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Abstract: Antimicrobial resistance belongs to the most demanding medical challenges, and antimi-
crobial photodynamic inactivation (aPDI) is considered a promising alternative to classical antibiotics.
However, the pharmacologic characterization of novel compounds suitable for aPDI is a tedious and
time-consuming task that usually requires preparation of bacterial cultures and counting of bacterial
colonies. In this study, we established and utilized a luminescence-based microbial cell viability assay
to analyze the aPDI effects of two porphyrin-based photosensitizers (TMPyP and THPTS) on several
bacterial strains with antimicrobial resistance. We demonstrate that after adaptation of the protocol
and initial calibration to every specific bacterial strain and photosensitizer, the luminometric method
can be used to reliably quantify aPDI effects in most of the analyzed bacterial strains. The interference
of photosensitizers with the luminometric readout and the bioluminescence of some bacterial strains
were identified as possible confounders. Using this method, we could confirm the susceptibility of
several bacterial strains to photodynamic treatment, including extensively drug-resistant pathogens
(XDR). In contrast to the conventional culture-based determination of bacterial density, the lumi-
nometric assay allowed for a much more time-effective analysis of various treatment conditions.
We recommend this luminometric method for high-throughput tasks requiring measurements of
bacterial viability in the context of photodynamic treatment approaches.

Keywords: photodynamic therapy; photodynamic inactivation; luminescence measurement; antimicrobial
resistance; TMPyP; THPTS

1. Introduction

The increasing occurrence of antibiotic resistance in bacteria is a major clinical chal-
lenge. Despite intense research, only very few new antibiotics with a novel mechanism of
action have been identified [1,2]. Therefore, new strategies that do not depend on specific
bacterial structures, such as antimicrobial photodynamic inactivation (aPDI), constitute
highly interesting alternatives [3–5]. In PDI, a non-toxic photosensitizer binds to or is
taken up by the bacteria [6]. For aPDI, porphyrin-based sensitizers are currently evaluated
most often [5], but there is a broad range of other naturally occurring as well as synthetic
compounds with photosensitizing properties [3,7], including quinone derivatives, phe-
nothiazines such as methylene blue, and xanthenes, including phthaleins and fluorescein
derivatives such as Rose Bengal. Upon illumination, these sensitizers induce the generation
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of reactive oxygen species (ROS), such as singlet oxygen [8,9], that can inactivate bacteria
in a variety of ways [10,11] and independently of possible antibiotic resistances [7].

Ongoing research focuses on further optimization of photosensitizers for specific
applications [12,13], as well as on the in-detail characterization and comparison of different
photosensitizers in vitro [14–16]. Additionally, photosensitizers were tested in in vivo
models for critical infections [17–19]. Unfortunately, the assessment of one central readout
in these experiments, the number of viable bacteria, is labor-intensive and time-consuming,
which limits the amount of processable samples. Therefore, a scalable approach that allows
for the parallel analysis of various treatment conditions and a great variety of different
pathogens that are clinically relevant is urgently required.

In this study, we aimed to establish a reliable, fast and scalable method for the de-
tection of viable bacteria with a faster processing time and limited manual manipulation,
as compared to standard processes that involve agar plate cultures and the counting of
bacterial colonies formed after incubation [20,21]. Previously described methods with
higher throughput, such as the antibody-based Raman technique for multiplex optical
quantification, do require sophisticated and expensive equipment [22], and PCR meth-
ods cannot discriminate between inactivated and viable bacteria [23]. Thus, we used a
chemiluminescence-based cell viability system that enables the detection of ATP-dependent
luminescence in a 96-well format as a surrogate for the number of viable bacteria in solution.
This system is based on firefly luciferin, which is catalyzed by recombinant luciferase in the
presence of magnesium (Mg2+) ions, ATP and molecular oxygen. This mono-oxygenation
of luciferin is a chemically exothermic reaction that results in oxyluciferin, adenosine
monophosphate (AMP), inorganic pyrophosphate, carbon dioxide (CO2) and yellow-green
(550–570 nm) light emission [24]. Therefore, the amount of ATP contained in the sample to
be analyzed can be inferred from the amount of light measured [25].

For the evaluation of the modified luminescence-based method, we selected the
porphyrin-based photosensitizers TMPyP and THPTS, which are both cationic and water-
soluble [5,13] but differ in their optical properties and require different light activation.

We investigated the photodynamic inactivation of several bacterial strains, including
Gram-positive Staphylococcus aureus and Enterococcus faecium and Gram-negative bacteria
such as Escherichia coli, Klebsiella pneumoniae, Actinetobacter baumanii, Pseudomonas aeruginosa,
Achromobacter xylosoxidans and Morganella morganii. For all of these pathogens, antimicrobial
resistances (AMR) have been described that are a serious threat and a great challenge to the
global public health today [1].

2. Materials and Methods
2.1. Bacterial Strains and Growth Media

All investigated bacterial strains are listed in Table 1. Individual patient-derived strains
were identified by MALDI-TOF mass spectrometry (VITEK-MS, bioMérieux, Marcy-l’Étoile,
France) in accordance to Tanis et al. [26]. Antibiotic resistances were tested according to the
ISO 20776-1 microbroth dilution method.

Blood agar containing Columbia Blood Agar Base (Oxid, Wesel, Germany) with 5% sheep
blood (Fiebig, Idstein-Niederauroff, Germany), 2xYT (Trypton, Yeast, NaCl) and brain–heart
infusion (BHI; Oxid) dissolved in 0.9% NaCl solution were used as growth media.

