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Abstract: Physical properties of lead-zirconate-titanate (PZT) ceramics change according to the initial
electric poling process and electrical boundary conditions. This paper reports the electrothermal,
piezothermal, and piezoelectric coupling phenomena in ferroelectrics from thermodynamics
viewpoints, in particular, thermal property differences between unpoled and poled PZT’s in the poling
direction for open circuit and short circuit conditions. We propose a new terminology, “secondary
electrothermal” coupling factor kλ, which is analogous to the electromechanical coupling factor k,
relating the elastic compliances under short- and open-circuit conditions, in order to explain the fact
that the short-circuit condition exhibited the larger thermal diffusivity than the open-circuit condition.
On the other hand, the unpoled specimen exhibits the lowest thermal diffusivity. This tutorial
paper was authored for providing comprehensive knowledge on equilibrium and time-dependent
thermodynamics in ferroelectrics.

Keywords: ferroelectric; electrothermal coupling; piezothermal effect; piezoelectrics; pyroelectric
coefficient; specific heat capacity; thermal diffusivity; thermal expansion coefficient; electromechanical
coupling factor

1. Background

Thermoelectric devices generate voltage when each side of the device is set at different temperatures.
Conversely, when voltage is applied to it, heat is transferred from one side to the other, creating
a temperature gradient. This effect can be used to generate voltage in “thermocouple” to measure
temperature of a specimen. Because heating or cooling is determined by the applied electric field
direction, thermoelectric devices can also be utilized as temperature controllers. Popular thermoelectric
phenomena include the Seebeck effect, Peltier effect, and Thomson effect in metallic or semiconductive
materials based on the “electron” flow. On the contrary, this paper handles the “electrothermal”
effect in resistive ferroelectric materials based on the “phonon” flow. The “pyroelectric effect” is
a phenomenon in which a ferroelectric material shows voltage under a change in temperature.
Its inverse effect, the so-called “electrocaloric effect”, shows a reversible temperature (increase or
decrease) change under an applied electric field polarity. It should not be confused in principle with
the semiconductor “thermoelectric effect”, in which a temperature difference occurs when a current is
driven through an electric junction with two dissimilar conductors.

Electrocaloric materials were initially the focus of significant application interest in the 1940s
(during World War II). The US and Japan accelerated the research for developing the air-cooling
system particularly in submarines without generating mechanical noise (like air-compressor-embedded
refrigerators). Due to the confidential military research, not many publications have been disclosed
on this research. The author personally learned from his former bosses in the university in the 1960s,
when the research on this topic was fading out because the electrocaloric effect was insufficient
for practical applications. However, in the beginning of 21st century, we restarted its development
in parallel to the enthusiasm on new compact refrigeration technique in the “sustainable” society.
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Our report on giant response in Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT) bulk single crystals in 2003 [1],
being 0.3 ◦C under 1 kV/mm electric field applied, ignited the “renaissance” of electrocaloric effect.
Successive reports on the high response, 12 ◦C under an applied electric field of 48 kV/mm in thin film
(or ribbon) lead zirconate-titanate (PZT) by Mischenko et al. [2] (that is equivalent to 0.25 ◦C under
1 kV/mm, lower performance than PZN-PT single crystals), and the demonstration of 12 ◦C of cooling
near room temperature with a ferroelectric polymer by Neese et al. in 2008 [3] also accelerated
the research boom on electrocaloric devices.

On the other hand, our research group at the Penn State University has been concentrating
on the development of high power piezoelectrics for 40 years, which can handle the power density as
high as 40 W/cm3 [4]. One of the Figures-of-Merit for the high-power density is the “maximum vibration
velocity” in the same material species such as PZT’s, which is defined by the vibration velocity generated
at the sample edge under its resonance operation, when the maximum temperature rise (i.e., at the nodal
point) reaches 20 ◦C above the room temperature [5,6]. When we operate the piezo-sample under higher
vibration levels, even though highly resistive under the off-resonance, the piezoelectric PZT starts
generating heat via its dielectric, elastic and piezoelectric losses. Most of the additional input electric
energy over the maximum vibration velocity level is converted to heat, like a “ceramic heater”!
The current commercially available top data is around vRMS

max = 0.6 m/s in a rectangular plate PZT’s,
which corresponds to the energy density of 40 W/cm3. We found that the maximum vibration
velocity strongly depends on the thermal conductivity. Figure 1 demonstrates the simulation results
of the saturated temperature distribution profile difference between two compositions, PZT-5H and
PZT-19, under the same vibration velocity operating condition. These two compositions exhibit
significant difference in thermal conductivity: 0.14 W/m K versus 2 W/m K [7,8]. The profile curve
of PZT-5H (low thermal conductivity) fits a sinusoidal line beautifully, while PZT-19 shows considerable
edge temperature rise. You can understand easily that this profile difference is originated primarily
from the thermal conductivity or diffusivity difference. Taking the total thermal energy dissipated from
the specimen by integrating the temperature rise with respect to the position coordinate, we can expect
a similar “mechanical quality factor” Qm value (i.e., similar intensive elastic loss tan φ′) for these two
specimens. However, you can notice that the peak temperature at the nodal point is significantly lower
for the larger thermal diffusivity material, which means we can excite the vibration more under higher
voltage for the PZT-19, since the maximum vibration velocity is defined by the highest temperature
rise 20 ◦C above room temperature at the node (plate center) from the human safety viewpoint
in the practical industrial standard (e.g., human fingers will be burned above 50 ◦C).
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This is our motivation on the thermal property measurements, in particular, conductivity/diffusivity
on ferroelectric/piezoelectric ceramics from the practical application viewpoint. We propose
a “secondary electrothermal” coupling factor kλ, which is applied for irreversible thermal flow
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status and explain the difference in the thermal conductivity between the electric constraint difference,
that is, under short- and open-circuit conditions [9].

This tutorial paper was written for the encouragement to the researchers, who are currently
studying electrocaloric or high-power piezoelectric materials, by providing them comprehensive
and underlying thermodynamical backgrounds on the “electrothermal effect” in comparison with
the “mechanothermal” and “electromechanical coupling”. Suitable textbooks or review papers have
not been found in this area, to the best of the author’s knowledge.

2. Review of Phenomenology in Ferroelectrics

We discuss the phenomenology in ferroelectrics on the following four stages with increasing
the complexity in analyses: (1) linear equilibrium in Section 2.1, (2) nonlinear equilibrium
in Sections 2.1.3 and 4.1, (3) harmonic dynamic in Sections 2.2 and 4.2, and (4) anharmonic dynamic
in Section 4.3.

2.1. Static/Equilibrium Ferroelectric Phenomenology

2.1.1. Thermodynamical Functions

A thermodynamic phenomenological theory is discussed basically in the form of expansion
series of the “internal energy” U as a function of the physical properties; the free energy is
composed of “thermal energy” dQ, “mechanical energy” Xdx (stress X, strain x) and “electrical
energy” EdD (dielectric displacement D (almost equal to polarization P in high permittivity materials),
electric field E) in ferroelectrics. When a material is ferromagnetic, magnetic energy HdB is integrated.
Further, thermal energy dQ is given by dQ 5 TdS, where temperature is T and entropy is S. Equality “=”
is for the reversible process, and “<” is true for the irreversible process. We can describe U as follows:

dU = dQ + Xdx + EdD
5 TdS + Xdx + EdD

(1)

According to the combination possibilities among (T, S), (X, x) and (E, D), there are eight types
of energy. We will use Helmholtz free energy A = U − TS, Gibbs free energy G = U − TS − Xx − ED
and elastic Gibbs energy G1 = U − TS − Xx as examples in this paper; that is,

dA = −SdT + Xdx + Ed (2a)

dG = −SdT − xdX −DdE (2b)

dG1 = −SdT − xdX + EdD (2c)

Internal energy U is described in terms of “extensive” physical parameters (S, x, D). Since
the phase transition and experiments are normally conducted under external T = constant, X = 0
and E = 0, Gibbs free energy described in terms of “intensive” physical parameters (T, X, E)
is the most popularly utilized. The elastic Gibbs energy G1 is most convenient for discussing
the ferroelectric phase transition because of the two merits: (1) by describing higher order Taylor
expansion terms of the “order parameter” D (or P), we can derive the spontaneous polarization,
and (2) external X can be controlled explicitly, and E is related with easily with

(
∂G1
∂P

)
T,X

.
We can obtain the famous “Maxwell relationship” examples from Equation (2) as follows, taking

the second partial derivative:(
∂D
∂X

)
T,E

=

 ∂∂X

(
−∂G
∂E

)
T,X


T,E

=

 ∂∂E

(
−∂G
∂X

)
x,T


T,D

=

(
∂x
∂E

)
T,X

(3a)
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(
∂X
∂D

)
T,x

=

 ∂∂D

(
∂A
∂x

)
X,D


T,x

=

 ∂∂x

(
∂A
∂D

)
x,T


T,D

=

(
∂E
∂x

)
T,D

(3b)

(
∂S
∂E

)
T,X

=

 ∂∂E

(
−∂G
∂T

)
X,E


T,X

=

 ∂∂T

(
−∂G
∂E

)
X,T


T,X

=

(
∂D
∂T

)
X,E

(3c)

The meaning of Equation (3a,b) are the “piezoelectric coefficients”, discussed in Section 2.1.4.1,
while Equation (3c) is used in the “pyroelectric coefficient” p derivation in Section 2.1.6.

2.1.2. Linear Energy Handling

We consider a practical formula of the Gibbs free energy G(T, X, E) for the case of a small value
change in temperature θ = T − TR (room temperature), external X and E (1D case). If the change
of parameters is small, we may adopt the three-parameter Taylor expansion approximation up to second
derivatives in order to discuss just the linear relationships, based on the description by Mitsui et al. [10]:

G(T, X, E) = G0 +
(
∂G
∂T

)
θ+

(
∂G
∂X

)
X +

(
∂G
∂E

)
E

+1
2

(
∂2G
∂T2

)
θ2 + 1

2

(
∂2G
∂X2

)
X2 + 1

2

(
∂2G
∂E2

)
E2

+
(
∂2G
∂T∂X

)
θX +

(
∂2G
∂T∂E

)
θE +

(
∂2G
∂X∂E

)
XE

(4)

Taking into account dG = −SdT − xdX −DdE, we obtain first the relations,
(
∂G
∂T

)
θ,X,E=0

= −S0,(
∂G
∂X

)
θ,X,E=0

= −x0 and
(
∂G
∂E

)
θ,X,E=0

= −D0. Since S0 is the entropy density at θ, X, E = 0, we take

this as the original value and set it to S0 = 0. The values x0 and D0(≈ P0) are considered to be
spontaneous strain and spontaneous polarization in the ferroelectric phase of this material (refer to
the next Section 2.1.3), and set them as zero in the discussion merely in the ferroelectric phase. Now,
Equation (4) can be transformed as

S = −

(
∂G
∂T

)
= −

(
∂2G
∂T2

)
θ−

(
∂2G
∂T∂X

)
X −

(
∂2G
∂T∂E

)
E (5a)

x = −

(
∂G
∂X

)
= −

(
∂2G
∂T∂X

)
θ−

(
∂2G
∂X2

)
X −

(
∂2G
∂X∂E

)
E (5b)

D = −

(
∂G
∂E

)
= −

(
∂2G
∂T∂E

)
θ−

(
∂2G
∂X∂E

)
X −

(
∂2G
∂E2

)
E (5c)

Continued discussions on the linear handling are made after Section 2.1.4. Though nonlinear
energy handling is not our direct purpose in this section, we describe Landau/Devonshire theory
briefly in order to provide the reader the key idea on how the spontaneous polarization and strain are
generated in a ferroelectric material [11–14]. We use the elastic Gibbs energy G1 for the phase transition
discussion, as in Section 2.1.1.

2.1.3. Nonlinear Energy Handling

We first construct the electric energy formula, expanding the energy in terms of so-called order
parameter, polarization P, including nonlinear terms as follows:

G1(P) = G1(0) + a1P + a2P2 + a3P3 + a4P4 + a5P5 + a6P6 + · · ·

Considering that the free energy form of the crystal should be applied for any temperature range
below or above the phase transition temperature (which is called “Curie temperature”), and that
if the mother phase (high temperature phase) has “cubic symmetry” (like perovskite PZT and PZN-PT),
the Gibbs energy should not change with polarization reversal (P→−P), that is, G1(P) = G1(−P). Thus,
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the energy expansion series should not contain terms in odd powers of a component, P, or the expansion
series include only even powers of P.

