
Citation: Jeske, R.; Merle, U.; Müller,

B.; Waterboer, T.; Butt, J. Performance

of Dried Blood Spot Samples in

SARS-CoV-2 Serolomics.

Microorganisms 2022, 10, 1311.

https://doi.org/10.3390/

microorganisms10071311

Academic Editor: Carlo Contini

Received: 2 May 2022

Accepted: 24 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Brief Report

Performance of Dried Blood Spot Samples in
SARS-CoV-2 Serolomics
Rima Jeske 1,2,* , Uta Merle 3 , Barbara Müller 4 , Tim Waterboer 1 and Julia Butt 1,*

1 Division of Infections and Cancer Epidemiology, German Cancer Research Center,
69120 Heidelberg, Germany; t.waterboer@dkfz-heidelberg.de

2 Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
3 Department of Internal Medicine IV, University Hospital Heidelberg, 69120 Heidelberg, Germany;

uta.merle@med.uni-heidelberg.de
4 Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;

barbara.mueller@med.uni-heidelberg.de
* Correspondence: r.jeske@dkfz-heidelberg.de (R.J.); j.butt@dkfz-heidelberg.de (J.B.)

Abstract: Numerous sero-epidemiological studies have been initiated to investigate the spread
and dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To address the
concomitant need for serological high-throughput assays, a bead-based multiplex serology assay,
specific for SARS-CoV-2, had been developed. SARS-CoV-2 serolomics allows for measuring antibody
responses to almost the entire SARS-CoV-2 proteome in up to 2000 serum samples per day. To enlarge
the pool of eligible sample collection methods, we here test the compatibility of serolomics with
dried blood spot (DBS)-derived eluates. Antibody levels of nine SARS-CoV-2 antigens, including
the nucleocapsid (N) and receptor-binding domain of the spike protein (S1-RBD), were measured
in 142 paired DBS and serum samples. The numeric correlation between the two sample types was
high, with a Pearson’s r of 0.88 for both S1-RBD and N and intraclass correlation coefficients of 0.93
and 0.92, respectively. Systematically reduced antibody levels in DBS eluates were compensated
by lowering the cutoffs for seropositivity accordingly. This enabled the concordant classification of
SARS-CoV-2 seropositivity, without loss in sensitivity. Antibody levels against accessory SARS-CoV-2
antigens also showed a high concordance, demonstrating that DBS-derived eluates are eligible for
SARS-CoV-2 serolomics. DBS cards facilitate the collection of blood samples, as they obviate the
need for medically trained personnel and can be shipped at room temperature. In combination with
SARS-CoV-2 serolomics, DBS cards enable powerful sero-epidemiological studies, thus allowing for
the monitoring of patients and epidemiological analyses in resource-poor settings.
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1. Introduction

With the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
in 2019, many sero-epidemiological studies have been initiated [1,2]. In combination with
molecular diagnostic testing, screening blood samples for antibodies against SARS-CoV-2
can reveal the total burden of exposure in the general population and guide public health
policy [3]. The collected data can further be employed for various analyses, e.g., for
modeling longitudinal spread and dynamics of the pandemic, or retrospective evaluation
of the efficacy of vaccination strategies [4,5].

Addressing the concomitant need for cost-effective serological high-throughput assays,
we recently developed SARS-CoV-2 serolomics, a bead-based multiplex serology assay
incorporating almost the entire SARS-CoV-2 proteome, including the nucleocapsid (N),
receptor-binding domain of the N-terminal subdomain of the spike protein (S1-RBD), and
other structural, non-structural, and accessory proteins [6]. With multiplex serology, relative
antibody levels against up to 100 different antigens can be simultaneously measured in up
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to 2000 samples per day, while requiring only a small volume of serum. Prior exposure
to SARS-CoV-2 can be assessed by measuring the antibody levels against S1-RBD and
N. Seropositivity to other SARS-CoV-2 antigens is less common but might be of clinical
relevance, due to an association with disease progression or transmission, as currently
debated [7–9]. Multiplex serology further enables studying SARS-CoV-2 in the context
of other infectious pathogens. The assay platform currently incorporates autoantigens
and antigens from diverse microorganisms, including different herpes viruses, human
papilloma viruses, Chlamydia trachomatis, and Helicobacter pylori [10–15]. The repertoire can
easily be expanded, e.g., by antigens from other respiratory pathogens.