2.2. Culture Conditions

The bacteria were cultured at 37 ◦C and 5% CO2 on blood agar plates overnight.
Individual colonies were diluted in 0.9% NaCl solution to an initial bacterial density that
was optically equivalent to McFarland standard no. 1, corresponding to a concentration of
approx. 3 × 108 colony-forming units (CFU)/mL. The resuspended bacteria were diluted
to a final concentration of 7.5 × 107 CFU/mL in 0.9% NaCl solution containing 50% BHI
and a photosensitizer at the indicated concentrations.
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For the detection of viable bacteria by luminescence measurement, PDI-treated bacte-
rial suspensions were incubated in the 24-well plate used for PDI at 37 ◦C and 5% CO2 for
90 min and stored at −80 ◦C (<12 h) until detection.

2.3. Assessment of Bacterial Viability

Quantification of ATP was performed by commercially available luciferase-based
assay system (BacTiter-Glo™ Microbial Cell Viability Assay, Promega, Madison, WI, USA).
Light signals were detected by a luminescence microplate reader (Berthold Technologies,
Centro LB 960, Bad Wildbad, Germany) in non-transparent white 96-microwell plates
(Thermo Scientific, Waltham, MI, USA) and analyzed by Microwin 2010 software (version
5.17, Mikrotek Laborsysteme GmbH, Neunkirchen-Seelscheid, Germany). Samples (50 µL)
were measured in duplicates with a registration time of 1 s per well. Luminescence data
are presented as raw RLU data detected after incubation without any adaptation.

For classic clonogenic bacterial density quantification immediately after aPDI, 100 µL
of bacterial suspension was diluted by a factor of 10−3 to 10−6 in 0.9% NaCl solution in
order to achieve a high counting accuracy, then spread out with a Drigalski spatula on
blood agar plates and incubated for 20 h ± 4 h at 37 ◦C and 5% CO2. Subsequently, the
agar plates were photographed, and the colony numbers were counted using Image J
(Rasband, W.S., U.S. National Institutes of Health, Bethesda, MD, USA) to determine the
colony-forming units (CFU). In contrast to other bacterial strains, Achromobacter xylosoxidans
required 48 h of incubation at 37 ◦C and 5% CO2 in order to ensure sufficient visibility of
colonies.

2.4. Photodynamic Treatment

The photosensitizer TMPyP 4,4′,4”,4”′-(5,10,15,20-tetrayl)tetrakis(1-methylpyridin-1-
ium)porphyrin tetratosylate was purchased in the highest available purity (97%) (Product
323497, Sigma Aldrich Chemistry GmbH, Steinheim, Germany). The photosensitizer
THPTS (3,3′,3”,3”′-(7,8,17,18-tetrahydro-21H,23H-porphyrine-5,10,15,20-tetrayl) tetrakis[1-
methyl-pyridinium] tetratosylate, purity 95%), characterized in other studies [27,28], was
purchased from TetraPDT GmbH (Rackwitz, Germany).

Illumination was performed in transparent 24-well plates (Cellstar, Greiner bio-one,
Frickenhausen, Germany). For TMPyP, we used a custom-made planar LED array-based
illumination device, previously analyzed by Habermann et al. [29], with an intensity
maximum of 13 mW/cm2 at λcent = 420 nm at a distance of 8 cm. This setup enabled a
homogenous light application of all samples on the microwell plate.

For THPTS illumination, a custom-made planar LED array (LEDs: SMB1N 760d, Roitner
Laser, Vienna, Austria) with an intensity maximum of 18 mW/cm2 at λcent = 760 nm at a
distance of 8 cm was used. A power supply (Bio Rad, Power Pac HC, Hercules, CA, USA) was
used to power this light source. Light intensity was measured with a power meter (FieldMax2
TP, Coherent, Portland, OR, USA).

Both photosensitizers were prepared and stored in stock solutions (0.8 mM in 0.9%
NaCl) in the dark at 4 ◦C for a maximum of three weeks before use. For photodynamic
treatment, the photosensitizer stock solution was added to the bacterial suspensions to
obtain the final concentrations indicated (0 to 200 µM). aPDI was performed at a volume of
1 mL per well.

After the addition of the photosensitizer, all samples were preincubated for 20 min. For
TMPyP-treated samples, illumination was started for 0, 60, 90 and 120 min, as previously
described [30,31]. For THPTS-based aPDI treatment, bacteria were illuminated for 0, 4, 12,
36 and 108 min in accordance with Ziganshyna et al. [32]. Additional samples were stored
under identical conditions but protected from light (dark control). After light exposition,
the samples were protected from light and subjected to luminometric cell counting or
culture-based determination of bacterial density.
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Table 1. Classification of bacterial strains by Gram-stain and antibiotic resistance.

Classification Gram-Stain Resistances [33]

Escherichia coli negative Extended spectrum beta-lactamase (ESBL)
Staphylococcus aureus positive Methicillin-resistant (MRSA)
Klebsiella pneumoniae negative ESBL-producing, fluoroquinolone-resistant, carbapenem-resistant (CRE)

Acinetobacter baumanii negative Extensively drug-resistant (XDR)
Enterococcus faecium positive Vancomycin-resistant (VRE)

Pseudomonas aeruginosa negative Multidrug-resistant (MDR) (including carbapenems)
Morganella morganii negative -

Achromobacter xylosoxidans negative Extensively drug-resistant (XDR)

2.5. Spectrometry

The absorption spectrometry of photosensitizers and bacterial growth media, as
well as the luminescence spectrometry of the Cell Viability Assay, was performed with a
SpectraMax M5 instrument (Molecular Devices, San José, CA, USA).