2.1.3.1. Second-Order Phase Transition

We start from the simplest nonlinear phenomenon “second-order phase transition” model [14]:

G1(P,T) = (1/2)α P2 + (1/4)β P4 (6)

The coefficients α and β depend, in general, on the temperature, but only α is assumed to
be temperature dependent and β is positive constant in the following discussion for the sake
of minimizing the required parameters. The phenomenological formulation should be applied
to the whole temperature range over which the material is in the paraelectric (high temperature)
and ferroelectric (low temperature) states. Because the spontaneous polarization should be zero
in the paraelectric state, the free energy should be zero in the paraelectric phase at any temperatures
above its phase transition temperature (i.e., Curie temperature). To stabilize the ferroelectric state
with a spontaneous polarization, the free energy for a certain polarization P should be lower than
“zero”. Otherwise, the paraelectric state is maintained. Thus, at least, the coefficient α of the P2 term
must be negative for the spontaneously polarized state to be stable, while, in the paraelectric state,
it must be positive passing through zero at a certain temperature T0, called Curie–Weiss temperature.
From this concept, we assume α as a linear relation:

α = (T − T0)/ε0 C
[
ε0 = 8.854 × 10−12 F/m

]
(7)

where C is taken as a positive constant called the Curie–Weiss constant, and T0 is equal to or lower than
the actual transition temperature TC (Curie temperature), in general. This temperature dependence can

also be interpreted as the adoption of the “TP2” electrothermal coupling term [
(
∂3G1
∂T∂2P

)
θP2] in the Taylor

expansion of the G1 energy. The temperature parameter θ here is the deviation from the Curie–Weiss
temperature T0. From dG1 = −SdT− xdX +EdP [P ≈ D in our discussion], the equilibrium polarization
under an electric field E should satisfy the condition:

(∂G1/∂P) = E = α P + β P3 = P·(α + β P2) (8)

With no electric field applied, Equation (8) provides two cases: (i) P = 0 and (ii) P2 =−α/β. The trivial
solution in (i) case corresponds to a paraelectric (high temperature) state, while the polarization solutions
(PS = ±

√
−α/β in (ii) case correspond to a ferroelectric (low temperature, α < 0) state.

Figure 2 shows the temperature dependence of the free energy curve. One potential minimum
at a high temperature will split into two minimum-branches at a low temperature phase. This “Y”-shape
phase splitting is called “bifurcation” in terms of temperature. The critical point corresponds to the Curie
temperature TC (in this case also T0). In a lattice vibration model, we can rephrase the above situation
as follows: at a high temperature, the nearly “harmonic” atomic (or lattice) vibration (usually an “optical
phonon” mode, which generates the polarization deviation) in a sharp convex “parabolic” potential
at a high temperature will reduce the vibration frequency with decreasing the temperature approaching
to the Curie temperature (i.e., critical slowing down) because of the flat curvature of the potential
around TC. This “phonon softening” phenomenon is interpreted by the nonlinearity of the phonon
mode [Refer to Section 4.2]. Because the free energy curve is symmetric with respect to the polarization
P when the external field E = 0, the probability of the state +PS (=+

√
−α/β or −PS (=−

√
−α/β should be

equal. Thus, with decreasing the temperature, passing through TC, +PS domains and −PS domains may
arise locally in a specimen with equal volumetric ratio, leading to the “multidomain states” in general.
In order to produce the net spontaneous polarization, strain, and piezoelectricity, we need to apply

large electric field (higher than “coercive field”, which is given by EC =
√
−4
27 α

3/β in the second order
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phase transition), which is called the “electric poling” process to make a crystal with mono-domain-like
status. The double-well potential change with the applied field is illustrated in the inserted figure.
Note first that the minimum potential well energy is negative (that is, stabler than the paraelectric
phase energy zero), and second that external electric field enforces one spontaneous state more stable.
Though the poling process in polycrystalline ceramic samples, composed of many micro single crystals
(i.e., “grain”) with random crystal orientations, is not easy, a similar phenomenology is assumed to be
adopted qualitatively in this paper.Actuators 2020, 9, x FOR PEER REVIEW 6 of 42 
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2.1.3.2. First-Order Phase Transition

The theories for electrostriction in ferroelectrics were formulated in the 1950s by Devonshire [11,12]
and Kay [13]. The elastic Gibbs energy is expanded in a 1D form:

G1(P,X,T) = (1/2)α P2 + (1/4)β P4 + (1/6)γ P6

− (1/2)s X2
− Q P2X, (α = (T − T0)/ε0 C)

(9)

where P, X, T are the polarization, stress, and temperature, respectively, and s and Q are called
the elastic compliance and the electrostrictive coefficient, respectively. The elastic Gibbs energy
definition, dG1 = −SdT − xdX + EdD, leads to

E = (∂G1/∂P) = α P + β P3 + γ P5
− 2Q PX minus sign (10a)

x = − (∂G1/∂X) = sX + QP2 (10b)

When the external stress X is zero, the following equations are derived:

E = α P + β P3 + γ P5 (11a)

x = QP2 (11b)

1/ε0 ε = (∂E/∂P) = α + 3 β P2 + 5 γ P4 (12)

When β < 0, γ > 0, the “first-order” phase transition comes out. If the external electric field is
equal to zero (E = 0), two different states are derived; P = 0 and P2 = (−β +

√
β2 − 4αγ)/2γ.
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(i) Paraelectric phase: PS = 0 or P = ε0ε E (under small E)

Permittivity: ε = C/(T − T0) (Curie-Weiss law) (13)

Electrostriction: x = Q (ε0ε)2 E2 (14)

(ii) Ferroelectric phase: PS
2 = (−β +

√
β2 − 4αγ)/2γ or P = PS + ε0ε E (under small E)

x = Q(PS + ε0ε E)2 = QPS
2 + 2 ε0ε QPS E (+Q (ε0ε)2E2) (15)

where we define the spontaneous strain xS and the piezoelectric constant d as:

Spontaneous strain: xS = QPS
2 (16)

Piezoelectric constant: d = 2 ε0 ε QPS (17)

Note here that the electrostriction is a nonlinear phenomenon originated from the anharmonic
potential energy, which will be again discussed in Section 3.1. We see from Equation (17) that
piezoelectricity is equivalent to the “electrostrictive phenomenon” biased by the spontaneous
polarization”, which was already mentioned in the derivation process of Equation (4). The temperature
dependences of the spontaneous polarization and dielectric constant are plotted in Figure 3
by comparing the second-order (a) and first-order (b) phase transitions.
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Temperature dependence of various parameters are expressed in simple formulas in the case
of second-order transition as follows:

(i) Paraelectric phase—T > T0

PS = 0 (18a)

1/ε0 ε = α, then ε = C/(T − T0) (Curie-Weiss Law) (18b)

(ii) Ferroelectric phase—T < T0

PS = ±

√
−α
β

=±
√
(T0 − T)/ε0Cβ (19a)

1/ε0 ε = α + 3 β P2 = −2α, then ε = C/2(T0 − T) (19b)

xS = QPS
2 = Q (T0 − T)/ε0Cβ (20)
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From Equations (18b) and (19b), the piezoelectric constant is obtained as

d = 2 ε0ε Q PS

= Q
√
ε0C/β

√
T0 − T

(21)

2.1.4. Isothermal Process—Piezoelectric Coupling

2.1.4.1. Thermodynamical Meaning of Piezoelectric Constant

We continue the “linear energy handling” in Section 2.1.2. When the temperature is constant
(i.e., isothermal), θ = 0 in Equation (5b,c), we can obtain the “intensive” parameter-based piezoelectric
constitutive equations:

x = sEX + dE (22a)

D = dX + ε0ε
XE (22b)

where the following notations are used, and denoted as sE elastic compliance under constant E,
ε0εX dielectric permittivity under stress free:

sE = −
(
∂2G
∂X2

)
ε0εX = −

(
∂2G
∂E2

)
d = −

(
∂2G
∂X∂E

) (23)

The Maxwell relation, Equation (3a),
(
∂D
∂X

)
T,E

=
(
∂x
∂E

)
T,X

verifies that the piezoelectric coefficient
d in Equation (22a,b) are thermodynamically the same.

When we start from the Helmholtz free energy A (dA = −SdT + Xdx + EdD), by taking a similar
Taylor expansion approach, we obtain another set of piezoelectric constitutive equations in terms
of “extensive” parameters, x and D:

X = cD x − h D, (24a)

E = −h x + κ0κ
x D, (24b)

where cD is elastic stiffness under constant D, and κ0κ
x is inverse permittivity (κ0 = 1/ε0) under strain

free condition, and these coefficients are expressed by:
cD =

(
∂2A
∂x2

)
κ0κx =

(
∂2A
∂D2

)
h = −

(
∂2A
∂x∂D

) (25)

The Maxwell relation,
(
∂X
∂D

)
T,x

=
(
∂E
∂x

)
T,D

in Equation (3b), verifies that the inverse piezoelectric
coefficients h in Equation (24a,b) are thermodynamically the same.

2.1.4.2. Electromechanical Coupling Factor

The term, electromechanical coupling factor k, is defined as the square value k2 being the ratio
of the converted energy over the input energy: when electric to mechanical

k2 = (Stored mechanical energy/Input electrical energy), (26a)

and when mechanical to electric,

k2 = (Stored electrical energy/Input mechanical energy) (26b)
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Let us derive Equation (26a) first practically, when an external electric field E3 is applied to
a piezoelectric material in a pseudo-static process. See Figure 4a first, when we apply the electric field
on the top and bottom electrodes under stress free conditions (X = 0). Input electric energy must be
equal to (1/2)ε0ε3

XE3
2 from Equation (4), and the output strain generated by E3 should be d33E3 from

Equation (22a). Since the converted/stored mechanical energy is obtained as (1/2 s33
E) x3

2, we obtain:

k33
2 = [(1/2)−(d33 E3)2/s33

E]/[(1/2) ε0ε3
XE3

2]
= d33

2/ε0ε3
X
·s33

E (27a)
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Let us now consider Equation (26b), when an external stress X3 is applied to a piezoelectric
material in a pseudo-static process. Refer to Figure 4b. Under short-circuit condition (E3 = 0), the input
mechanical energy must be equal to (1/2)s33

EX3
2 from Equation (4), and the electric displacement

D3 (or polarization P3) generated by X3 should be equal to d33X3 from Equation (22b). This D3 can
be obtained by integrating the short-circuit current in terms of time through the electric lead. Since
the converted/stored electric energy is obtained as (1/2 ε0 ε3

X) D3
2, we obtain:

k33
2 = [(1/2 ε0ε3

X) (d33X3)2]/[(1/2)s3
EX3

2]
= d33

2/ε0ε3
X
·s33

E (27b)

It is essential to understand that the electromechanical coupling factor k (or k2, which has
a physical meaning of energy transduction/conversion rate), can be exactly the same for both converse
(27a) and direct (27b) piezoelectric effects. The conditions under constant X (free stress) or constant
E (short-circuit) are considered to be non-constrained.

2.1.4.3. Constraint Physical Parameters

It is important to consider the conditions under which a material will be operated when
characterizing the dielectric constant and elastic compliance of that material. When a constant
electric field is applied to a piezoelectric sample as illustrated in Figure 5 Top, the total input electric
energy (left) should be equal to a combination of the energies associated with two distinct mechanical
conditions that may be applied to the material: (1) stored electric energy under the mechanically
clamped state, where a constant strain (zero strain) is maintained and the specimen cannot deform,
and (2) converted mechanical energy under the mechanically free state, in which the material is not
constrained and is free to deform. This situation can be expressed by:(1

2

)
εXε0E2

0 =
(1

2

)
εxε0E2

0 +
( 1

2sE

)
x2 =

(1
2

)
εxε0E2

0 +
( 1

2sE

)
(dE0)

2

such that:
εXε0 = εxε0 +

(
d2

sE

)
or

εx = εX
(
1− k2

)
[k2 = d2

εXε0sE ]
(28a)
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When a constant stress is applied to the piezoelectric as illustrated in Figure 5 Bottom, the total
input mechanical energy will be a combination of the energies associated with two distinct electrical
conditions that may be applied to the material: (1) stored mechanical energy under the open-circuit
state, where a constant electric displacement is maintained, and (2) converted electric energy (i.e.,
“depolarization” field) under the short-circuit condition, in which the material is subject to a constant
electric field. This can be expressed as:(1

2

)
sEX2

0 =
(1

2

)
sDX2

0 +
(1

2

)
εXε0E2 =

(1
2

)
sDX2

0 +
(1

2

)
εXε0

(
d/ε0ε

X
)2

X2
0

which leads to:

sE = sD +

(
d2

εXε0

)
or sD = sE

(
1− k2

)
[k2 =

d2

εXε0sE ] (28b)

In principle, if we measure the permittivity in a piezoelectric specimen under stress-free and
completely-clamped conditions, we can obtain εX and εx, respectively. However, in practice, εx cannot
be measured because of the experimental difficulty to maintain the ideal strain-free (clamped) condition
for a long period. Similarly, if we measure the strain in a piezoelectric specimen as a function
of applied stress pseudo-statically, under short-circuit and open-circuit conditions, we can obtain
sE and sD, respectively. However, in practice, sD cannot be measured because of the induced bound
charge (or polarization) “screening” by migrating charge in the electrode, specimen or surrounding
atmosphere in a couple of minutes. Thus, the clamped permittivity εx or open-circuit D-constant
sD can only be measured with high-frequency dynamical methods, such as an impedance analyzer
around the resonance/antiresonance frequencies.