As serological assays in general, multiplex serology depends on the availability of
suitable serum or plasma samples. Although blood draws are performed routinely, they
still require medically trained staff for the intravenous puncture, as well as equipment and
infrastructure to store and ship samples below 0 ◦C.

Dried blood spot (DBS) cards pose a practical alternative for collecting sample mate-
rials [16,17]. Drops of full blood, e.g., from the fingertip or earlobe, are applied on these
filter papers and dried. Sample preparation can be performed without medical training,
or even self-administered, which obviates the need for study participants to visit a study
center. This is particularly relevant if infected persons need to quarantine and also facili-
tates obtaining multiple consecutive samples for longitudinal studies [18,19]. Additionally,
sampling intervals can be modified, e.g., to gain longitudinal samples capturing the kinetics
of different SARS-CoV-2 antibodies [19,20].

Furthermore, shipping and storing serum samples below 0 ◦C can pose a major logistic
challenge, especially in resource-poor settings that had led to an underrepresentation
among sero-epidemiological SARS-CoV-2 studies [1]. This problem is also addressed by
DBS cards, which can be shipped and stored at room temperature for a prolonged time [21].

Overall, the use of DBS samples could substantially aid the surveillance of SARS-CoV-2
and analyzing of longitudinal serological studies [18,19].

In this proof-of-principle study, we tested the compatibility of DBS samples and
multiplex serology by measuring the antibody levels to nine SARS-CoV-2 antigens in DBS
eluates and paired serum samples. Numerical readouts were compared, in order to evaluate
whether DBSs are a suitable substitution for conventional serum samples and eligible for
SARS-CoV-2 serolomics.

2. Materials and Methods
2.1. Study Population

The cohort analyzed in this proof-of-principle analysis was previously character-
ized in detail, by Seeßle et al. [22]. Briefly, SARS-CoV-2 patients, formerly treated as
out- or inpatients at the Department of Internal Medicine IV of the University Hospi-
tal Heidelberg, were invited into a prospective study focusing on the long-term effects
after acute infection (Ethics Committee of University of Heidelberg, reference number:
S-546/2020; DRKS00025089). Blood samples were obtained at baseline (10–18 weeks after
symptom onset), after 5 months (20–22 weeks), after 9 months (33–40 weeks), and after
12 months (50–54 weeks), in compliance with health and safety rules (gloves, face masks,
and safety glasses).

For the here presented DBS validation paired serum samples and DBS cards from 142 pa-
tients, collected at the first follow-up visit (5 months after symptom onset) were available.

2.2. Sample Preparation and Processing of DBS Cards

Each study participant had 18 mL full blood drawn by venipuncture, of which
70 µL were directly applied to DBS cards (Whatman 903 protein saver blood collection
cards;Whatman, Maidstone, UK ) using a syringe. The remaining blood was centrifuged
to isolate the serum and stored at −20 ◦C. DBS cards were shipped to the German Cancer
Research Center (DKFZ), together with the corresponding sera, at room temperature and
−20 ◦C, respectively. DBS cards were stored at 4 ◦C for approximately nine months prior
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to usage. To elute antibodies from DBS cards, a punch of 6 mm diameter was prepared
and agitated in 180 µL PBS at 4 ◦C overnight. Assuming complete elution of the mate-
rial, the DBS eluate corresponds to 15.8 µL full blood or 8.7 µL serum, as described by
Waterboer et al. [23].

2.3. Multiplex Serology and Antigen Selection

The expression of SARS-CoV-2 antigens and the experimental procedure were pre-
viously described in detail [6,14]. For the here presented study, we selected the best
performing structural antigens, i.e. N and S1-RBD. Furthermore, seven non-structural
proteins (NSP) and accessory antigens (open reading frame; ORF) (ORF3a, ORF9, NSP2,
NSP7, NSP8, NSP10, and NSP15) were selected as representatives for the less seroprevalent
antigens. As non-SARS-CoV-2 controls, antigens from three endemic human viruses were
included: the major capsid proteins (VP1) from the BK polyomavirus (BK) and JC poly-
omavirus (JC) and envelope glycoproteins gE/gI (co-loaded) from varicella-zoster virus
(VZV).