2.6. Statistical Analysis

Data are presented as mean ± SD. Differences between groups were determined using
one- or two-way ANOVA and Bonferroni post hoc test. For cross-correlation analysis,
corresponding value pairs determined by the two different detection methods were plot-
ted against each other to assess a linear correlation. Calculations were performed with
GraphPad Prism (version 7.0, GraphPad, San Diego, CA, USA).

3. Results
3.1. Evaluation of a Luminescence-Based Approach for the Determination of aPDI Effects

To test whether a luminometric quantification of ATP in bacterial lysates after aPDI
treatment was suitable for the determination of the aPDI effects on bacterial growth, we
determined the effect of 0 to 200 µM TMPyP and illumination for 0 to 120 min with
13 mW/cm2 at λcent 420 nm on E. coli using conventional bacterial culture and colony
counting. Consistent with previous results, we found a reduction in the bacterial colony
number [34], which depended on the photosensitizer concentration and illumination time
(Figure 1A,B).

When we analyzed the bacterial viability as determined by the ATP concentration in
bacterial cell lysates after aPDI treatment following the manufacturer’s instructions, we
observed a clear reduction in the luminescence in bacterial lysates after aPDI treatment,
as compared to lysates that were only incubated with the photosensitizer but that were
protected from light, suggesting that the aPDI effects can be determined using this ap-
proach. However, the addition of only the photosensitizer (without any illumination) also
caused a significant reduction in detected luminescence, suggesting that the photosensitizer
interferes with the assay system (Figure 1C). Therefore, we decided to develop an adapted
protocol by performing additional preliminary experiments.

To determine whether the optical properties of the photosensitizers interfere with the
luminescence measurement, we determined the absorption spectrum of TMPyP dissolved
in 50% BHI-NaCl solution. Consistent with the optimal wavelength for aPDI treatment,
the absorption maximum was detected at λ = 428 nm. The absorption of the 50% BHI
medium itself continually decreases at wavelengths higher than 320 nm. At λ = 428 nm,
the absorption declines below 0.52 arbitrary units. To determine possible interference
with the luminescence detection assay system, the emission spectrum of the used lu-
ciferase was determined. Here, the highest intensity of the emitted light was detected at
λ ≈ 556 nm, with significant intensities being observed in the range from 480 nm to 730 nm.
These data indicated that there is no overlap between the main absorption maximum
of TMPyP and the assay-induced luminescence. Nevertheless, there was an increased
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optical density of the solution from λ = 480 to 730 nm (Figure 1D). To test whether TMPyP
interferes with the detection of luciferase-emitted luminescence, we determined the ATP-
induced luminescence in our assay system in the presence of increasing concentrations of
TMPyP. Indeed, a dose-dependent reduction in the apparent luminescence was observed
(Figure 1E). To test whether this was due to the optical properties of TMPyP or due to the
direct interference of TMPyP with the luciferase or any other component of the detection
system, we determined the luminescence elicited by different ATP concentrations in the
presence or absence of TMPyP. Here, in all samples, a constantly decreased luminescence
by 67.9% ± 3.3% (n = 4) in the presence of TMPyP was observed (Figure 1F), demonstrating
that TMPyP functions as a quencher for luciferase-emitted luminescence without directly
interfering with the detection system. To compensate for this quenching, in all subsequent
experiments, the TMPyP concentration was adjusted to the highest concentration used in
the respective experiment prior to luminescence measurements.

Next, we investigated whether TMPyP itself had any direct influence on the ATP
metabolism of the bacteria or any effect on the lysis efficacy prior to the luminescence
detection. Therefore, we performed the bacterial lysis of Gram-negative Escherichia coli
before and after TMPyP addition and compared the assay-induced luminescence. At
a concentration of 200 µM TMPyP, representing the highest used concentration during
photodynamic treatment, no relevant influence on the luminescence of the assay and the
associated ATP release was observed (Figure 1G).

Since ATP content is used for the luminometric detection of viable bacteria, which is
dependent on bacterial metabolism, we assumed that the time between aPDI treatment and
bacterial lysis was a critical variable. Here, a comparison of the luminescence elicited by
lysates from heat-inactivated E. coli to that from viable bacteria revealed a time-dependent
increase in the difference in luminescence compared to the control group (Figure 1H). Similar
findings resulted from experiments with extensively drug-resistant (XDR) Achromobacter
xylosoxidans, Vancomycin-resistant Enterobacteriaceae (VRE) Enterococcus faecium, multidrug-
resistant (MDR) Pseudomonas aeruginosa and XDR Acinetobacter baumanii (Figure S1).

Another source of error to be considered was the background luminescence of the luciferase-
based assay, which is influenced by the type of bacterial growth medium because of the
luminescence-inducing ATP in their ingredients. Regarding our aPDI experiments, two growth
media were compared. A 17.5 times lower background luminescence of 4436 ± 88.6 RLU was
observed in the BHI bacterial growth medium compared to 775,434 ± 1399.6 RLU in the 2xYT
growth medium (Figure S2A).