In conclusion, we obtain the following equations:

εx/εX =
(
1− k2

)
(29a)

sD/sE =
(
1− k2

)
(29b)
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where

k2 =
d2

sEεXε0
(30)

We can also write equations of a similar form for the corresponding reciprocal quantities:

κXκx =
(
1− k2

)
(31a)

cE/cD =
(
1− k2

)
(31b)

where, in this context,

k2 =
h2

cD(κ0κx)
(32)

This new parameter k in Equation (32) is also the electromechanical coupling factor in the “extensive”
parameter description, and identical to the k in Equation (30). Note the k expression derivation from
the piezoelectric constitutive equations, Equations (22a,b) and (24a,b):

k2 =
(Coupling f actor)2

(Producto f thediagonalparameters)
=

d2

sEεXε0
=

h2

cD(x/ε0 )

2.1.5. Adiabatic Process 1—Piezothermal Effect

When we discuss the piezoelectric coupling phenomena, we assume the isothermic condition;
that is, the specimen temperature is maintained constant, even the energy conversion is conducted
between the electrical and mechanical energy. We consider next the adiabatic process; that is,
the specimen is isolated from the external heat source, and temperature may be changed during
the energy conversion process by the external input. When the electric field is constant, E = 0
in Equation (5a,b), we can obtain the following equations:

S = −

(
∂2G
∂T2

)
θ−

(
∂2G
∂T∂X

)
X (33a)

x = −

(
∂2G
∂T∂X

)
θ−

(
∂2G
∂X2

)
X (33b)

or
S =

cp

T
θ+ αLX (34a)

x = αLθ+ sEX (34b)

where the following notations are used, and denoted as cp specific heat capacity under X = 0 and E = 0,
sE elastic compliance under constant E: 

cp = −T
(
∂2G
∂T2

)
X,E

sE = −
(
∂2G
∂X2

)
E,T

αL = −
(
∂2G
∂T∂X

)
E

(35)

Let us discuss here the diagonal expansion coefficient −
(
∂2G
∂T2

)
in terms of specific heat capacity.

Recall the relation dq = TdS in the “reversible” thermal process, where dq is the thermal energy flow
per unit “mass”, given by the total energy flow dQ = ρVdq (ρ: mass density, V: volume). The specific
heat capacity cp is defined by

cp =
∂q
∂T

= T
(
∂S
∂T

)
X,E

= −T
(
∂2G
∂T2

)
X,E

(36)
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It is noteworthy that the piezothermal coefficient αL is usually called “linear thermal expansion
coefficient” because −

(
∂2G
∂T∂X

)
E
=

(
∂x
∂T

)
. This piezothermal coefficient αL contributes to the converse

effect; that is, temperature change under the stress application, which can be called “piezo-caloric”
effect. The reader might have experienced in your elementary or middle school age that you felt
“cool” temperature when you touched a thick rubber band on your lip immediately after expanding
it. The piezothermal coefficient αL is originated from a nonlinear elastic vibration or the anharmonic
phonon interaction, which will be discussed in Section 4.3.1. The “piezothermal coupling factor”
kPT can be defined from Equation (34a,b) by

kPT2
=

(Coupling f actor)2

(Producto f thediagonalparameters)
=

αL
2( cp

T

)
sE

(37)

We can derive the completely “clamped” (strain x free) specific heat capacity and the “adiabatic”
elastic compliance in terms of kPT2 theoretically as follows, though these may not be useful physical
parameters: Under strain-free condition (x = 0), we obtain X = −αL

sE θ from Equation (34b). Since

Equation (34a) gives S =
cp
T θ + αL

(
−αL
sE θ

)
=

cp
T

(
1− kPT2)

θ, we finally obtain cx
p = cX

p

(
1− kPT2).

On the other hand, under the adiabatic condition (S = 0), we obtain θ = −T
cp
αLX from Equation (34a).

Since Equation (34b) gives x = αL

(
−T
cp
αLX

)
+ sEX = sE

(
1− kPT2)X, we obtain sE,S

adiasE,T
iso

(
1− kPT2).

2.1.6. Adiabatic Process 2—Electrothermal Effect

Direct effect is known as pyroelectricity, which is popularly used for temperature sensors and
night-vision devices, while the converse effect is “electrocaloric” phenomenon, which is a recent hot
topic for the application to a new refrigeration technology, as mentioned in Section 1 Background.

When the stress is constant, X = 0 in Equation (5a,c), we can obtain the following equations:

S = −

(
∂2G
∂T2

)
θ−

(
∂2G
∂T∂E

)
E (38a)

D = −

(
∂2G
∂T∂E

)
θ−

(
∂2G
∂E2

)
E (38b)

or
S =

cp

T
θ− pE (39a)

D = −pθ+ ε0ε
XE (39b)

where the following notations are used, and denoted as cE
p specific heat capacity (per unit mass) under

X = 0 and E = 0, ε0εX permittivity under constant stress X:
cp = −T

(
∂2G
∂T2

)
X,E

ε0εX = −
(
∂2G
∂E2

)
T,X

p =
(
∂2G
∂T∂E

)
X

(40)

The primary electrothermal coupling coefficient p is usually called “pyroelectric coefficient”,
defined by

p =

(
∂2G
∂T∂E

)
X
= −

(
∂P
∂T

)
X

, (41)

where we used the relation
(
∂G
∂E

)
X
= D(≈ P).
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2.1.6.1. Constraint Specific Heat Capacity

In Equation (36), we introduced cp specific heat capacity (per unit mass) under X = 0 and E = 0;
that is, under a short-circuit condition of a ferroelectric specimen’s surface electrodes. We may consider
a different specific heat capacity under an open-circuit condition (i.e., D = constant or zero) [14].

Taking the first derivative of Equation (39a) with respect to T by keeping X = D = 0, and cp = cE
p ,

(
∂S
∂T

)
X,D

=
cE

p

T

(
∂θ
∂T

)
X,D
− p

(
∂E
∂T

)
X,D

(42)

From Equation (38b) at D = 0, we obtain

E =
p

ε0εXθ

(
∂E
∂T

)
X,D

=
p

ε0εX

If we denote cD
p = T

(
∂S
∂T

)
X,D

and
(
∂θ
∂T

)
X,D

= 1, we can obtain

cD
p = cE

p −
Tp2

ε0εX = cE
p

1−
p2(

cE
p
T

)
ε0εX

 = cE
p

(
1− kET2

)
(43)

Here, we denoted the primary “electrothermal coupling factor” kET from Equation (39a,b) as

kET2
=

(Coupling f actor)2

(Producto f thediagonalparameters)
=

p2(
cE

p
T

)
ε0εX

(44)

It is important to note that Equation (43) is analogous to Equation (29b) to correlate the D-constant
and E-constant parameters in terms of “coupling factors”, kET2 and k2.

2.1.6.2. Constraint (Adiabatic) Permittivity

Permittivity was defined isothermally so far. However, we may consider adiabatic permittivity
theoretically when no heat flow is hypothesized, such as the case where a ferroelectric specimen is
suspended in a vacuum chamber [10].

From Equation (39b), isothermal permittivity (θ = 0) is given by

ε0ε
X,T =

(
∂D
∂E

)
X,T

(45)

Under adiabatic condition, by putting S = 0 in Equation (39a), we obtain

θ =
pT

cE
p

E (46)

Inserting Equation (46) into Equation (39b),

D = −p
pT

cE
p

E + ε0ε
X,TE = ε0ε

X,T

1− Tp2

cE
pε0εX

E (47)
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Thus, “adiabatic (S =constant) permittivity” is related with “isothermal (T = constant) permittivity”
again by using primary electrothermal coupling factor kET as:

ε0ε
X,S = ε0ε

X,T
(
1− kET2

)
(48)

2.1.6.3. Electrocaloric Effect

Equation (39a) gives the necessary formula for the electrocaloric effect. When we take “adiabatic”
condition; that is, constant entropy dS = 0, and Equation (46)

θ =
pT

cE
p

E

Here, cE
p is specific heat capacity (per unit mass) under E = 0, and p is pyroelectric coefficient

given by p = −
(
∂P
∂T

)
X

. The material’s development strategy should be higher p and lower cE
p at room

temperature (i.e., operation temperature 300 K).
Using a simple second-order phase transition, let us evaluate the temperature dependence

of the electrocaloric figure of merit, pT
cE

p
. Recall the following equations obtained in the ferroelectric

phase (T < TC = T0) in Section 2.1.3.2:

G1
(
P, T = (1/2)α P2 + (1/4)β P4

α = (T − T0)/ε0C
[
ε0ε0 = 8.854× 10−12 F/m

]
PS = ±

√
−α
β = ±

√
(T0 − T)/ε0Cβ

PS
2 = −α

β = (T0 − T)/ε0Cβ

G1(P, T) = 1
2αPS

2 + 1
4βPS

4 = −1
4
α2

β = −1
4β(ε0C)2 (T0 − T)2

(49)

(a) Specific Heat Capacity

cE
p = −T

(
∂2G
∂T2

)
X,E

=
T

2β(ε0C)2 (50)

(b) Pyroelectric Coefficient Noting here PS =
√
(T0 − T)/ε0Cβ, the pyroelectric coefficient is

obtained as

p = −

(
∂P
∂T

)
X
=

1

2
√
ε0Cβ

1√
(T0 − T)

(51)

(c) Figure of Merit of Electrocaloric Effect

pT

cE
p
=

√
β(ε0C)3/2 1√

(T0 − T)
(52)

Since the pyroelectric coefficient increases significantly with approaching the phase transition
temperature, in practical applications, the Curie temperature of the material is designed slightly higher
than room temperature (i.e., operation temperature).

In order to realize the refrigeration function, a large “negative electric field” is required theoretically,
so that the material’s “depoling” is anticipated. Since the coercive field is evaluated in the second-order
phase transition [4] as

EC =

√
−4
27
α3/β =

√
4
27

(T0 − T)3/β(ε0C)3, (53)

the EC reduces significantly with approaching the Curie temperature. Thus, in practice, by applying
a high positive electric field gradually (pseudo-equilibrium or isothermally), then, a sudden decrease



Actuators 2020, 9, 93 15 of 43

down to zero is conducted to lower the temperature to escape from the depoling problem in a low
coercive field material.

2.1.6.4. “Electrothermal Coupling Factor” kET

Let us obtain a practical number of “electrothermal coupling factor” kET Equation (44)

in PZTs at room temperature: kET2
=

p2(
cE
T

)
ε0εX

. Initially, all parameters are listed below:

• Pyroelectric coefficient p
Pb(Zr0.52Ti0.48)O3—0.3 0.7× 104 C/m2K [15]
PZT-5A—0.3 0.5× 104 C/m2K [16]
Pb(Zr0.74Ti0.36)O3—2.7× 104 C/m2K [17]

• Specific heat capacity cE
p

PZT-APC841—340 J/KgK [9]
PLZT(6/80/20)—338 J/KgK [18]

Specific heat capacity is measured by Differential Scanning Calorimetry (DSC), where endothermic
and exothermic processes are monitored by keeping the input energy flow constant. Since the measuring
time period is around 5–10 min, we cannot observe the difference between the short-circuited
and open-circuited ferroelectric specimens, that is, cE and cD. This happens probably because
the pyroelectrically induced charge is almost screened by the migrating free charge during a rather
long measuring time (several minutes):

• Permittivity εX

PZT-APC841—1375 [19]
Finally, the electrothermal coupling factor is calculated as follows:

kET2
=

p2(
cE

T

)
ε0εX

=
(0.5× 10−4 C/m2K)

2(
340 J/KgK

300 K

)(
8.854× 10−12 F

m

)
× 1375

= 0.18. (54a)

kET = 43% (54b)

We can conclude that the electrothermal coupling factor kET in PZTs has a comparable order
of magnitude to the electromechanical coupling factor k of 30–70%. It is interesting to calculate
the kET value for the second-order phase transition case: using Equations (49)–(51), kET = 100%,
irrelevant to any temperature, very idealistically.

2.2. Time-Dependent Ferroelectric Phenomenology

We handle transident reponse of a physical parameter after slightly deviated from the equilibrium
state in terms of the “relaxation” time.