Briefly, all antigens, except for S1-RBD, were expressed as GST-X-tag fusion proteins,
affinity-purified on spectrally distinguishable glutathione–casein-coupled beads (SeroMap,
Luminex Corp., Austin, TX, USA) and combined into a single bead mix. S1-RBD was
recombinantly expressed as His-tagged protein in HEK-293 cells, as described by Butt
et al., and directly cross-linked to the beads surface [6]. To suppress unspecific binding,
serum samples were incubated in a 1:50 dilution in a preincubation buffer containing 0.5%
polyvinyl alcohol, 0.8% polyvinyl pyrrolidone, casein, 2 mg/mL E. coli GST-tag lysate,
and 2.5% Super ChemiBlock™ heterophile blocking agent (CBS-K, Chemicon, Temecula,
CA, USA). For preincubation of the DBS eluates, 32 µL were combined with 102 µL of
preincubation buffer, corresponding to a similar dilution of 1:66 for the calculated serum
content. After the preincubation step, both sample types were each combined with the same
volume of bead mix to a final serum dilution of 1:100 and 1:133, respectively. Subsequently,
a biotinylated secondary anti-human IgG/IgA/IgM antibody (1:1000, #109-065-064, Lot:
149169, Jackson Immunoresearch, West Grove, PA, USA) and streptavidin-R-phycoerythrin
(1:750, MossBio, Pasadena, MD, USA) were used to detect bound serum antibodies. Signal
quantification and identification of the respective bead type were conducted using a Lu-
minex 200 instrument (Luminex Corp., Austin, TX, USA). Readouts were given as median
fluorescent intensity (MFI).

2.4. Data Processing and Statistical Analysis

Raw MFI values were corrected by subtraction of the blank value, as determined in
sample-free negative controls and the sample-specific GST-background. Numerical values
were descriptively analyzed by medians and interquartile ranges (IQR). MFI values derived
from paired serum and DBS samples were visualized as scatter plots, and linear regression
was applied to show the general trend between the two sample types. Additionally, Bland–
Altman plots were prepared to visualize trends across antibody level ranges. Correlation
between the paired samples was calculated using Pearson’s r and interpreted as follows:
0.0–0.3: negligible; 0.3–0.5: low; 0.5–0.7: moderate; 0.7–0.9: high; 0.9–1.0: very high. The
reliability between the two sample types was further described by the intraclass correlation
coefficient (ICC) and interpreted as follows: <0.5: low; 0.5–0.75: moderate; 0.75–0.9: high;
>0.9: very high. All statistical tests were performed with R (version 4.1.3). Plots were
prepared using GraphPad prism 9.0.

3. Results

The antibody levels of nine SARS-CoV-2 antigens, as well as of three control antigens
from endemic human viruses were determined in 142 paired DBS eluates and serum
samples. Median MFI values and corresponding IQRs are specified in Table 1.
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Table 1. Antibody levels of nine SARS-CoV-2 antigens and three control antigens, as measured in 142
paired DBS and serum samples.

Serum DBS

Median
Antibody

Readout [MFI]
(IQR)

Cutoff
[MFI]

Seroprev.
[%]

Median
Antibody
Readout

[MFI] (IQR)

Cutoff
[MFI]

Seroprev.
[%] Pearson’s r ICC (3,k)

St
ru

ct
ur

al
an

ti
ge

ns S1-RBD 9497
(6212–12,618) 626 98 5117

(2758–7585) 300 98 0.88
(0.83–0.91)

0.92
(0.88–0.94

N 15,743
(11,960–18,296) 3133 99 10,867

(7042–14,368) 800 99 0.88
(0.83–0.91)

0.93
(0.91–0.95)