Based on these findings, we implemented the following adjustments to the protocol for
luminescence-based determination: First, the TMPyP concentration of all bacterial lysates was
adjusted to the highest concentration in the respective experiment. Second, all samples were
incubated for 90 min after the aPDI treatment before luminescence detection. With these
optimizations, we again determined the aPDI effect caused by 200 µM TMPyP on E. coli in
comparison to samples that were only illuminated without TMPyP (light control) or only treated
with the photosensitizer without illumination (dark control) (Figure 1I). The relative reduction
in luminescence in the dark control by 26.5% ± 5.2% were now similar to the relative reduction
observed with the conventional colony-counting method (by 24.2 ± 7.5%; Figure 1B). Moreover,
a significant aPDI effect was detected by the reduction in luminescence (by 91.0% ± 0.2%,
Figure 1I) and by the reduction in the counted colony number by 99.2% ± 0.1% (Figure 1B).
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at λcent = 420 nm; 0.78 J/cm2 per minute) for the indicated durations. Bacteria were spread on blood 
agar plates (dilution factor 10−5) and incubated for 20 h (37 °C, 5% CO2). (B) aPDI effect of the exper-
iment described in A without or with 200 µM TMPyP determined as CFUcount/mL. (C) E. coli were 
incubated without or with 200 µM TMPyP and treated for 0 or 120 min with light as described in A. 
Bacterial viability was determined by ATP-induced luminescence in bacterial lysates. (D) Absorp-
tion spectrum of 40 µM TMPyP dissolved in 50% BHI bacterial growth medium dissolved in 0.9% 
NaCl solution. Additionally, the luminescence spectrum of the luciferase used in the cell viability 
assay and absorption spectrum of the BHI medium are displayed. (E) Effect of different TMPyP 
concentration on ATP-induced luminescence; TMPyP at indicated concentrations was 

Figure 1. ATP-based luminometry as a novel approach to measure aPDI effects in vitro. (A) E. coli
bacteria were treated with TMPyP at the indicated concentration and exposed to light (13 mW/cm2

at λcent = 420 nm; 0.78 J/cm2 per minute) for the indicated durations. Bacteria were spread on
blood agar plates (dilution factor 10−5) and incubated for 20 h (37 ◦C, 5% CO2). (B) aPDI effect
of the experiment described in A without or with 200 µM TMPyP determined as CFUcount/mL.
(C) E. coli were incubated without or with 200 µM TMPyP and treated for 0 or 120 min with light
as described in A. Bacterial viability was determined by ATP-induced luminescence in bacterial
lysates. (D) Absorption spectrum of 40 µM TMPyP dissolved in 50% BHI bacterial growth medium
dissolved in 0.9% NaCl solution. Additionally, the luminescence spectrum of the luciferase used
in the cell viability assay and absorption spectrum of the BHI medium are displayed. (E) Effect of
different TMPyP concentration on ATP-induced luminescence; TMPyP at indicated concentrations
was supplemented with 5 nM ATP (in 0.9% NaCl solution) and ATP-induced luminescence was
determined (n = 3). (F) Luminescence elicited by ATP at the indicated concentrations (in 0.9% NaCl) in
the presence or absence of 100 µM TMPyP (n = 4). (G) Effect of TMPyP on bacterial ATP metabolism.
E. coli suspended in 50% BHI were lysed before or after addition of 200 µM TMPyP (n = 4). (H) E. coli
suspended in 50% BHI broad medium were heat-inactivated or left untreated and incubated at 37 ◦C,
5% CO2 in the same solution as active bacteria for the indicated duration. Bacteria were lysed, and
luminescence was measured with the cell viability assay (n = 3). (I) aPDI effect of the experiment
described in C with 200 µM TMPyP, measured 90 min after incubation (37 ◦C, 5% CO2) and adjusted
to highest PS concentration (200 µM) in all samples prior to measurements.
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3.2. Correlation of Results for Density of Viable Bacteria Determined by Luminescence or
Conventional Colony Counting

To allow for a direct comparison of the ATP concentration within the lysates as
determined by the luminometric measurement with the number of bacteria found in a
given sample, we developed a standardized protocol that allowed for the conversion of the
detected luminescence (RLU) to the corresponding and more conventional measuring unit
CFU/mL.

To this end, the corresponding values from both detection types of E. coli were com-
pared at three different incubation times (t = 0, 120, 210 min) and, therefore, at increasing
densities. This enabled us to determine the bacterial growth rate (R) and the resulting
ATP concentration in a bacterial solution under these conditions (Figure 2A). The bacte-
rial growth rate (R) was defined as the logarithm of the RLU210 min value to the base of
the RLU120 min value, assuming exponential growth. Additionally, we assumed that the
luminescence detected in the lysates of heat-inactivated bacteria equaled a bacterial density
of zero.
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Figure 2. Correlation of luminescence-based readout and bacterial density as determined by colony
counting. (A) E. coli suspended in 50% BHI broad medium were incubated at 37 ◦C, 5% CO2,
and CFUcount/mL were determined by spreading aliquots on agar plates and counting bacterial
colonies after 20 h. In parallel, bacterial density was determined on the basis of ATP-dependent
luminescence in bacterial lysates. The bacterial growth rate (R) was defined as the logarithm of
RLU210 to the base of RLU120, assuming exponential growth (similar to that obtained on basis of
CFUcount). (B) Linear correlation between luminescence values as relative luminescence units (RLU)
and bacterial density determined as CFUcount/mL. Luminescence detected in bacterial lysates from
samples heat-inactivated at t = 0 min were set to zero CFU/mL. (C) Comparability of recalculated
bacterial density (CFUcalc/mL) to manually counted bacterial density (CFUcount/mL) of ESBL E. coli.

To calculate bacterial density in aPDI experiments after incubation, the detected raw
RLU data had to be adapted before further calculation, accounting for the bacterial growth
rate (R): RLUadapt = (RLUPDI)

1/R.
The corresponding data from both detection methods were then used for linear regres-

sion analysis (Figure 2B), which allowed us to convert RLU data to calculated CFUcalc/mL
with a good correlation for TMPyP-based aPDI and E. coli bacteria (r = 0.925, Figure 2C).