2.2.1. Polarization Relaxation

Landau and Khalatnikov developed a theory for the temperature dependence of the “relaxation
time” of the order parameter, P, that is based on the Ginzburg–Landau theory of phase transitions [20,21].
This mean-field approach shows a divergence of τ ∝ 1/(TC − T) near a second-order phase transision
point, TC. The key assumption is that the change of polarization P with time (i.e., ∂P

∂t ) is proportional
to internal energy decrease rate with the unit order parameter change (i.e., −∂U

∂P ). By introducing
“relaxation time” τ, the inverse of which is taken as a proportional constant:

∂P
∂t

=
−1
τ

(
∂U
∂P

)
(55)
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We use again the simple “second-order phase transition” model here for a practical calculation:

G1(P,T) = (1/2)α P2 + (1/4)β P4 [α = (T − T0)/ε0 C]

Recall the fact that, in the ferroelectric phase (T < T0), the spontaneous polarization is expressed as

PS = ±

√
−α
β

= ±
√
(T0 − T)/ε0Cβ

Equation (55) is expressed in practice by

∂P
∂t

=
−1
τ′
∂G1

∂P
=
−1
τ′

(
αP + βP3

)
(56)

We consider the initial polarization P0 (PS + ε0εXE0 by applying small electric field

E0 on a ferroelectric specimen with PS =
√
−α
β . The meaning of Equation (56) is to provide how quickly

the P should return to the equilibrium state PS after sudden termination of the field. Equation (56) can
be solved as ∫ t

0

(
−1
τ′

)
dt =

∫ P
P0

dP
(αP+βP3)

= 1
βPS

2

P∫
P0

[− 1
P + 1

2
1

(P−PS)
+ 1

2
1

(P+PS)
]dP

−t
τ′ =

1
−α

[
−ln

(
P
P0

)
+ 1

2 ln
( P−PS

P0−PS

)
+ 1

2 ln
( P+PS

P0+PS

)]
Thus, we obtain √[

1−
(PS

P

)2]
/

1− (
PS
P0

)2 = e−t/( τ
′

−α ) (57)

The actual “relaxation time constant” τ is provided by

τ =
τ′

−α
=

τ′ε0C
(T0 − T)

∝ 1/(T0 − T) [α = (T − T0)/ε0 C] (58)

From Equations (57) and (58), we can conclude the following items:

• Time constant is proportional to “permittivity” ε0εX.
• t→∞ gives P→ PS.
• With approaching T→ T0, τ→∞. The recovery time of P is very slow around TC = T0.

The relaxation time τ is a measure of time delay of P generation after the external E is applied,
which corresponds to the “reaction resistance” or “dielectric loss”. A similar concept is introduced
in Section 4.3.2 for explaining the thermal resistivity/conductivity.

2.2.2. Temperature Relaxation

Time dependence of temperature (uniform temperature in a small volume) is considered
in this section. We start from an equation similar to the previous section:

∂θ
∂t

=
−1
τ

(
∂U
∂θ

)
(59)

If we take the Gibbs energy transformed from Equation (4) under stress-free condition (X = 0),

G(T, X, E) = 1
2

(
∂2G
∂T2

)
θ2 + 1

2

(
∂2G
∂E2

)
E2 +

(
∂2G
∂T∂E

)
θE

−
1
2

(
cE

p
T

)
θ2
−

1
2

(
ε0εX

)
E2 + pθE

(60)
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Equation (59) is transformed into

∂θ
∂t

=
1
τ′

cE
p

T

θ− pE

 (61)

The meaning of Equation (61) is to provide how quickly the θ should approach the equilibrium
statusθs after sudden application of the field E. As you realize, the electrocaloric effect under an adiabatic
condition indicates the temperature change in the equilibrium status Equation (46) as

θs =
pT

cE
p

E.

Equation (61) can be solved as

−

∫ t

0

1
τ′

(
cE

T

)
dt =

∫ θ

0

dθ
(θs − θ)

(62a)

−1
τ′

cE
p

T

t = ln(θs − θ) − ln(θs) (62b)

(1− θ/θs) = e
−t/τ′( T

cE
p
)

(63)

The actual relaxation time constant τ is expressed by

τ = τ′
 T

cE
p

 (64)

From Equations (63) and (64), we can conclude the following items:

• In a uniform (no space gradient) specimen, temperature change follows an exponential trend with
time: (1− θ/θs) = e−t/τ.

• t→∞ gives θ→ θs. θs corresponds to the temperature change by the electrocaloric effect.
• Time constant is proportional to temperature, and inversely proportional to the specific heat

capacity cE
p . The larger the specific heat capacity cE

p , and the lower the temperature, the lower
the time constant τ. The recovery time of θ is quicker. This τ is roughly a suitable rise time period
of an applying pseudo-step electric field.

The relaxation time constant τ in Equation (64) is very relevant to the time constant in thermal
diffusivity measurement discussed in Section 3.2, where τ ∝ 1/αT =

cpρ
λ . Note the opposite effect

of the specific heat capacity to the above relaxation time constant, and the heat flow relaxation time.

3. Thermal Diffusivity and Conductivity

So far, we discussed the equilibrium and time-dependent (dynamic) phenomenology
in the uniform ferroelectric specimen (that is, uniform temperature distribution in a specimen). We will
discuss spatially non-uniform (i.e., “space-gradient”) phenomenology in this chapter. The concept
of “heat flow” is introduced, where the exponential trend with time such as (1− θ/θs) = e−t/τ is not
sustained correctly.

3.1. 1D Heat Conduction Model

We will develop a 1D heat transfer model, as shown in Figure 6a, where a uniform disk or rod
is thermally isolated so that no heat escapes from its sides [22]. Temperature gradient is introduced,
and we define the temperature function θ(x,t) ((T − TR) difference from the TR) at a point a distance
x from one end of rod. We introduce the following three parameters:
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• q—Heat flux = quantity of heat passing through cross section of rod per unit area per unit time.
The unit of heat quantity is calorie (cal), and 1 cal corresponds to 4.186 Joule in energy.

• λ—Thermal conductivity = thermal or heat conductance per unit length of material. The inverse
1/λ is the resistance which measures the temperature drop per unit length when heat flux is unity.

• C—Heat capacitance of material = specific heat capacity cp (cE
p , cD

p ) × density ρ, number of heat
units to raise block of unit area and unit length (i.e., per unit volume) 1 ◦C in temperature.
Note that the specific heat capacity [J/(kg·K)] is determined per unit mass (kg), which must be
multiplied by density (kg/m3) to obtain the heat capacitance per unit volume [J/(m3

·K)].
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First, if θ(x + dx, t) is the temperature at a point at a distance of (x + dx) from the end of the rod,
we have (considering the unit cross section area tube)( 1

λ

)
qdx = θ(x, t) − θ(x + dx, t) = θ(x, t) −

[
θ(x, t) +

(
∂θ
∂x

)
dx

]
(65a)

Thus, we obtain

−

(
∂θ
∂x

)
=

( 1
λ

)
q (65b)

Next, the heat flux q(x, t) at the point x raises the temperature of the lamina of thickness
dx at the rate

(
∂θ
∂t

)
, and heat flux of magnitude q(x + dx, t) emerges from the lamina of width dx.

We thus have the equation

q(x, t) = Cdx
(
∂θ
∂t

)
+ q(x + dx, t) (66a)

Again expanding q(x + dx, t) by Taylor’s expansion, we obtain

−

(
∂q
∂x

)
= C

(
∂θ
∂t

)
(66b)

From Equations (65b) and (66b) to eliminate the parameter q, we obtain 1D heat transfer equation as(
∂θ
∂t

)
=
λ
C

(
∂2θ

∂x2

)
=

λ
cpρ

(
∂2θ

∂x2

)
(67)

The proportional constant λ
cpρ

is called “thermal diffusivity” αT, which is practically measured
by thermal experiments. Units and typical numbers of the necessary parameters in PZT are summarized:



Actuators 2020, 9, 93 19 of 43

• Thermal conductivity λ—0.6 1.3 [W/(m·K)]
• Specific heat capacity cp—340 420 [J/(kg·K)]
• Mass density ρ—7600 [kg/m3]
• Thermal diffusivity αT—2.7 5.1× 10−7 [m2/s]

3.2. Solution of 1D Heat Transfer Equation

Let us solve the heat equation Equation (67) using the Laplace operator:(
∂θ
∂t

)
= αT

(
∂2θ

∂x2

)
(68)

Taking Θ as the Laplace transform of θ(x, t) (Θ = L[θ(x, t)]), we have(
∂2Θ

∂x2

)
=

s
αT
Θ (69)

We may assume the solution form as

Θ = Ae
√

s
αT

x
+ Be

−

√
s
αT

x
(70)

Knowing the inverse Laplace transform,22)

L−1
[
e−a
√

s
]
=

a

2
√

πt3
e−a2/4t (71)

and a = ∓ x
√
αT

, Equation (70) can be transformed into

θ(x, t) = −A
x
√
αT

2
√

πt3
e−x2/4tαT + B

x
√
αT

2
√

πt3
e−x2/4tαT (72a)

We consider the boundary condition: Large heat source (θ = θ0) is attached suddenly (t = 0)
on the surface A (x = 0) in Figure 6a; that is, heat flux is given as a step-function with respect to time.
Excluding immediately after t = 0 and adjacent to x = 0 point, we consider the region t > δ, x > δ’,
and assume the following equation in most of the rod material’s length:

θ(x, t) = θ0e−x2/4tαT (72b)

Equation (72b) is a sort of “Error function” in terms of coordinate x, and indicates that

• At x = 0, θ(x = 0, t) = θ0 —Temperature is constant at θ0, irrelevant to time after attaching to
heat source.

• At x = L, θ(L, t) = θ0e−L2/4tαT —By measuring temperature change with t at x = L, we can obtain
the thermal diffusivity αT.

Figure 7a shows temperature distribution profiles as a function of position x for various time
lapses, and Figure 7b shows the temperature change with time at the position x = L. This simulation
used the following values: θ0 = 15 ◦C, L = 2 × 10−3 [m], αT = 8 × 10−7 [m2/s]. As can been seen,
heat flux penetration speed for 2 mm thick sample does not take longer than 0.5 s, and the temperature
monitoring finishes in less than 3 s. Even for a thicker specimen with 10 mm, the measuring time is
still shorter than 30–40 s.
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Figure 7. (a) temperature distribution profiles as a function of position x for various time lapses, and (b)
temperature change with time at the position x = L.

It is noteworthy that the temperature distribution profiles as a function of position x is not a simple
exponential curve, but resembles a half positive part of so-called “error function”, when the abrupt
step-function heat flux is inserted from the position x = 0 at t = 0. Because the curve profile of Figure 7b
seems to be a simple exponential curve, we previously used the approximate formula [9]:

θ(L, t) = θ0

1− e
−t/( L2

αT(π/2)2
)
 (73a)

We verify this handling equivalency with the exact formula,

θ(L, t) = θ0e−L2/4tαT (73b)

By putting A = e−(
L2

4αT
)/t, we obtain 1

lnA = −t(
L2

4αT

) , then e−t/( L2
4αT

)
= e

1
lnA . Taking Taylor expansion,

e
1

lnA ≈ 1−A + · · ·

we verify the relation

e−L2/4tαT ≈

[
1− e−t/( L2

4αT
)
]

(74)

However, note the numerical factor difference; that is, (π/2)2 in Equation (73a),
and 4 in Equation (74). This means that the experimentally determined αT with Equation (73a) was
overestimated from the αT value with Equation (73b) or (74) by the factor of 4/(π/2)2. The absolute
αT values may need to be modified by this factor from the previously reported values in Ref. [9],
if required.

3.3. Thermal Diffusivity Measurements

We can find previous papers [23,24], which report on the thermal properties of PZT ceramics at low
temperature (20 K–300 K), indicating a transition temperature between 50 K and 80 K, and at high
temperature (300 K–800 K), characterizing the effect of phase transition on the thermal properties.
However, to the author’s knowledge, the relationship of thermal properties with electrical boundary
conditions and poling status in the PZTs and other ferroelectric piezoelectric ceramics has not been
systematically studied yet.

We utilized our new experimental setup for measuring the thermal diffusivity of PZT’s. Though
Ref. [25] reported the details of the experimental setup, we summarize it briefly for the reader’s sake
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(see Figure 6b). Hot isothermal condition is imposed on a flat disk sample in our experiments
by suddenly being applied on the top surface (x = 0) at t = 0. The transient temperature increase
of the bottom side of the rod specimen is analytically similar to an exponential formulation with
a classic time constant, as described in the previous section in Equation (74). The thermal diffusivity
is given proportional to the “inverse time constant”. This method hosts a variety of advantages
over other methods such as (1) high accuracy, (2) low cost, (3) elimination of interface effects,
and (4) small specimen size. Best of all, (5) the measuring time period is short (10–20 s) enough
for measuring the difference between cE

p (short-circuit condition) and cD
p (open-circuit condition).

The accuracy of our setup has already been demonstrated in several materials with low to medium
thermal diffusivity (0.1–3 ×10−6 m2/s). The thermal diffusivity measurements in this experiment
have an accuracy of 5% or better for some standard materials such as Fused Quartz and Pyrex 7740,
in comparison to the literature values [25].