N
on

-s
tr

uc
tu

ra
l

an
d

ac
ce

ss
or

y
an

tig
en

s

ORF3a 98
(46–374) * 287 30 54

(41–139) * 120 30 0.97
(0.96–0.98)

0.87
(0.82–0.91)

ORF6 6
(1–12) * 100 3 28

(23–35) * 100 ** 2 0.97
(0.96–0.98)

0.60
(0.44–0.71)

NSP2 287
(166–801) 1391 17 203

(152–326) 430 17 0.92
(0.89–0.94)

0.78
(0.69–0.84)

NSP7 1
(1–15) * 1719 2 8

(5–17) * 620 2 0.98
(0.98–0.99)

0.84
(0.78–0.89)

NSP8 17
(6–32) * 849 1 10

(7–20) * 160 1 0.81
(0.74–0.86)

0.52
(0.33–0.66)

NSP10 16
(10–29) * 147 7 16

(11–22) * 100 ** 2 0.83
(0.77–0.87)

0.51
(0.32–0.65)

NSP15 26
(18–40) * 135 4 19

(13–28) * 100 ** 1 0.71
(0.61–0.78)

0.65
(0.51–0.75)

C
on

tr
ol

an
ti

ge
ns

BK 13,533
(5312–16,303) 250 100 7540

(2398–11,161) 100 ** 100 0.90
(0.86–0.93)

0.94
(0.91–0.96)

JC 1599
(639–5494) 250 93 659

(328–2981) 100 ** 96 0.96
(0.95–0.97)

0.94
(0.91–0.95)

VZV 1932
(489–4433) 250 87 718

(184–2033) 100 ** 86 0.95
(0.93–0.97)

0.93
(0.90–0.95)

* Most measurements fall below the lower limit of quantitation of 100 MFI; ** a minimal cutoff of 100 MFI was
applied to account for the lower limit of quantitation. Numerical correlation between the two data sets was
assessed using Pearson’s r, while agreement is shown by the intraclass coefficient (ICC). Seroprev. = seroprevalence;
IQR = interquartile range; MFI = median fluorescence intensity.

In serum samples, the structural antigens S1-RBD and N exhibited median antibody
levels of 9497 MFI (IQR: 6212–12,618 MFI) and 15,743 MFI (IQR: 11,960–18,296 MFI), while
readouts of the corresponding DBS eluates reached 5117 MFI (IQR: 2758–7585 MFI) and
10,867 MFI (IQR: 7042–14,368 MFI), respectively. The numerical correlation between paired
samples was high, with a Pearson’s r of 0.88 for both antigens. ICCs were as high as
0.92 (95% CI: 0.88–0.94) and 0.93 (95% CI: 0.91–0.95), respectively. The absolute antibody
levels determined in the DBS samples were, on average, reduced by the factors 1.5 and 1.2,
respectively, as visualized by regression slopes of 0.67 and 0.85. As visualized by Bland–
Altman plots, the relative reductions decreased with increasing MFI values (Figure 1).

The seroprevalences of S1-RBD and N were 98% and 99% in the serum samples. To
achieve an ideal agreement, despite the lower antibody levels, cutoffs for seropositivity
were reduced to 300 and 800 MFI for DBS eluates, respectively (Table 1 and Figure 1).

These observations were confirmed for the three control antigens, with a mean signal
reduction by the factor 1.5 and regression slopes between 0.61 and 0.75 (Supplementary
Figure S1). The correlation was concordantly high with Pearson’s r values between 0.90
and 0.96 and ICCs between 0.93 and 0.94.

The non-structural and accessory SARS-CoV-2 antigens ORF3a, ORF6, NSP2, NSP7,
NSP8, NSP10, and NSP15 showed lower seroprevalences and MFI values than the structural
proteins. Between 70% and 99% of the antibody level measurements fell below the lower
limit of quantitation (100 MFI) or below the cutoff for seropositivity defined by Butt et al. [6].
The high portion of seronegative background noise led to decreased in ICC values between
0.51 (95%CI: 0.32–0.65) for NSP10 and 0.87 (95%CI: 0.82–0.91) for ORF3a.
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Figure 1. Left: Antibody responses to two structural SARS-CoV-2 antigens (S1-RBD and N), as
measured in 142 paired serum and DBS samples and visualized as scatter plots. Linear regression
was applied to estimate the general trend between the two data sets. Dotted lines represent respective
cutoff values for seropositivity. Right: Bland–Altman plots visualizing the ratio between paired
antibody responses across the MFI scale. Dotted lines are located at the mean +/−1.96 standard
deviations of the ratios.