3.3. Standard Protocol to Establish Luminescence-Based Cell Density Determination for aPDI
Experiments with Other Photosensitizers and Bacterial Strains

Taken together, we propose the following steps to determine calibration factors when
performing aPDI experiments with new bacterial strains and/or other aPDI conditions,
such as, for example, a novel photosensitizer. Our aPDI treatment protocol (Figure 3)
consists of 20 min preincubation of samples with the photosensitizer, followed by illumina-
tion as described in the respective aPDI protocol. The post-aPDI incubation period was
standardized to 90 min. Control samples without PS and illumination are mandatory. As
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described above, the photosensitizer concentration in all samples must be adjusted to the
maximum concentration used in the experiment prior to luminometric measurements.
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given photosensitizer on any bacterial strain. The required calibrations to correlate the luminescence
reading to previously determined colony-forming units (CFU) are illustrated. In order to calculate
bacterial density (CFUcalc) from luminescence values, a regression analysis of corresponding data
pairs from control group experiments is required. Corresponding values before illumination, after
complete illumination and after post-incubation enable a linear regression analysis between lumines-
cence and bacterial density. Additionally, the bacteria-specific replication time (R) was determined by
this measurement and used to calculate the bacterial density after aPDI. The luminescence observed
in samples from heat-inactivated bacteria was defined as the luminescence emitted at a density of
zero CFU/mL for viable bacteria. Process of calculation after calibration: 1. Determine bacterial
growth rate (R) = logRLU(120min) RLU(210min); 2. Calculate bacterial density in RLU (RLU adapt)

from luminescence data after incubation (RLU adapt = RLUPDI
1/R); 3. Use RLUadapt to calculate

CFUcalc/mL by linear regression, set to zero CFU/mL at luminescence of heat-inactivated bacteria
according to the formula CFUcalc/mL = RLUadapt/mL × m + n with m and n derived from linear
regression-fitting results; 4. Define calculated data less than or equal to zero as zero CFU/mL.
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The correlation factors between luminescence intensity (in RLU) and bacterial density
(in CFUcount/mL) are determined by analyzing the untreated bacterial samples (n = 3)
using both methods after incubations times of t = 0, 120, 210 min (corresponding to the
incubation times used in the aPDI experiments). Additionally, heat-inactivated samples of
the control (t = 0 min) are measured in order to determine the luminescence that is detected
at a bacterial density of zero. The bacterial growth rate (R) was determined between 120 min
and 210 min (corresponding to 90 min post-incubation). This enables a calculation of the
bacterial density data from the luminescence data directly after treatment (120 min), using
the luminescence data detected after incubation (210 min).

The observed comparability between luminescence intensity (RLU) and bacterial
density (CFUcount/mL) in the controls (n = 3) then allows for the calculation of bacterial
density (CFUcalc/mL) from aPDI data, according to the following equation (and Figure 3):

R = logRLU(120min) RLU(210min) = bacterial growth rate
RLUadapt = (RLUPDI)

1/R

CFUcalc = RLUadapt ×m + n

3.4. Evaluation of the Luminescence-Based Assay Protocol with Different Bacterial Strains in the
Context of aPDI

Subsequently, the above-established protocol was used to analyze the aPDI effects
of TMPyP on different clinically relevant patient-derived bacterial strains. To obtain the
required bacterial growth rate and conversion factors for the individual bacterial strains
used, samples were prepared and analyzed in accordance with Section 2.3 and Figure 3. For
most bacterial strains tested in this study, the protocol led to a good correlation between
luminometric registrations and manually counted colonies. Here, in the Gram-negative
extended spectrum beta-lactamase (ESBL) Escherichia coli, which were used to establish
the protocol, we found an aPDI-induced RLU decrease of 89.6% ± 3.1% with 200 µM
TMPyP and an illumination time of 120 min (Figure 4A). This corresponds to a calculated
reduction in bacterial density (CFUcalc) of 95.5% ± 4.8% (Figure 4B). Conventional colony
counting resulted in a reduction in bacterial density of 99.9% ± 0.1% (Figure 4D) after
aPDI treatment. A correlation analysis between the two methods for bacterial density
measurement revealed a correlation coefficient of r = 0.762 (p < 0.0001, Figure 4C). This
result indicates that the aPDI effects on E. coli are slightly underestimated when assessed
with the luminescence method.

To extend our experiments to other Gram-negative bacterial strains not previously analyzed,
we analyzed the effect of TMPyP-elicited aPDI effects on XDR Acinetobacter baumanii. Here,
we observed a blue-light susceptibility that was independent from TMPyP, which caused a
reduction in luminescence after 120 min illumination of 96.0± 2.0% (Figure 4E). This resulted in
a calculated CFU reduction of 88.4± 2.7%, which could not be further increased with 200 µM
TMPyP (reduced by 90.5 ± 1.1%, Figure 4F). This result correlated well with the counted
bacterial density, which was reduced by 92.5 ± 8.6% under 120 min illumination without
TMPyP (r = 0.719; p < 0.0001, Figure 4G) and reduced by 99.8 ± 0.2% with 200 µM TMPyP
(Figure 4H). Again, the effects of aPDI were underestimated with the luminometric method.