Using this method, the thermal diffusivity αT was measured on “poled” and “unpoled”
commercially-available hard PZT ceramic disks, APC 841 (APC International, Mill Hall, PA, USA),
of a diameter of 51 mm with thickness 2–5 mm. The ‘unpoled’ sample was “depoled” by heating
the specimen, annealing, and then checking their no piezoelectric response on a conventional
d33 m. The thermal diffusivity was measured in the direction of polarization for the poled samples.
In parallel, the absolute value of heat capacity of a small specimen was measured using the DSC Q2000
(TA Instruments, New Castle, DE, USA), by comparing it to a sapphire reference sample. The “specific
heat capacity (per mass)” and density are respectively cp = 340 J/kgK and ρ = 7600 kg/ m3. The specific
heat capacity difference between cE

p and cD
p could not be detected under electrical boundary condition

difference (short- and open-circuit) because the differential scanning calorimetry (DSC) took too long
(5 min) to keep the “depolarization field”.

Table 1 summarizes thermal diffusivity, specific heat capacity, and thermal conductivity
of a Hard PZT(APC 841), for unpoled and poled under different electrical boundary conditions
(open- and short-circuit) [9]. Note the significant difference in “thermal diffusivity” obtained
experimentally in these three electrical constraint conditions. The origin of this difference is discussed
in the following section.

Table 1. Thermal diffusivity, specific heat capacity, and thermal conductivity of a Hard PZT, for unpoled
and poled under different electrical boundary conditions.

Hard PZT Thermal Diffusivity
αT (10−7 m2/s) +/−

Specific Heat Capacity
cp (J/kg K)

Thermal Conductivity
λ (W/m K) +/−

Unpoled 4.32 0.34 cD
p = 279 0.91 0.10

Open
Circuit 5.02 0.23 1

3

(
cD

p + 2cE
p

)
= 320 1.22 0.06

Short
Circuit 8.25 0.78 cE

p = 340 2.13 0.23

3.4. Thermal Diffusivity under Different Electrical Constraints

We discovered the fact that experimentally obtained “thermal diffusivity” exhibits the largest
in a poled specimen under short-circuit condition, second in a poled specimen under open-circuit
condition, and the smallest in an unpoled specimen; all disk samples have electrode on both the top
and bottom surfaces. Because the thermal diffusivity is expressed by

αT =
λ

cpρ
(75)

where λ, cp, ρ are thermal conductivity, specific heat capacity, and mass density, respectively.
The difference in αT must be the combination effect of the λ and cp differences (the density ρ may not
be changed by the electric constraint condition).
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3.4.1. Specific Heat Capacity—Scalar Parameter

Recall the two types of specific heat capacity, cE
p and cD

p , which are correlated by

cD
p = cE

p

(
1− kET2

)
Here, the primary “electrothermal coupling factor” kET is given by kET2

=
p2 cE

p
T

ε0εX
.

We propose an assumption on the “depolarization field” generation during temperature rise
by pyroelectric effect, as shown in Figure 8: (a) poled specimen under short-circuit condition,
(b) poled specimen under open-circuit condition, and (c) unpoled specimen. Because a polycrystalline
PZT specimen is composed of multiple micro crystals, the situation is not actually so simple as described
here. However, we assume that poled specimens are handled as a completely aligned single crystal with
a monodomain; while the unpoled specimens have no net polarization, but each grain (i.e., microcrystal)
generates the polarization change with temperature, which generates so-called “depolarization field”

described as Edep = −
(

∆P
ε0εX

)
in each domain and grain [13].
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Note first that the heat capacity is a “scalar” parameter, the value of which is not affected
by the specimen orientation. When a specimen is poled and short-circuited with electrodes
on the whole specimen (except for the narrow specimen sides) in Figure 8a, the depolarization
field inside the material should be zero because the free charge in the electrode covers the bound charge
on the surface and compensate the internal field; thus, cE

p is expected to be observed. On the contrary,
in an unpoled specimen, though the polarization directions are randomly aligned in the specimen,
since each grain experiences the polarization reduction with temperature, the internal depolarization
field should be generated in each grain. We assume no free charge on the grain boundary region
inside the specimen to compensate the depolarization field, though total macroscopic field may be
zero (Figure 8c). Thus, cD

p is expected to be observed. We may need to modify this assumption
slightly, if required, because the bound charge of the adjacent grains may partially compensate
on the grain boundary; that is, cD

p may approach cE
p (slightly larger). The complex situation is

found in a specimen of poled under open-circuit condition. Because of the surface electrode,
E-constant two-dimensionally on the disk surface, but along the heat flow direction, D-constant
seems to be maintained by the depolarization field generation (Figure 8b). We assume the effective
specific heat capacity be evaluated by the average of 3D such as 1

3

(
cD

p + 2cE
p

)
because of scalar

characteristics. We decided first cE
p = 340J/kg·K from the DSC equipment. Then, using kET2

=,
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cD
p = cE

p

(
1− kET2)

= 279J/kg·K. Finally, 1
3

(
cD

p + 2cE
p

)
= 320J/kg·K for an unpoled specimen was

calculated. See the center column data of Table 1.
The “depolarization field” generation mechanism is very analogous to the piezoelectric effect.

Recall kt or k33 piezoelectric resonance modes, where the thickness or length stress distribution generates

the depolarization field Edep = −
(

∆P
ε0εX

)
anti-parallel to the induced polarization (∆P = d33X3) in order to

satisfy the D—constant (constraint) condition. The elastic compliance sD
33 and sound propagation speed

(vD
33 = 1/

√
ρsD

33 are modified by the electromechanical coupling factor kt
2 or k33

2 as sD
33 = sE

33

(
1− kt

2
)
.

While in the electrothermal material, the polarization modulation is made from the temperature change
via the pyroelectric effect. The specific heat capacity is modified by the electrothermal coupling factor
kET2 as cD = cE

(
1− kET2) depending on the electrical constraint. We may also imagine the heat-flow

(i.e., thermal conductivity) modulation according to the electrical constraint condition.

3.4.2. Thermal Conductivity—Tensor Parameter

Using αT = λ
cpρ

with ρ = 7600 kg/m3, we calculated thermal conductivity λ as listed in the last
column of Table 1. Note first that the thermal conductivity λi j is a second-rank tensor (similar to
the electrical conductivity σi j), different from the scalar “specific heat capacity”.

Let us discuss the difference among the measured thermal conductivity values for poled
short-circuit, poled open-circuit, and unpoled specimens. Note that, once poled, the piezo-ceramic
crystallographic symmetry becomes∞mm (equivalent symmetry to 6mm in terms of tensor notations).
First, the open-circuit thermal conductivity λD

33 is 0.57 times smaller than the short-circuit one λE
33.

We denote the superscripts E and D of the conductivity λ, supposing that the sample is roughly
maintained “electric field E constant” and “electric displacement D (or P) constant” during a rather
short experimental time period less than 10 s. Subscript “33” stands for the tensor component
relating to heat flux vector q3 and x-component of the temperature gradient grad (θ) (i.e., vector) along
the spontaneous polarization PS direction. Second, the unpoled specimen exhibits a crystallographic
symmetry of isotropic cubic m3m (different from the poled specimens), and the thermal conductivity
λu

11 shows the smallest value, 25% less than that of the poled open circuit case (see the last column
of Table 1). Different from the scalar analysis, the tensor analysis is directly coupled with the material’s
crystallographic symmetry. The unpoled specimen cannot be discussed in parallel with the poled
specimens because of the crystallographic symmetry difference.

We would like to define a new “electrothermal coupling coefficient” kλ33 below, in the relationship
between the open-circuit λD

33 and short-circuit thermal conductivity λE
33 such as:

λD
33 = λE

33

(
1− kλ33

2
)

(76)

Let us consider a derivation of this “secondary coupling coefficient kλ33” with using
a “space-gradient model” illustrated in Figure 9. Analogous to Equation (39a,b),

S =
cp

T
θ− pED = −pθ+ ε0ε

XE
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We define “heat flux” per unit time per unit area q = −T∇(S) [W/m2] and ∇(θ) = ∂θ
∂x [K/m],

and gradient of vector ∇(E) [V/m2]. Nabra ∇ is the gradient, ∇ = i d
dx + j d

dy + k d
dz . In our simple

model, we focus only on the x-direction component. Knowing the facts in 1D model: (1) qx = −λ∇(θ),
and (2) heat flux seems to be controlled by the electric field E (because of the difference between λD

33 and
λE

33), we assume the following constitutive equations, resembling Equation (39a,b) above, but taking
the gradient with respect to the heat flux direction x:

−T∇(S) = λ(−∇(θ)) − TEx∇(p′) − Tp′(−∇(Ex))

(−∇(Dx)) = θ∇(p′) − p′(−∇(θ)) − Ex∇
(
ε0εX

)
+ ε0εX(−∇(Ex))

If we assume that the room temperature is reasonably low from the Curie temperature, enough
to satisfy ∇(p′), ∇

(
ε0εX

)
� p′, ε0εX (that is, the pyroelectric coefficient and permittivity change with

temperature (or space coordinate x) is reasonably small), we can approximate the following equations:

−∇(S) = (λ/T)(−∇(θ)) − p′(−∇(Ex)) (77a)

−∇(Dx) = −p′(−∇(θ)) + ε0ε
X(−∇(Ex)) (77b)

We adopt another assumption, that is, D-constant along the thermal flow. From dD =(
∂D
∂x

)
dx +

(
∂D
∂t

)
dt = 0, we obtain −∇(Dx) =

(
∂D
∂t

)
/
(
∂x
∂t

)
= 1

v

(
∂D
∂t

)
, where v =

(
∂x
∂t

)
, drift velocity

of electric-displacement-charge. We can transform the gradient equations into time dependence:

−∇(S) = (λ/T)(−∇(θ)) − p′
(1

v

.
Ex

)
(78a)

(1
v

.
Dx

)
= −p′(−∇(θ)) + ε0ε

X
(1

v

.
Ex

)
(78b)

Since
(
∂D
∂t

)
means the electric-displacement-current, Equation (78b) stands for the dynamic

(transient) current density and electric field relation, modified by additional current originating from
the temperature gradient via pyroelectric effect. The constitutive equations are valid theoretically only
under the equilibrium conditions. However, even a transient and irreversible status, if the phenomenon
is in a pseudo-steady state like electric current or heat flow, we may assume similar constitutive
equations: Equation (78a,b) are with respect to −∇(S),

(
1
v

.
Dx

)
, −∇(θ), and

(
1
v

.
Ex

)
, instead of S, D,

θ, and E in Equation (39a,b). Recall that θ and Ex are intensive (irrelevant to volume) and S and
Dx are extensive (size dependent) parameters. Let us confirm the units of all equation parameters:
since the unit of entropy S is [J/K], we may assume the unit of ∇(S) as flow per second per unit
area (normalize by size) [W/K·m2]. Because T and ∇(θ) have [K] and [K/m], respectively, λ should
possess the unit of [W/K·m] (normalized by time). While

(
1
v

.
Ex

)
has [V/m2], p′ should have [Cm/K·s].

On the contrary, Equation (78b) requires a tricky explanation: we assume
(

1
v

.
Dx

)
is total charge
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flow (multiplied by cross-section area) per second with the unit [C/s]. In this case, taking ∇(θ) as
[K/m], p′ should have [Cm/K·s]. The remaining problem is the last term: ε0εX has [C/Vm] and

(
1
v

.
Ex

)
has [V/m2], thus the product should have the unit of [C/m3]. We need to translate this term by
multiplying the volume, such as ε0εX

.
Ex → C

.
V (here C: capacitance, V: voltage). The new coupling

parameter p′ seems to be analogous to pyroelectric coefficient p [C/K·m2] but is the total charge flow
(multiplied by volume) per second because we are discussing basically space-gradient temperature
profile. From Equation (78a,b), we may define a new “electrothermal coupling coefficient” kλ33 as

kλ33
2
=

(Coupling f actor)2

(Producto f thediagonalparameters)
=

Tp′2

λε0εX (79)

though Equation (77a,b) are not in an equilibrium state, but in an irreversible state. When we consider
D3 = constant (i.e., open-circuit), we get (−∇(Ex)) =

p′

ε0εX (−∇(θ)) from Equation (77b),
then Equation (77a) is transformed into

qx = λE
33

(
1− kλ33

2
)
(−∇(θ)) (80)

The reader can understand that Equation (80) provides the support for the Equation (76) formula.

The experimental result, λD
33 = 0.57 λE

33, gives kλ33
2
=

Tp′2

λE
33ε0εX = 0.43. Knowing λE

33 = 2.13 W/K·m

and εX = 1375, T = 300 K, we can obtain p′ = 6.1× 10−6 [Cm/s·K]. The remaining problem is how to
integrate the volume and unit time calibration into the ε0εX term to satisfy all units.

We will discuss a more microscopic “phonon model” in Section 4 on the heat flow in conjunction
with the above phenomenological explanation.

