield stress value [64]). The magnetic particles in the MRF experience saturation
(yield stress plateaus) at high magnetic flux. Additionally, the computational time associated with
the sigmoid network is low, which makes it advantageous over other methods. The results of the
remaining nonlinear modeling methods used in this study are alike (Table 3).

The developed model can be used in the form of a lookup table or an analytical function in a
closed loop control system. The generalized model structure can be expanded to other MRF devices
with a wider dynamic range as long as reliable measurements of device inputs and outputs can be
obtained. In addition, this modeling technique is especially suitable for devices for which precision is
paramount and extremely accurate modeling is needed.

The design of the FGM prototype has the following limitations: First, MRF sedimentation and
degradation are drawbacks of the current design. To address this issue, and to ensure a homogeneous
distribution of the fluid and iron particles, the MRF was mixed or replaced every few days. Future
designs should incorporate methods to prolong the use of the MRF through automated mixing.
Additionally, the major limitation of this technology is the hysteretic behavior of MRF. This limitation is
partially a result of the residual magnetization in the ferromagnetic materials in the structure after the
removal of the applied magnetic field. The non-linear behavior reduces force measurement accuracy.
The residual magnetization generates a considerable off-state force (in this study, 2.66 N), which is
particularly undesirable in applications such as haptics. The H-W control tracked the input signal,
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which is recorded from the tissues via a slave robot, while compensating for magnetic hysteresis to
achieve optimal performance.

The two control strategies implemented in this study were a force feedback controller, which is a
common strategy used for such devices and was considered a “gold standard” for comparison and a
novel nonlinear modeling and control technique, which was compared to the force-feedback controller.
Conventional force feedback-based controllers have limitations such as latency in measurement,
instability in control loops resulting from contact with rigid tissue, and noise [24]. Therefore, this
method fails to maintain its performance at high frequencies.

The novel control strategy used closed-loop control based on nonlinear H-W modeling and,
therefore, it can be implemented without an external force sensor. This is a major improvement. This
approach has substantial advantage to applications where eliminating the requirement for an external
sensor is necessary. In addition, force sensors diminish accuracy substantially when contacting a
rigid tissue. Furthermore, accurate modeling techniques eliminated the need for additional hardware
components, which decreased the weight of the device. This closed-loop control system can be a part
of a self-sensing control system, which provides several advantages including simplicity, robustness,
and a more optimized design than conventional control loops.

The model implemented in this study covers a wide range of the dynamics of the actuator when
compared to other modeling methods such as the Preisach hysteresis model [65] whose resolution
is limited. The Preisach model requires a weighted function that is constructed from experimental
data [66]. Thus, a large number of data points are required to obtain a good model. The number of
data points available and the repeatability of the system’s behavior have direct effects on the model’s
accuracy [67]. The presently employed nonlinear model was able to predict the behavior of the
actuator successfully and is an excellent candidate for closed-loop control. It represents a promising
alternative to existing hysteresis models and control techniques. Ultimately, the range of output force
and the performance of the MRF-based actuator make it suitable for creating haptic controllers for
bone biopsy applications.

Using ex vivo tissue samples from the telerobotic setup allowed for quantification of the forces
required during the biopsy of tissues from typical soft tissues to bone and is the addition to our prior
study [68].

5. Conclusions

This work presents the design and fabrication of an MRF-based haptic device for robotic bone
biopsy. The device design was broken into three complimentary studies. The first study included
a robotic setup and was designed to record force measurements from different ex-vivo tissues to
characterize design requirements for the MRF device. A wide range of force magnitudes (from soft
tissue to bone) were recorded via the slave robot and inputted into the proposed device. A second
study outlined the development of a force generating module where the force measurements were
used as estimators and validators for a nonlinear black-box model used to predict the behavior of the
MRF. An analysis of the modeling performance was completed for the nonlinear black-box models of
the MRF-based device. The modeling results indicated that the H-W model is capable of predicting
the behavior of the MRF with high precision. Following the assessment of the H-W model, a third
series of experiments were designed to validate the feasibility of using H-W modeling in a closed-loop
control. The root mean square error of the nonlinear H-W model was 0.34, which confirms that the
model can be used to estimate the output force of the device accurately. Therefore, it was concluded
that the control technique constructed based on the H-W model can provide the desired force profile
with no hysteresis.
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