For VRE Enterococcus faecium, which has previously shown a high susceptibility to TMPyP
treatment already at the lowest concentration investigated (50 µM, 60 min illumination), we
observed a reduction in luminescence of 93.1± 1.9% (Figure 4I). Here, our calculation method
resulted in a bacterial density less than zero (Figure 4J). These findings indicate an increased
scattering between calculated and manually detected values and a lower sensitivity of the
luminescence method at low bacterial densities (r = 0.236, n = 38, p = 0.1531, Figure 4K). The
susceptibility of VRE Enterococcus faecium to TMPyP-based aPDI was confirmed by manually
determined bacterial density (reduction of 99.99 ± 0.02%; Figure 4L), thereby confirming the
finding of our previous study [34].
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Figure 4. Evaluation of aPDI effects of TMPyP on different bacterial strain as determined by ATP-evoked
luminescence and manual counting of bacteria colonies. Data from the aPDI experiments are presented.
TMPyP at indicated concentrations was illuminated with 13 mW/cm2 resulting in 0 J/cm2 (0 min),
46.8 J/cm2 (60 min), 70.2 J/cm2 (90 min), 93.6 J/cm2 (120 min) at λcent = 420 nm; the dashed line shows
the luminescence of heat-inactivated bacteria. (A) ATP-induced luminescence of ESBL E. coli after
aPDI. (B) Calculated bacterial density (CFUcalc) of ESBL E. coli based on luminometric measurements.
(C) Correlation between CFUcalc and manually determined bacterial density (CFUcount) in ESBL E. coli;
r = correlation coefficient. (D) CFUcount of viable ESBL E. coli after aPDI. (E–H) Results for XDR A.
baumanii as described above for E. coli. (I–L) Results for VRE E. faecium; calculated values less the zero
were excluded per definition (empty boxes). (M–P) Results for MDR P. aeruginosa.

In addition to the pronounced aPDI effect, a dark toxicity of TMPyP was observed in VRE
E. faecium. To this end, the luminescence detected in samples that were exposed to 200 µM
TMPyP but kept in the dark was already reduced by 80.6 ± 3.5% (Figure 4I). To further
examine the observed dark toxicity of TMPyP in E. faecium, the ATP-induced luminescence
was detected before and after incubation with TMPyP (200 µM) for 120 min in the dark. In
samples treated with TMPyP, the luminescence increased from 11.7 × 104 ± 0.8 × 104 RLU to
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35.5 × 104 ± 4.0 × 104 RLU, whereas the ATP-induced luminescence of untreated samples
increased from 11.2 × 104 ± 0.8 × 104 to 66.0 × 104 ± 0.3 × 104 RLU (Figure S2B).

Consistent with previous data, MDR Pseudomonas aeruginosa revealed a significant
background luminescence most likely caused by a pyoverdine-induced luminescence [35]
that increases the luminescence of bacteria (Figure 4M). This increased background lumi-
nescence hampers the calculation of bacterial density. Consequently, the correlation of the
calculated and actually observed density of the bacteria was very poor, especially at lower
bacterial densities (r = 0.443, n = 12, p = 0.1488). Calculated values less than zero were
excluded from the calculations (Figure 4O). The increased cut-off precluded a distinction
of aPDI effects at different TMPyP concentrations (Figure 4N,O). Therefore, biolumines-
cence of bacterial strains seems to be an exclusion criterion for this method. However,
we observed a reduction in bacterial density of 99.8 ± 0.27% after illumination with blue
light without a photosensitizer. With TMPyP-based aPDI, we observed a concentration-
dependent effect of up to a complete inactivation at 200 µM TMPyP followed by 120 min
illumination, confirmed with manual bacteria counting (Figure 4P).

In the following TMPyP-based aPDI experiments with different bacterial strains, we
observed an acceptable correlation between the luminescence-based measurements and
manual colony counting: Carbapenem-resistant Enterobacteriaceae (CRE) Klebsiella pneumo-
niae (r = 0.706; p < 0.0001; Figure S3A), MRSA Staphylococcus aureus (r = 0.894; p < 0.0001;
Figure S3B), XDR Achromobacter xylosoxidans (r = 0.696; p < 0.0001; Figure S3C). The correspond-
ing data acquired after aPDI with luminescence measurements and manually determined
bacterial densities are presented in Figure S3.

3.5. Using the New Protocol for Characterization of aPDI Effects Elicited by Another Photosensitizer

To transfer the protocol for the characterization of aPDI effects to a different pho-
tosensitizer, we selected THPTS, which has previously been shown to have significant
clinical potential as a photosensitizer that can be activated by near-infrared light. The
initial calibration experiments were performed as described above (Figure 3). THPTS has
several absorption peaks with a maximum at λ = 760 nm, which is used during aPDI
treatment for excitation, but also a further absorption maximum at λ = 516 nm that partially
overlaps with the luminescence spectrum of the luciferase used in our assay (Figure 5A).
Evaluation of the photosensitizer-caused quenching factor revealed a reduction in the
luciferase-caused luminescence of 52.8 ± 4.9% in the presence of 200 µM THPTS in BHI
broad medium (Figure 5B). As described above for the TMPyP experiments, the lysing
property of the assay was examined with and without THPTS in M. morganii bacteria. No
relevant influence of THPTS on lysing effectivity was observed (Figure 5C).