3.5. Thermal Conductivity in Pb-Free Piezoelectrics

In 2006, European Union started RoHS (Restrictions on the use of certain Hazardous Substances),
which explicitly limits the usage of lead (Pb) in electronic equipment. Basically, we may need to
regulate the usage of lead zirconate titanate (PZT), currently the most-widely used piezoelectric
ceramics, in the future. Because of this background, the research on Pb-free piezoelectrics is now
accelerated including their high-power performance. When we compare the maximum vibration
velocity in Pb-free piezoelectric with PZT’s, 1 m/s (rms) vs. 0.6 m/s in k31 type plate specimens.
Table 2 summarized the preliminary data on the thermal conductivity in the NKN-based material
with the PZT’s value (both unpoled samples). Pb-free piezoceramics such as (Na,K)NbO3− and
(Bi,Na)TiO3− based materials show much higher maximum vibration velocity than the PZT’s [26,27].
Much larger thermal conductivity in the NKN-based material than the PZT’s may also contribute
to this good high-power performance in NKN-ceramics because of the definition of the maximum
vibration velocity, as we have discussed in Figure 1 in Section 1.

Table 2. Thermal properties of NKN-Cu in comparison with Hard PZT.

Thermal Properties cp (J/kg K) λ (W/m/K)

Hard-PZT 420 1.25
NKN-Cu 580 3.10

4. Nonlinear Elastic Performances and “Phonons”

We discussed the phenomenological discussions in ferroelectrics on (1) linear equilibrium
in Section 2.1, (2) nonlinear equilibrium in Section 2.1.3, and (3) Harmonic dynamic in Section 2.2.
We discuss in this section the remaining nonlinear equilibrium and (4) Anharmonic dynamic. Important
nonlinear equilibrium effects include the “electrostriction”, “thermal expansion”, and the anharmonic
dynamic lattice vibration creates the “phonon thermal conductivity”.
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4.1. Electrostriction and Thermal Expansion

Heat transport in dielectric solids is by way of elastic dynamic vibrations of the lattice
(i.e., phonons) [28]. If the effective elastic energy potential for the crystal atoms possesses nonlinearity
or anhormonicity, thermal expansion, electrostriction, and isothermal compressibility come out under
equilibrium status. According to our previous paper Ref. [29], we introduce the effect derivation
process briefly.

We shall use the theory of cohesive forces in ionic crystals here, proposed by Born [30].
In the interests of simplicity, we derive various formulae for two-ion rock-salt structure. We start from
the potential function involving an inverse power type of repulsive energy of the form:

U =
−Mq2

r
+

Nb
rn (81)

where M is the Madelung constant for Coulombic energy, N the coordination number and b is a potential
constant for the quantum mechanical energy. Expanding the potential function around the equilibrium
position (rn−1

0 = nNb/Mq2), we obtain the form as a function of ∆r (=r − r0):

∆U = U(r) −U(r0) = f (∆r)2
− g(∆r)3 (82)

where f = (n− 1)Mq2/2r3
0 and g = (n + 4)(n− 1)Mq2/6r4

0. Using the Boltzmann distribution
for Gibbs energy ∆V± = ∆U ± qE∆r, the average equilibrium separation at high temperatures under
an applied electric field E is as follows:

∆r± >
∫
∞

−∞
∆rexp

(
−∆V±

kT

)
d∆r/

∫
∞

−∞
exp

(
−∆V±

kT

)
d∆r

3gk
4 f 2 T ± q

2 f E +
3gq2

4 f 3 E2,
(83)

where subscripts ± denote the ion pairs in the positive and negative directions of the electric field
respectively. The strain is therefore given by:

∆r+>+∆r
−> 2r0

=
3gk

4 f 2r0
T+

3gq2

4 f 3r0
E2

(84)

where the first term represents thermal expansion and the second term, electrostriction. The reader can
understand that both coefficients are originated from “g”, which is an anharmonic term, and when
the crystal is purely harmonic, neither thermal expansion nor electrostriction occur. Knowing
the polarization P, given by,

P = q〈∆r〉
2r3

0

=
q2

4 f r3
0

E (85)

the thermal expansion coefficient αL and electrostrictive Q coefficient can be calculated

αL =
3gk

4 f 2r0
=

(n + 4)k
2n(n− 1)Nb

rn
0 (86)

Q =

(
3gq2

4 f 3r0

)
/

 q2

4 f r3
0

2

=
4(n + 4)M

nNb
rn+3

0 (87)

Finally, using the “First Law” of thermodynamic of dU = −pdV (p: hydrostatic pressure,
V: volume), the isothermal compressibility χT becomes:

1
χT

= −V
(
∂p
∂V

)
T
= V

(
∂2U
∂V2

)
T

(88)
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Changing the variable from V to r and developing the result leads to the equation

χT =
18r4

0

(n− 1)Mq2 =
18

n(n− 1)Nb
rn+3

0 (89)

Comparing Equations (87) and (89), we obtain the relationship, χT ∝ Q. The compressibility
and electrostrictive coefficient are induced strain originated from the same crystal lattice anharmonic
potential against the force and electric field.

4.2. Lattice Vibration and Phonon

We may speculate the physical reasons of the thermal conductivity difference under short- and
open-circuit conditions from the aspects of phonon mode scattering, orientation of domains, and elastic
compliance in this section. Remember the fact that ferroelectric-originated piezoelectric materials
exhibit the phase transition associated with phonon mode “softening” (in particular, optical phonon
mode) [14]. Using the “first-principle” calculations, Zhang et al. obtained elastic compliances,
heat capacity, and thermal expansion coefficient, based on phonon dispersion curves [31]. Though
the detailed discussion is beyond our target in this paper, we introduce here briefly basic concepts
on the lattice vibration and “phonon”, based on books by Ashcroft and Mermin [28] and Ishii [32].

4.2.1. Lattice Vibration—One-Atom Chain Model

We consider the simplest one-atom (mass M) 1D chain (number of atoms N) connected
by a harmonic spring (spring constant K), as shown in Figure 10a (Note two end atoms in a free
condition). When we denote the displacement of the n-th atom from the equilibrium position as un,
we can obtain the following set of Newton equations:

M
..
u1 = −K(u1 − u2)

M
..
un = −K(un − un−1) −K(un − un+1) (n = 2, 3, · · · , N− 1)

M
..
uN = −K(uN − uN−1)

(90a)
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Assuming a harmonic vibration, un ∝ e jωt, whereω is the frequency,

−Mω2u1 = −K(u1 − u2)

−Mω2un = −K(un − un−1) −K(un − un+1) (n = 2, 3, · · · , N− 1)
−Mω2uN = −K(uN − uN−1)

(90b)
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Thus, we can write the following matrix formula:

ω2u = [F]u (91)

where u is an N-Dimensional vector with the components of un, and [F] is a symmetric matrix with
the components:

Fnm =
( K

M

){
(2− δn1 − δnN)δnm − δn,m−1 − δn,m+1

}
(92)

Here, we used Kronecker δnm, which means that δnm = 1 for n , m; δnm = 0 for n = m.
We will now solve the “eigenvalue equation” of Equation (91). Knowing the matrix

component relation ( K
M

)[(Mω2

K
− 2

)
un + un−1 + un+1

]
= 0 (93)

and the boundary condition for the “free-end” (u0 − u1 = uN − uN+1 = 0), assuming the a general
solution of “difference equation” Equation (93) in the form of un ∝ Pn, we obtain the following
characteristic equation:

P2 +

(
Mω2

K
− 2

)
P + 1 = 0 (94)

When
∣∣∣∣Mω2

K − 2
∣∣∣∣ < 2, we can put(

Mω2

K
− 2

)
≡ −2coska (0 < ka < π), (95)

where k, a are the wave number and the lattice unit size. The solution of Equation (94) is expressed as

P = exp(± jka) (96)

Then, we can express a general solution of Equation (93) as

un = Aexp( jkan) + Bexp(− jkan) (97)

The “free-end” boundary condition gives the relations:{
A + B = Aexp( jka) + Bexp(− jka)

Aexp( jka(N + 1)) + Bexp(− jka(N + 1)) = Aexp( jkaN) + Bexp(− jkaN)
(98)

To realize the meaningful solution (or A and B values), at least the following “determinant = 0”
should be satisfied: ∣∣∣∣∣∣ 1− exp( jka) 1− exp(− jka)

exp( jkaN)[1− exp( jka)] exp(− jkaN)[1− exp(− jka)]

∣∣∣∣∣∣ = 0 (99)

This requirement determines the solutions regarding the k value

ka =
(
α
N

)
π(α = 1, 2, · · · , N− 1) (100)

and for un,
un ∝ [1− exp(− jka)]exp( jkan) − [1− exp( jka)]exp(− jkan)

4 jsin
(

ka
2

)
coska

(
n− 1

2

) (101)
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Taking the normalizing factor determined by
N∑

n=1
un

2 = 1, we obtain the eigenvectors and eigen

frequencies as follows:

un(α) =

√
2
N

cos
απ
N

(
n−

1
2

)
(α = 1, 2, · · · , N− 1) (102)

ωα = 2

√
K
M

sin
απ
2N

= 2

√
K
M

sin
kαa
2

(103)

When
∣∣∣∣Mω2

K − 2
∣∣∣∣ = 2, unique solution ω0 = 0, un(0) =

√
1
N exists. However, when

∣∣∣∣Mω2

K − 2
∣∣∣∣ > 2,

no solution exists to satisfy the “free-end” boundary condition.
kαa ≡

(
α
N

)
π is called “wave number”, and the relationship between the frequency and wave

number (Equation (103)) is called “dispersion relation”. As shown in Figure 11a, ω ∝ k is valid only
for a low k range (long wavelength λ); that is, a wave packet shape distorts significantly via frequency
dispersion. This is the reason why “ω(k)vs.k” curve is called “dispersion relation”.
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change model.

The reader now understands that there are N lattice vibration eigenmodes for N eigenvalues
in the N-chain crystal lattice. Each mode is identified as a “phonon”. Because the actual crystal
size includes Avogadro number (1023 per mol) of atoms of N, the energy gap among phonons is
quantum-mechanically small. According to the Gibbs statistical dynamics for the equilibrium status,
thermo-dynamical properties in a crystal lattice is determined by these eigenvalues of the phonons.
The internal energy U is expressed by using quantum-mechanically small unit } as

U =
1

2N

N∑
α=1

}ωα cot h
( }ωα

2kBT

)
(104)

Here, } is the Planck constant, kB the Boltzmann constant, and T is temperature. The reader
remembers in your high school physics that Einstein introduced “}ω” quantum energy unit for “photon”
introduction. Equation (104) comes from the same philosophical concept.

We usually take N →∞ in an ideal crystal, and ωα exists densely (N modes) just
0 ≤ ωα ≤ ωL = 2

√
K/M. In the case of large crystal (N→∞), we occasionally use so-called “periodic

boundary condition”, instead of “end-free” condition; that is, the end atom (N-th) is connected with
the first atom with a spring K to the lattice chain as a “ring”. In this case, Equation (92) is modified as

Fnm =
( K

M

)
(2δnm − δn,m−1 − δn,m+1 − δn1δmN − δnNδm1) (105)



Actuators 2020, 9, 93 30 of 43

We solve the above difference equation under the boundary condition u0 − uN = uN+1 − u1 = 0.
The results are slightly different from Equations (102) and (103):

un(α) =


√

2−δα,0−δ2[ α2 ],N

N cos 2πn
N

[
α
2

]
(α = evennumber)√

2
N sin 2πn

N

[
α
2

]
(α = oddnumber)

(106)

ωα = 2

√
K
M

sin
π
N

[
α
2

]
(α = 0, 2, 3, · · · , N) (107)

Here,
[
α
2

]
is the Gauss symbol, which means the maximum integer number ≤ α/2. The key

difference due to the boundary condition change is the doubled unit cell; that is, even and odd
number position atoms are not identical. The wave number kαa ≡

(
2π
N

)[
α
2

]
exhibits double-degenerated

eigenvalues, which correspond to the following two eigen functions:

un(t) = Acos(kαan±ωαt) (108)

These waves correspond to left-ward and right-ward progressive waves. Taking an atomic
distance “a”, the wavelength Λ and wave velocity v are given by

Λ = 2πa/kα (109)

v = Λ
(
ωα
2π

)
= 2

√
K
M

sin(kα/2)
kα

a (110)

Equation (110) means that the wave velocity depends on the wave number; thus, a wave packet
with different frequency mixture distorts. Just for a long wavelength range (kαa� 1), the wave velocity

approaches v0 = 2
√

K
M a and ω ∝ k is valid.