Nevertheless, serum samples with high MFI values were also elevated in DBS eluates
(Supplementary Figure S2). This is affirmed by a high numerical correlation, with a mean
Pearson’s r of 0.88.

4. Discussion

In summary, we showed that a concordant classification of SARS-CoV-2 seropositivity
can be achieved using DBS eluates in comparison to the corresponding serum samples.

Systematically reduced MFI values were compensated by lowering the cutoffs ac-
cordingly, as the results for the paired samples showed high numerical correlations. This
reduction can be partially attributed to a higher final dilution of 1:133 for DBS eluates,
while the serum samples were measured in a dilution of 1:100. Incomplete elution of
antibodies from the filter paper and prolonged storage at 4 ◦C are further potential factors
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contributing to the diminished signals [21]. This is, however, a moderate systematic effect
and not specific for SARS-CoV-2, as it applied to the control antigens to the same degree.

In theory, reduced antibody levels could be compensated by increasing the volume
of DBS eluate in the assay. However, increasing the sample volume in relation to the
preincubation buffer can impair the signal-to-noise ratio, which had been previously
optimized for multiplex serology [23]. Adjusting the cutoffs for seropositivity is a feasible
solution for maximizing the agreement between the two sample types.

As recently summarized by Amini et al. in a systematic review, antibody concentra-
tions in DBS eluates depend on card types, storage conditions, and elution protocols [21,24].
As these factors will vary between different DBS-based sero-epidemiological studies, cut-
offs need to be determined for the respective study, e.g. by finite mixture modeling [25].
Sample-type specific standards are desirable in order to enable a simple extrapolation of
cutoffs. However, this approach only allows us to correct for the technical differences from
assay to assay, but not for the differences in sample qualities that potentially result from
the sampling methods, storage conditions, etc.

For the here presented study DBS cards were stored at 4 ◦C for nine months, which
deviates from the optimal storage conditions below −20 ◦C [21,24]. Still, SARS-CoV-2
serolomics results were comparable to freshly thawed serum samples, which is promising
for future DBS-based sero-epidemiological studies. Additional studies are necessary in
order to estimate the variations between the different DBS preparations.

It needs to be further pointed out that the DBS cards for this study were prepared by
trained medical personnel using intravenous blood, representing an optimized surrogate
condition. Although the procedure principle of fingerprick blood collection and application
is simple, it is well-known that the incorrect handling of DBS cards poses a major pitfall, es-
pecially if too little or too much blood is applied [17,19,26]. Therefore, detailed instructions
need to be provided, and, if possible, adequate controls (e.g., control antigens from endemic
pathogens with a high prevalence as polyomaviruses) should be included. Alternatively,
quantitative DBS sampling cards could be used. These cards are supplemented with device
inlet ports, thus ensuring the application of a pre-specified blood volume [26].

5. Conclusions

We showed that blood sampling by DBS cards in conjunction with multiplex serol-
ogy represents a powerful tool that can facilitate the sero-epidemiological research of
SARS-CoV-2. Potential applications include surveillance studies by mail or longitudinal
sampling to study the kinetics of specific antibody responses [26]. Furthermore, low-
resource countries could profit from the reduced logistical burden. Despite being partic-
ularly important for SARS-CoV-2 research, due to the low vaccination coverage globally,
corresponding sero-epidemiological investigations are still underrepresented [1].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10071311/s1, Figure S1: Antibody responses to
antigens from three endemic viruses measured in 142 paired serum and DBS samples and visualized
as scatter plots; Figure S2: Antibody responses to eight non-structural and accessory antigens from
SARS-CoV-2 measured in 142 paired serum and DBS samples and visualized as scatter plots.
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