When performing THPTS-based aPDI experiments, a similar reduction in lumines-
cence and manually determined bacterial density was found in VRE E. faecium (Figure 5D).
As described above for TMPyP, the bacterial growth rate (R) between 108 min and 198 min
(corresponds to 90 min incubation after a typical aPDI experiment with THPTS) was estab-
lished (Figure 5D), and the ATP-elicited luminescence was determined in samples from
the corresponding bacterial lysates in the presence of THPTS. Together with data from the
manual bacterial density determination (t = 0, 108, 198 min), a linear regression analysis for
the luminescence data was performed. This analysis indicated a good correlation between
the data obtained from the luminometric measurements and the observed bacterial density
as assessed by classical clonogenic CFU determination in THPTS-based aPDI experiments
(r = 0.944, p < 0.0001, Figure 5E). Taken together, these data demonstrate that luminometric
data in the presence of THPTS could be used to calculate bacterial density with acceptable
accuracy (Figure 5F).
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Figure 5. Correlation of bacterial densities as determined by luminescence and manually counting
in the presence of the photosensitizer THPTS: (A) The absorption spectrum of THPTS dissolved in
0.9% NaCl was measured. Additionally, the luminescence spectrum of the luciferase used in the cell
viability assay is presented. (B) Background luminescence of 50% BHI broad medium (dissolved in
0.9% NaCl) with 200 µM THPTS compared to 50% BHI broad medium alone. (C) Bacteria-lysing
property of the assay was measured with and without THPTS in M. morganii. (D) Bacterial growth
curve of VRE E. faecium, incubated in BHI broad medium at 37 ◦C, 5% CO2, detected at indicated time
points. Density of bacteria was determined by luminometric assay and colony counting (CFUcount).
(E) Correlation between results from luminometric readings and calculated colony density (CFUcalc)
in VRE E. faecium, with results of luminometry in heat-inactivated bacteria used to define zero
CFU/mL. (F) Correlation between CFUcalc and CFUcount of VRE E. faecium; r = correlation coefficient.

To identify the aPDI effects of THPTS on VRE E. faecium and M. morganii, the red-light
susceptibility or dark toxicity of THPTS was determined. For both bacterial strains, no
effect from red light or the photosensitizer alone were observed. VRE E. faecium offered,
after aPDI, a THPTS concentration-dependent decrease in luminescence, with the greatest
reduction of 91.1 ± 1.5% RLU (200 µM THPTS; 108 min illumination; Figure 6A). This
corresponded to a decreased bacterial density by 81.7 ± 2.5% CFU calc/mL (Figure 6B).
When comparing all calculated and manually counted values for the density of viable
bacteria, we observed a correlation of r = 0.938 (p < 0.0001, Figure 6C). Moreover, analyzing
the manually determined values, we found a similar magnitude of density reduction of
92.20 ± 1.09% (Figure 6D).

For M. morganii, we observed a reduction in ATP-induced luminescence of 62.5 ± 0.4%
RLU after THPTS-based aPDI (Figure 6E), which resulted in a calculated reduction in bacterial
density of 65.6 ± 0.4% (Figure 6F). Again, there was an acceptable correlation between the
calculated and manually observed values for bacterial density (r = 0.845; Figure 6G,H).
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Figure 6. Correlation of calculated and manually detected bacterial density for THPTS-based aPDI
in different bacterial types. THPTS was illuminated with 18 mW/cm2 resulting in 0 J/cm2 (0 min),
4.3 J/cm2 (4 min), 12.9 J/cm2 (12 min), 38.9 J/cm2 (36 min), 116.6 J/cm2 (108 min) at λcent =760 nm.
Dashed line indicates the luminescence of heat-inactivated bacteria. (A) ATP-induced luminescence
by VRE E. faecium after aPDI. (B) Calculated bacterial density of VRE E. faecium based on luminometric
measurements. (C) Correlation between calculated and manually determined bacterial density in
VRE E. faecium; r = correlation coefficient. (D) Manually counted bacterial density of VRE E. faecium
after aPDI. (E–H) Results for M. morganii as described above for E. faecium.

4. Discussion

To establish a high-throughput method to assess the effects of various aPDI treatments
on a great variety of different bacteria, we evaluated the feasibility and limitations of
a luminescence-based method, which detects bacterial ATP as a surrogate of bacterial
survival.

Although a direct use of the protocols provided by the manufacturer resulted in
significant differences in the effect size as determined by the luciferase-based approach
and conventional colony counting after preparation of bacterial cultures on agar plates, we
were able to establish a protocol that allows for the standardized testing and calibration of
the luminescence-based bacterial density measurements and the subsequent comparison of
obtained results with previously obtained data from conventional bacterial colony counting.

The feasibility of this approach was shown to depend, on the one hand, on the bacterial
strain used, and on the other hand, on the optical properties of the PS. We found that the
investigated luminescence-based method is feasible in many of the bacterial strains tested,
and the aPDI effects determined by this approach were in good agreement with those
obtained by manual counting of bacterial colonies after agar plate culturing [32]. In some
bacterial strains, such as MDR Pseudomonas aeruginosa, however, the intrinsic properties of
the bacteria precluded the use of luminescence-based cell density determination. For other
bacterial strains, e.g., E. coli, our results demonstrate that a universal conversion of the
results obtained by both methods is also not possible. In contrast, individual calibrations
are required to account for different types of bacteria, growth media and photosensitizers
and, thereby, to minimize the margin of error.

After these initial calibration experiments, the luminescence-based analysis of bacterial
viability allowed us to analyze the effects of aPDI with shorter processing times and
increased scalability, as compared to the conventional procedure of bacterial cultures and
manual colony counting.
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Although we considered the clonogenic (growth) method (manual colony counting)
as the gold standard for bacterial density detection, we want to emphasize that this method
does not allow for the detection of effects that do not lead to a reduced number of colonies
but result, e.g., in a slower metabolism, as described by Kramer et al. [36], or in a re-
duced ability to replicate, which may be caused by aPDI-induced photooxidative DNA
damage [37]. Therefore, ATP-based methods may reveal additional facets of the bacterio-
static effects of aPDI [36]. In support of this hypothesis and by using the luminescence
method as described here, we could identify a dark toxicity of TMPyP in E. faecium that
is caused not by a bactericidal but by a bacteriostatic effect, which was not apparent from
the conventional colony-counting method. As TMPyP is a positively charged quaternary
amine, some antibacterial properties may be expected at concentrations used in our aPDI
experiments [38–41].