4.2.2. Lattice Vibration—Two-Atom Chain Model

We now consider the two-atom (mass M and m, rock-salt-like) 1D chain (total number of atoms 2N)
connected by a harmonic spring (spring constant K), as shown in Figure 10b [28,32]. When we denote
the displacement of the n-th atom from the equilibrium position as un, the dynamic equations are
expressed as {

−mω2u2n = −K(u2n − u2n+1) −K(u2n − u2n−1)

−Mω2u2n+1 = −K(u2n+1 − u2n) −K(u2n+1 − u2n+2)
(111)

Mass m (or M) is located at an even (or odd) number lattice position, and assuming the solutions{ √
mu2n = Qe1exp( jkan)

√
Mu2n+1 = Qe2exp( jkan)

(112)

Equation (111) can be calculated as ω2e1 = 2K
m e1 −

K
√

Mm
[1 + exp(− jka)]e2

ω2e2 = −K
√

Mm
[1 + exp( jka)]e1 +

2K
M e2

(113)

In the matrix notation,
ω2e = D(k)e (114)

where

e ≡
(

e1

e2

)(
e1

2 + e2
2 = 1

)
(115)
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D(k) =

 2K
m

−K
√

Mm
[1 + exp(− jka)]

−K
√

Mm
[1 + exp( jka)] 2K

M

 (116)

The lattice chain has a unit cell of size 2a with M and m atoms, and e1 and e2 are the “polarization
(displacement) vectors” of m (even number position) and M (odd number position), respectively.
From Equation (114), the eigenvalueω should satisfy

ω4
− 2K

( 1
M

+
1
m

)
ω2 +

4K2

Mm
sin2

(
ka
2

)
= 0 (117a)

The solution of the above equation is given by

ω±
2(k) = K{

1
m

+
1
M
±

√( 1
m

+
1
M

)2
−

4
Mm

sin2

(
ka
2

)
} (117b)

We assume there are N unit cells with two atoms (M and m) in unit cells with a unit cell size of 2a,
and the “period boundary condition” is adopted in this model. For N→∞, k will vary from 0 to 2π.
At k = 0,

ω±
2(0) =

 0
2K

(
1
m + 1

M

) , (118a)

while, at ka = π, from ω±2(0) = K
(

1
m + 1

M

)
±

(
1
m −

1
M

)
[supposing M > m]

ω±
2(0) =

{
2K/M
2K/m

(118b)

Figure 11b illustrates the dispersion curves, plotted in the ka range of −π π (because of the period
symmetry). You can initially find frequency gap between

√
2K/M and

√
2K/m, where no solution

(i.e., phonon mode) exists. If we take the case of M = m, this gap disappears and the dispersion curve
becomes equivalent to that of one-atom model in Figure 11a, by considering the unfold shape at ka = π.
ω2
+(k) corresponds to the upper curve, which is called “optical branch”. This branch approaches to ωL

with k→ 0 :

ωL =

√
2K

( 1
m

+
1
M

)
(119)

Around k = 0, the “polarization vector” e satisfies

√
me1 +

√

Me2 = 0 (120)

which indicates that the two species of atoms move in opposite directions from each other by keeping
the center of gravity position. When we consider ionic crystal such as rock-salt (or PZT), Na+ and
Cl- ions move in opposite directions, leading to the electric polarization deviation. This phonon
mode can easily couple with the external electric field such as “optical light” electric wave; thus,
this is called “optical branch.” The reader can imagine that this interaction may be a part of the origin
of “electrothermal coupling” in ferroelectric materials.

On the contrary, the lower branch ω2
−
(k) of in Figure 11b is called “acoustic branch”. This branch

approaches ω ∝ k with k→ 0 ; a long-wavelength vibration transfer with a constant wave speed.
The polarization vector e satisfies the following condition at k = 0:

√
me1 =

√

Me2 (121)

Two species of atoms displace in the same direction with the same amplitude.
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4.2.3. Phonon Spectral Density

As expressed in Equation (100), the phonon modes are uniformly distributed in terms of wave
number k. However, in terms of frequency ω, the distribution is not uniform, but non-uniform. Due to
the sinusoidal relationship, ω ∝ sin ka

2 , the flat parts of the dispersion curve in Figure 11a,b condense
phonon modes significantly. The number of phonon eigenvalues which exist between the frequency
ω and (ω+ dω) is denoted as Ng(ω)dω, where N is the total number of atoms and g(ω) is called
“spectral density”. Figure 11a,b inserted a modified phonon spectral density (i.e., frequency square

spectral density), g(ω)
2ω = 1

πω
√
ωL2−ω2

, for the reader’s reference.

4.3. Anharmonic Phonon Modes and Electrothermal Coupling

4.3.1. Anharmonic Phonon Modes and Wave Packet

Thermal energy can be stored in the lattice vibration normal phonon modes as a vibration amplitude.
However, in a perfectly harmonic crystal, the phonon states are stationary, wide-spread in the crystal
uniformly as a wave (not an isolated wave packet or particle-like phonon). Since phonon vibration
is not disturbed, we can say the thermal resistance is zero, or thermal conductivity is infinite [28].
However, when the atomic energy potential includes nonlinear terms, the cubic anharmonic term just
introduced in Equation (82) or the quartic term in Equation (6), the resonance frequency should include
at least 2ω0 or 3ω0, higher order harmonic modes. According to the uncertainty of the resonance
frequency from the definite ω = ω0 to ∆ω = ω−ω0∨, the phonon distribution changes from∞wide
spread state to a sort of packet status. Figure 12 demonstrates a phonon wave packet generation from
the anharmonic lattice vibration. From Equation (101), we assume the normal phonon eigenfunctions as

uα(t) ∝ sinkαa·cosωαt (122)
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Taking into account a modified “phonon spectral density” (i.e., frequency square spectral density),
g(ω)
2ω as the summation weight, and the low frequency acoustic mode dispersion relation kα ∝ ωα,

we calculate the sum of un(t)’s, which exist in ∆ω∑n

α=1
uα(t) ∝

∑n

α=1

sinωαacosωαt
ωα

(123)
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Individual wave forms (time dependence) uα(t) are illustrated for ωα= 1, 2, 3 and 0.2 in Figure 12,
for the reader’s reference. Here, we took the atomic distance a = 1 as a normalized unit. One, two,
and three sinusoidal wave forms and a rather flat long-wavelength shape (ωα = 0.2) are observed.
When we sum up wave forms up to ωα = 3, the top wave packet can be obtained. Note that, if we add
ωα up to∞ ideally, the wave shape should theoretically be a square pulse inserted in Figure 12. Once
multiple phonons are generated synchronously via the anharmonic potential interactions, the phonon
energy localization is expected (not uniformly distributed as a separated harmonic vibration), leading to
the concept of wave-to-particle transition (i.e., the reason of the terminology introduction of “phonon”
from the elastic lattice vibration wave). If we rephase the above argument in a reverse way, by having
an excess of phonons with similar directed group velocities (i.e., by touching a heat source on the solid
crystal), the anharmonic part of the ionic interaction plays the wave packet into creation, destruction
or scattering of various frequency phonons, which corresponds to “thermal resistivity” (i.e., inverse
of thermal conductivity).

4.3.2. Heat Flow and Electrothermal Coupling

First, the sound velocity of the longitudinal wave is much faster than the transverse waves
in dielectric solid. Thus, thermal conductivity seems to be determined primarily by the speed
of longitudinal phonons. Second, phonons in the acoustical branch dominate the phonon heat
conduction as they have greater energy dispersion and a greater distribution of phonon velocities.
Additional “optical modes” can also be caused by the presence of charge or mass at lattice points.
Though it is implied that the sound velocity of the optical modes is low and their contribution to
the lattice thermal conduction is small in general [33], the optical mode contribution seems to also be
important in ferroelectric materials such as PZT’s because of their low-frequency soft-phonon modes,
which are highly interactive with the electric field. Third, when the phonon number ń deviates from
the equilibrium value ń0, thermal current arises as expressed by

qx =
1
V

∑
}ω(ń− ń0)vx, (124)

where vx is the energy transport velocity of phonons, equivalent to v in Equation (78a,b). There are two
mechanisms to cause time variation of ń in a particular region, the thin segmented disk in Figure 9:
(1) The number of phonons that diffuse into and diffuse out between the considering region and
neighboring regions, and (2) phonon decay inside the same region into other phonons. A special form
of the Boltzmann equation provides

dń
dt

=

(
∂ń
∂t

)
di f f .

+

(
∂ń
∂t

)
decay

(125)

Time variation in the latter term is described with a relaxation time (τ) approximation.28) Assuming
the spirit of the Drude model, the phonon collision occurs in a distance l = vxτ (vx: energy transport
velocity) in terms of the relaxation time τ. Though the microscopic origin is not clear, this relaxation
time concept has also been integrated in Section 2.2:(

∂ń
∂t

)
decay

= −(ń− ń0)/τ (126)

When the “steady state” condition is assured, that is, dń
dt = 0, the local thermal equilibrium

(i.e., dynamic equilibrium) is assumed, leading to the equation(
∂ń
∂t

)
di f f

= −

(
∂ń
∂t

)
decay

= −vx
∂ń0

∂T
∂T
∂x

(127)
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Using the relaxation time approximation for the Boltzmann equation and assuming steady-state
conditions, the phonon thermal conductivity λ can be determined:

λ = cpvx
2τ (128)

Let us now discuss the thermal conductivity changes under different electrical constraints. Phonon
transmission speed vx is proportional to the thermal conductivity λ. First, because of the random
orientation of domains in the unpoled sample, it is expected that there will be the most phonon
scattering at the domain boundaries in this specimen (i.e., acoustic mismatch at the grain boundaries).
Therefore, it will have the lowest thermal conductivity. Second, by increasing the degree of domain
orientation by the electric poling process, less scattering is expected in the poled specimens and thermal
conductivity will be larger for the poled material (λE

33 and λD
33), according to the crystallographic

symmetry change from m3m to∞mm. Third, because the elastic compliance under the short-circuit
condition (sE

33) is softer than the elastic compliance under open-circuit conditions (sD
33) via the relation

sE
33(1 − k33

2) = sD
33, and the sound velocity vE

33 is smaller than vD
33, the lattice vibration and domain

wall dynamic motion are expected to be larger in the polarization direction under the short-circuit
condition. In the thermal conductivity measurement, the “depolarization field” in parallel to
the spontaneous polarization direction under open-circuit condition (i.e., D-constant), originated
from the pyroelectric charge during the temperature rise, stabilizes the crystal vibration. The internal
electric field in piezo-materials in general stabilizes the lattice vibration (in particular optical branch)
and domain wall motion. The larger lattice vibration and domain wall dynamics in the short-circuit
condition may also introduce a larger phonon transportation, i.e., larger thermal conductivity (λE

33).
This speculation can also suggest the analogous relations among two coupling factors: electromechanical
k33 and secondary electrothermal kλ33.

5. Thermal Analysis on Piezoelectric Transducers

Based on the aforementioned knowledge, we introduce two practical thermal analysis case studies
in piezoelectric transducers in this section.

Heat generation in piezoelectric materials are originated from three losses: dielectric, elastic,
and piezoelectric losses. The hysteresis curves: dielectric D vs. E, elastic x vs. X, and piezoelectric
x vs. E under a stress-free condition and D vs. X under a short-circuit condition correspond
dielectric, elastic, and piezoelectric coupling losses, respectively. We discuss the heat generation
mechanisms of piezoelectric actuators under (1) off-resonance operation for actuator applications
(under a large electric field, 1 kV/mm or higher), where the dielectric loss is the primary origin,
and (2) resonance (or anti-resonance) operation for ultrasonic transducer applications (under a high
vibration condition at low electric field, 100 V/mm or lower), where the intensive elastic loss is
the primary heat generation factor.

5.1. Pseudo-DC Piezoelectric Actuators

5.1.1. Heat Generation from Multilayer Actuators

Zheng et al. reported the heat generation at an off-resonance frequency from various configurations
of multilayer (ML) type piezoelectric ceramic (soft PZT) actuators [34]. Figure 13 shows a structure
of the multilayer piezoelectric actuators. The temperature change with time in the actuators was
monitored when driven at 3 kV/mm (high electric field) and 300 Hz (much lower frequency than
the resonance frequency) (Figure 14a). The specimen temperature reached up to 140 ◦C, depending
on the size, showing an exponential increase with the operation time lapse. Figure 14b plots
the saturated temperature as a function of Ve/A, where Ve is the effective volume (electrode overlapped
part, abL in the figure) and A is the all surface area. Because the temperature was uniformly generated
in a bulk sample (no significant stress distribution, except for the small inactive portion of the external
electrode sides), this linear relation is reasonable because the volume Ve generates the heat, which is
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dissipated through the area A. Thus, if we need to suppress the temperature rise, a small Ve/A design
is preferred. Instead of one ML, four (1/4) small-ML’s connected in parallel are preferred.
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5.1.2. Thermal Analysis on ML Actuators

According to the law of energy conservation, the amount of heat stored in the piezoelectric,
which is just the difference between the rate at which heat is generated, qg, and that at which the heat is
dissipated, qd, can be expressed as

qg − qd = V ρ cp (dT/dt), (129)

where it is assumed that a “uniform temperature distribution” exists throughout the sample and V is
the total volume, ρ is the mass density, and cp is the specific heat capacity (per mass) of the specimen.
The heat generation in the piezoelectric is attributed to losses. Thus, the rate of heat generation, qg,
is expressed as:

qg = w f Ve, (130)

where w is the loss per driving cycle per unit volume, f is the driving frequency, and Ve is the effective
volume of active ceramic (no-electrode parts are omitted). According to the measurement conditions
(no significant stress in the sample at off-resonance), this w may correspond primarily to the dielectric
hysteresis loss (i.e., P-E hysteresis), we, which is expressed in terms of the intensive dielectric loss tan δ’ as:

w = we = π εXε0 E0
2 tan δ’. (131)
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If we neglect the transfer of heat through conduction, the rate of heat dissipation (qd) from
the sample is the sum of the rates of heat flow by radiation (qr) and by convection (qc):

qd = qr + qc = eAσ (T4
− To

4) + hc A(T − To), (132)

where e is the emissivity of the sample, A is the sample surface area, σ is the Stefan–Boltzmann
constant, To is the initial sample temperature, hc is the average “convective heat transfer coefficient”.
Thus, Equation (98) can be written in the form:

w f Ve − A k(T) (T − To) = V ρ Cp (dT/dt), (133)

where the quantity
k(T) = σe (T2 + To

2)(T + To) + hc (134)

is the overall “heat transfer coefficient”. If we assume that k(T) is relatively insensitive to temperature
change (if the temperature rise is not large), solving Equation (130) for the rise in temperature
of the piezoelectric sample yields:

T − To = [w f Ve/k(T) A] (1 − e−t/τ), (135)

where the time constant τ is expressed as:

τ = ρCp V/k(T) A. (136)

We can understand that the specimen temperature rise follows only when the heat transfer
coefficient k(T) is nearly constant.

As t→∞, the maximum temperature rise in the sample becomes:

∆T = w f Ve/k(T) A, (137a)

while, as t→ 0, the initial rate of temperature rise is given by

dT/dt = (wT f Ve/ρCp V) = ∆T/τ, (137b)

where wT can be regarded under these conditions as a measure of the total loss of the piezoelectric.
The dependence of k(T) on applied electric field and frequency are shown in Figure 15a,b, respectively.
Note that k(T) is almost constant, as long as the driving voltage or frequency is not very high
(E < 1 kV/mm, f < 2 kHz). The total loss, wT, as calculated from Equation (137b) is given for three
multilayer specimens in Table 3, three values of which are almost the same in less than 2% deviation.
In parallel, we measured the P-E hysteresis losses under stress-free conditions. The we values
obtained (Equation (130)) are also listed in Table 3 for comparison. It is intriguing that the extrinsic
P-E hysteresis loss contributes more than 90% of the calculated total loss associated with the heat
generated in the operating piezoelectric specimen [34,35]. We can conclude that the heat generation
of the piezoelectric specimen under high-electric field off-resonance operation is primarily originated
from the intensive dielectric loss factor, tan δ’.
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Table 3. Loss and overall heat transfer coefficient for PZT multilayer samples (under
E = 3 kV/mm, f = 300 Hz) [34].

Actuator 4.5 × 3.5 × 2.0 mm3 7.0 × 7.0 × 2.0 mm3 17 × 3.5 × 1.0 mm3

wT (kJ/m3) [
ρCpV

f Ve

(
dT
dt

)
t→0

] 19.2 19.9 19.7

P-E hysteresis loss (kJ/m3) 18.5 17.8 17.4
k(T) (W/m2 K) 38.4 39.2 34.1

5.2. Resonance Drive Piezoelectric Transducers

5.2.1. Heat Generation from a Resonating Piezoelectric Specimen

Tashiro et al. observed the heat generation in a rectangular piezoelectric plate during a resonating
drive [36]. Even though the electric field is not large, considerable heat is generated due to the large
induced strain/stress at the resonance. The maximum heat generation was observed at the nodal regions
for the resonance vibration, which correspond to the locations where the maximum strains/stresses
are generated.

The ICAT at the Penn State University also worked on the heat generation comprehensively
in rectangular piezoelectric k31 plates (Figure 16) when driven at the resonance [37]. The temperature
distribution profile in a PZT-based plate sample was observed with a pyroelectric infrared camera
(FLIR Systems ThermaCAM S40 outfitted with a 200 mm lens), as shown in Figure 17, where
the temperature variations are shown in the sample driven at the first (28.9 kHz) (a) and second
resonance (89.7 kHz) (b) modes, respectively. The highest temperature (bright spot) is evident
at the nodal line areas of the length resonance for the specimen in Figure 17a,b. This observation
supports that the heat generated in a resonating sample is primarily originated from the intensive
elastic loss, tanϕ’. Remember that the maximum vibration velocity is defined as the velocity under which
a 20 ◦C temperature increase occurs at the maximum temperature point (i.e., nodal line!) in the sample.
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Figure 17. Temperature variations in a PZT-based plate sample observed with an infrared camera,
driven at: (a) first resonance and (b) second resonance mode.

5.2.2. Heat Generation at the Antiresonance Mode

The resonance and antiresonance are both mechanical resonances with the electrical admittance
maximum and almost zero (or maximum), respectively, when electrically excited. We can amplify
the generating displacement (or vibration velocity) significantly by the factor of mechanical quality
factor QA at the resonance under constant voltage drive, while by QB at the antiresonance under
constant current drive. In the k31 mode, we derived the mechanical quality factors QA and QB as
follows [37]:
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1

tanφ11
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(138a)
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Here, tanδ33′ , tanφ11′ , and tanθ31′ are intensive loss factors for ε33
X, s11

E, d31, respectively,
and Ω B,31 is the normalized antiresonance frequency:
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where the antiresonance (normalized) frequency ΩB,31 is k31 dependent, and can be obtained from
the equation 1 − k31

2 + k31
2 tan ΩB

ΩB
= 0. Because the intensive dielectric loss tanθ31′ is larger than

(tanδ33
′ + tanφ11

′)/2 in PZT piezoceramics, QB at antiresonance is higher than QA at resonance;
that is, the antiresonance operation seems to be more efficient than the resonance drive.

Figure 18a,b show temperature variations in a PZT-based plate specimen driven at the antiresoance
(a) and resonance frequency (b) under the same vibration velocity (i.e, almost the same output
mechanical energy), which clearly exhibit lower temperature rise in the antiresonance, than that
in the resonance drive. Remember the similar resonance and antiresonance vibration modes
for a reasonable electromechanical coupling factor k31 = 30% [37]. In comparison with the fundamental
resonance mode, though the antiresonance mode exhibits the strain-zero lines (i.e., anti-node lines)
a little inside from the plate edges for this small k31 case, the overall vibration configurations
for resonance and antiresonance modes are rather close to each other. Namely, as long as the vibration
velocity at the plate edge is the same, the total mechanical energy is assumed to be the same
for both resonance and antiresonance operations. Numerical profiles of the temperature distribution
for the A- and B-type resonance modes are shown in Figure 18c for various vibration velocity,
which seems to be pseudo-sinusoidal curves in terms of the length position coordinate. Under the same
vibration velocity, 550 mm/s RMS, the resonance nodal line area shows the temperature up to 100 ◦C,
while the antiresonance mode shows the maximum around 60 ◦C; dramatic heat generation reduction
under the antiresonance drive
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5.2.3. Thermal Analysis on the Resonance Mode

5.2.3.1. Heat Transfer Modeling

We develop a 1D heat transfer model for the k31 mode piezoelectric rectangular plate around
the resonance/antiresonance frequency range. In comparison with the off-resonance model, where
the heat is generated primarily from the dielectric loss and the uniform temperature distribution profile
due to no particular stress in the specimen, the resonance case generates the heat originated from
the intensive elastic loss on a sinusoidal stress distribution of a specimen. Because of the initial heat
source being sinusoically distributed in the specimen, we need to integrate the thermal diffusivity
of the piezo-ceramic in order to analyze the temperature distribution of the sample.

We set the following assumptions for developing the heat diffusion equation:

(1) 1D heat conduction in the specimen.
(2) Heat generation is proportional to strain squared (i.e., elastic energy), distributed on the specimen.
(3) Heat dissipation via convection (to air) and radiation. Conduction is neglected.
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Using a temperature parameter T(x,t), which is defined as temperature of a sliced volume ∆x from
the position coordiate x to (x + ∆x) at time t, the following equation is assumed:

∂T(x, t)
∂t

=
λ

cpρ

∂2T(x, t)
∂x2 +

qg(x)
cpρ

−
hd
cpρ

[T(x, t) − Tair] (140)

where λ is thermal conductivity [unit: W/m K], cp (cE in the k31 case) is specific heat (unit: J/kg K),
ρ density, and λ

cpρ
= αT is called thermal diffusivity [unit: m2/s].4,7) The first term of the right-hand-side

of Equation (140) describes the temperature distribution in respect of the position x, which changes
the shape with time. The second term corresponds to the temperature increment caused by heat
generation per unit volume (devided by cpρ), which may exhibit a sinusoidal distribution. The third
term indicates the heat dissipation proportional to the temperature difference ∆T from the ambient
temperature Tair.

Regarding the heat generation, we further assume that qg(x) is expressed in proportion to
the square of the sinusoidally-distributing strain, as visualized in Figure 19:

qg(x) = ghcos2
(
πx
L

)
(141)
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The heat dissipation hd is a proportional constant to [T − Tair], similar to “heat transfer coefficient”
introduced in Equation (131).

5.2.3.2. Temperature Distribution Profile Change with Time

We prepared a piezoelectric k31 rectangular plate specimen with 80 × 14 × 2 mm3 in size with
a hard PZT composition (APC 841, American Piezo Company, Mill Hall, PA, USA) for both admittance
and thermal imaging observation purposes. We used a constant vibration velocity method
for the measurements under 300 mm/s RMS. Figure 20a shows the temperature distribution profile
change with time after driving. You can notice that the plate edge temperature increases significantly
with time lapse, primarily due to the thermal diffusion in the PZT from the nodal highest point to
the edge lowest temperature point. The saturated temperature distribution profile for the k31 specimen
is shown in Figure 20b, which can be used for calculating the total thermal dissipation energy gh.
A small temperature dent at x = 0 originated from the heat dissipation by the center sample-holding
rod conduction, which is neglected in the simulation.
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Figure 20. (a) Temperature distribution profile change with time after driving; (b) the saturated
temperature distribution profile for k31 specimen with 80× 14× 2 mm3.

If we adopt the most general definition of the mechanical quality factor as

Qm = 2π
EnergyStored/Cycle
EnergyLost/Cycle

(142)

we can obtain Qm from

Qm = 2π f
(
ρV2

rms

hg

)
(143)

Note that this is the unique approach to determine the mechanical quality factor with using merely
the thermal data, without using any electrical energy information.

Shekhani et al. measured the admittance spectrum on the above PZT sample (80× 14× 2 mm3)
with the resonance frequency at 20.04 kHz at room temperature, and obtained Qm = 507 by a 3-dB-down
method on an admittance spectrum. Then, the sample was excited under the vibration velocity
of 400 mm/s for 30 s, which corresponds to the heat dissipation of 11.6 W/m2. Figure 21 shows
the Qm obtained at three frequencies slightly above the resonance frequency (20.04 kHz) [7].
The Qm values around 550 agree with the extraporated values from the above 507. Thus, we can conclude
that this thermal method can determine the Qm reasonably at any frequency around the resonance and
anti-resonance region. An increase of Qm with increasing the frequency suggests that a maximum-Qm

frequency (i.e., the highest efficiency) exists between the resonance and antiresonance frequencies [38].
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6. Conclusions

The electrothermal, piezothermal, and piezoelectric coupling phenomena in ferroelectrics have
been introduced with thermodynamics viewpoints—in particular, thermal property differences
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among unpoled and poled PZT’s in the poling direction for open circuit and short circuit conditions.
The derivation processes for piezoelectric, piezothermal and electrothermal “coupling factors” have been
introduced comprehensively. We proposed a new “electrothermal” coupling factor kλ for the thermal
conductivity analysis, relating the parameter change under short- and open-circuit conditions, in order to
explain the fact that the short-circuit condition exhibited larger thermal diffusivity than the open-circuit
condition. On the other hand, the unpoled specimen exhibits the lowest thermal conductivity.
This tutorial paper was authored for providing comprehensive knowledge on equilibrium and
time-dependent thermodynamics in ferroelectrics. Electrothermal coupling may be categorized as
primary and secondary effects in general. The primary effect includes “pyroelectric” and “electro-caloric”
phenomena, and the secondary effect includes the space-gradient (i.e., first-derivative) phenomena,
such as “thermal conductivity” and local “electric displacement current”. The author is expecting
further theoretical expansion in this electrothermal coupling area, and industrial application products.
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