Using this novel luminescence approach, we could demonstrate the different sus-
ceptibilities of several bacterial strains to aPDI. Although aPDI is considered to exert its
bactericidal and/or bacteriostatic effect via the generation of ROS, which should affect all
bacteria, these variations may result from differences in the accumulation of photosensitiz-
ers at the bacterial plasma membrane and other targets of aPDI-induced ROS. Additionally,
diverging activities of the repair mechanisms [15,42,43] for ROS-induced damages and/or
the systems that mediate the efflux of photosensitizers for the bacteria [44] may contribute
to the observed differences in aPDI sensitivity.

Interestingly, in most experiments, the aPDI effect was underestimated by the here-
described luminescence-based method as compared to results from colony counting. This
may result from a systematic error, since the ATP concentration determined in heat-
inactivated bacterial samples at the timepoint t = 0 min was defined as the baseline ATP
concentration corresponding to a bacterial density of zero in manual counting. In the
corresponding aPDI treated samples, the bacteria may still produce significant amounts
of ATP before being eliminated by aPDI treatment. It is well-known that photodynamic
treatment can change the growing conditions and, subsequently, the ATP synthesis of
different bacterial strains in a not-negligible way [36]. Nevertheless, as observed with the
high susceptibility of E. faecium to TMPyP-based aPDI, the complete inactivation of bacteria
could also be verified by the luminometric method. In this bacteria strain, aPDI apparently
reduced the ATP concentration to a greater extent than heat inactivation did, which led
to the observed negative values for bacterial density as a result of the predefined cut-off
based on heat inactivation.

Another critical factor when applying the luminescence method evaluated here is
the optimal duration of the post-incubation time of bacterial samples before luminescence
detection. Here, optimal results will require an individual testing for each type of bacte-
ria, growing condition and PS. An optimized post-incubation duration may increase the
correlation between manual counting and the proposed luminometric method.

Our experiments demonstrated that the optical properties of the PS, as well as the
growth media used, may influence the detection of luminescence due to their absorption
characteristics. For most components, such as the BHI, this effect was constant and did not
change during illumination and could therefore be easily compensated. Absorption proper-
ties of other growth media, e.g., blood-containing solutions as well as of some PS, however,
may change during aPDI treatment and therefore contribute to the underestimation of aPDI
effectivity with the ATP-based luminescence method.

Using the PS THPTS, we tested whether the measurement of the ATP concentration
by luminescence detection is suitable to determine the aPDI effect of a given combination
of PS and bacteria. Our results indicate that it is possible in most cases to detect the dose-
dependent effects of aPDI in detail and for large sample sizes. Combinations that are not
suitable for this method, however, must be identified in initial tests beforehand. Moreover,
it is necessary to adjust the protocol to specific bacteria and photosensitizers to allow for the
comparability of the results obtained by the luminescence method and conventional colony
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counting. Some bacterial strains, such as MDR Pseudomonas aeruginosa, are not suitable for
this approach, in this specific case due to auto-luminescence [35].

Although we could demonstrate that the luminescence method described here is
suitable to determine aPDI effects in vitro, we cannot judge on its feasibility in samples
obtained from in vivo aPDI treatments. Here, more adjustments to this method may be
required to account for the influence of additional preanalytical confounders, such as the
unknown photosensitizer concentration and other contaminants in the samples.

At the time of writing, an ATP-based approach as described here requires assay
reagents and disposables of approximately USD 0.25 per sample (not considering prob-
able cost reductions by scaling effects). While the costs of consumables for the classical
clonogenic method (preparation of bacterial cultures) may be lower, one should take into
account that higher labor costs are likely to arise, at least if manual culture preparation and
colony counting are performed.

Based on data from previous studies, the illumination at the indicated doses should
be well-tolerated by eukaryotic cells [45–47]. However, our in vitro study cannot rule out
adverse effects of aPDI in adjacent host tissues.

In conclusion, the evaluated luminescence method is an interesting alternative for the
in vitro investigation of aPDI effects in many bacterial strains—especially if a high number
of samples are to be processed simultaneously, e.g., in order to explore the dose–response
relationships of a novel PS or to determine the optimal incubation and illumination times
in various bacterial strains. Here, initial calibration experiments are still required to allow
for a good agreement of the obtained results to those from the clonogenic method. While
the clonogenic method has its own limitations, e.g., strains of bacteria that are difficult to
cultivate, it is certainly more robust with regard to the interference of photosensitizers,
growth medium and bacterial autofluorescence. Despite these limitations, the measurement
of bacterial density by ATP-dependent luminescence provides the basis for a scalable
multidimensional approach to assess the aPDI effects of a given bacteria/PS combination.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10050950/s1, Figure S1: Luminescence of heat-
inactivated bacteria compared to active bacteria, dependent on post-incubation time, Figure S2:
Background luminescence of bacteria growth media and VRE E. faecium susceptibility to TMPyP
without illumination, Figure S3: Further evaluation of aPDI effects of TMPyP on different bacterial
strains as determined by ATP-evoked luminescence and manual counting of bacteria colonies.
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